diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-10-29 10:22:37 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-10-29 10:22:37 +0100 |
commit | 568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5 (patch) | |
tree | bf562ee5c23f3f11795ccb3099ccdab40af35393 | |
parent | 405f6727a6915c61e09160fba52dd8832c2207e3 (diff) | |
download | marginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.tar.gz marginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.tar.bz2 marginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.zip |
Another tweak to superbases.
-rw-r--r-- | marginal.tex | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/marginal.tex b/marginal.tex index c8d0b8b..88809d2 100644 --- a/marginal.tex +++ b/marginal.tex @@ -1802,13 +1802,13 @@ Integrals involving superfields contracted into such operators result in schemat \end{equation} where the usual role of the determinant is replaced by the superdeterminant. The superdeterminant can be defined using the ordinary determinant by writing a -block version of the matrix $M$. If $\mathbf e(1)=\{1,i\bar\theta_1\theta_1\}$ is +block version of the matrix $M$. If $\mathbf e(1)=\{1,\bar\theta_1\theta_1\}$ is the basis vector of the even subspace of the superspace and $\mathbf -f(1)=\{i\bar\theta_1,i\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{i\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that +f(1)=\{\bar\theta_1,\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that \begin{align} - &\int d1\,e_i^\dagger(1)e_j(1)=i\delta_{ij} + &\int d1\,e_i^\dagger(1)e_j(1)=\delta_{ij} && - \int d1\,f_i^\dagger(1)f_j(1)=i\delta_{ij} \\ + \int d1\,f_i^\dagger(1)f_j(1)=\delta_{ij} \\ &\int d1\,e_i^\dagger(1)f_j(1)=0 && \int d1\,f_i^\dagger(1)e_j(1)=0 @@ -1825,7 +1825,7 @@ block representation of $M$ in analogy to the matrix form of an operator in quan & \mathbf f^\dagger(1)M(1,2)\mathbf f(2) \end{bmatrix} - =i\begin{bmatrix} + =\begin{bmatrix} A & B \\ C & D \end{bmatrix} \end{equation} |