summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-25 15:19:52 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-25 15:19:52 +0200
commitce8ff3c8932af48b43a3aacdf6b4f34f100c6d8e (patch)
tree2f745bd48fabeb54c841b964e6254dda4e87e42a
parentb8597c6627fdd05d0aebf79167e7629882983d3f (diff)
downloadmarginal-ce8ff3c8932af48b43a3aacdf6b4f34f100c6d8e.tar.gz
marginal-ce8ff3c8932af48b43a3aacdf6b4f34f100c6d8e.tar.bz2
marginal-ce8ff3c8932af48b43a3aacdf6b4f34f100c6d8e.zip
Fixed mistake in the definiton of the supermatrix of a superoperator, Appendix A
-rw-r--r--marginal.tex30
1 files changed, 22 insertions, 8 deletions
diff --git a/marginal.tex b/marginal.tex
index 508b674..8efa79f 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -1772,21 +1772,30 @@ Integrals involving superfields contracted into such operators result in schemat
\end{equation}
where the usual role of the determinant is replaced by the superdeterminant.
The superdeterminant can be defined using the ordinary determinant by writing a
-block version of the matrix $M$: if $\mathbf e(1)=\{1,\bar\theta_1\theta_1\}$ is
+block version of the matrix $M$. If $\mathbf e(1)=\{1,i\bar\theta_1\theta_1\}$ is
the basis vector of the even subspace of the superspace and $\mathbf
-f(1)=\{\bar\theta_1,\theta_1\}$ is that of the odd subspace, then we can form a
+f(1)=\{i\bar\theta_1,i\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{i\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{\theta_1,-\bar\theta_1\}$ can be defined by the requirement that
+\begin{align}
+ \int d1\,\mathbf e(1)\mathbf e^\dagger(1)=iI
+ &&
+ \int d1\,\mathbf f(1)\mathbf f^\dagger(1)=iI \\
+ \int d1\,\mathbf e(1)\mathbf f^\dagger(1)=0
+ &&
+ \int d1\,\mathbf f(1)\mathbf e^\dagger(1)=0
+\end{align}
+With such bases and dual bases defined, we can form a
block representation of $M$ in analogy to the matrix form of an operator in quantum mechanics by
\begin{equation}
\int d1\,d2\,\begin{bmatrix}
- \mathbf e(1)M(1,2)\mathbf e(2)^T
+ \mathbf e(1)M(1,2)\mathbf e^\dagger(2)
&
- \mathbf e(1)M(1,2)\mathbf f(2)^T
+ \mathbf e(1)M(1,2)\mathbf f^\dagger(2)
\\
- \mathbf f(1)M(1,2)\mathbf e(2)^T
+ \mathbf f(1)M(1,2)\mathbf e^\dagger(2)
&
- \mathbf f(1)M(1,2)\mathbf f(2)^T
+ \mathbf f(1)M(1,2)\mathbf f^\dagger(2)
\end{bmatrix}
- =\begin{bmatrix}
+ =i\begin{bmatrix}
A & B \\ C & D
\end{bmatrix}
\end{equation}
@@ -1802,7 +1811,12 @@ save for the inverse of $\det D$. Likewise, the supertrace of $M$ is is given by
\end{equation}
The same method can be used to calculate the
superdeterminant and supertrace in arbitrary superspaces, where for $\mathbb R^{N|2D}$ each
-basis has $2^{2D-1}$ elements. For instance, for $\mathbb R^{N|4}$ we have $\mathbf e(1,2)=\{1,\bar\theta_1\theta_1,\bar\theta_2\theta_2,\bar\theta_1\theta_2,\bar\theta_2\theta_1,\bar\theta_1\bar\theta_2,\theta_1\theta_2,\bar\theta_1\theta_1\bar\theta_2\theta_2\}$ and $\mathbf f(1,2)=\{\bar\theta_1,\theta_1,\bar\theta_2,\theta_2,\bar\theta_1\theta_1\bar\theta_2,\bar\theta_2\theta_2\theta_1,\bar\theta_1\theta_1\theta_2,\bar\theta_2\theta_2\theta_1\}$.
+basis has $2^{2D-1}$ elements. For instance, for $\mathbb R^{N|4}$ we have
+\begin{align}
+ &\mathbf e(1,2)=\{1,i\bar\theta_1\theta_1,i\bar\theta_2\theta_2,i\bar\theta_1\theta_2,i\bar\theta_2\theta_1,i\bar\theta_1\bar\theta_2,i\theta_1\theta_2,\bar\theta_1\theta_1\bar\theta_2\theta_2\}\notag \\
+ &\mathbf f(1,2)=\{i\bar\theta_1,i\theta_1,i\bar\theta_2,i\theta_2,\bar\theta_1\theta_1\bar\theta_2,\bar\theta_2\theta_2\theta_1,\bar\theta_1\theta_1\theta_2,\bar\theta_2\theta_2\theta_1\}
+\end{align}
+with the dual bases defined analogously to those above.
\section{BRST symmetry}
\label{sec:brst}