summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-29 10:22:37 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-29 10:22:37 +0100
commit568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5 (patch)
treebf562ee5c23f3f11795ccb3099ccdab40af35393
parent405f6727a6915c61e09160fba52dd8832c2207e3 (diff)
downloadmarginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.tar.gz
marginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.tar.bz2
marginal-568324cd4bc0cf2dd6a81464b1c4c700ee7ebfa5.zip
Another tweak to superbases.
-rw-r--r--marginal.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/marginal.tex b/marginal.tex
index c8d0b8b..88809d2 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -1802,13 +1802,13 @@ Integrals involving superfields contracted into such operators result in schemat
\end{equation}
where the usual role of the determinant is replaced by the superdeterminant.
The superdeterminant can be defined using the ordinary determinant by writing a
-block version of the matrix $M$. If $\mathbf e(1)=\{1,i\bar\theta_1\theta_1\}$ is
+block version of the matrix $M$. If $\mathbf e(1)=\{1,\bar\theta_1\theta_1\}$ is
the basis vector of the even subspace of the superspace and $\mathbf
-f(1)=\{i\bar\theta_1,i\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{i\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that
+f(1)=\{\bar\theta_1,\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that
\begin{align}
- &\int d1\,e_i^\dagger(1)e_j(1)=i\delta_{ij}
+ &\int d1\,e_i^\dagger(1)e_j(1)=\delta_{ij}
&&
- \int d1\,f_i^\dagger(1)f_j(1)=i\delta_{ij} \\
+ \int d1\,f_i^\dagger(1)f_j(1)=\delta_{ij} \\
&\int d1\,e_i^\dagger(1)f_j(1)=0
&&
\int d1\,f_i^\dagger(1)e_j(1)=0
@@ -1825,7 +1825,7 @@ block representation of $M$ in analogy to the matrix form of an operator in quan
&
\mathbf f^\dagger(1)M(1,2)\mathbf f(2)
\end{bmatrix}
- =i\begin{bmatrix}
+ =\begin{bmatrix}
A & B \\ C & D
\end{bmatrix}
\end{equation}