summaryrefslogtreecommitdiff
path: root/marginal.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-08-30 22:47:38 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-08-30 22:47:38 +0200
commit9688a70b3b0964bbab687e086017e8c089069afe (patch)
tree7a905e40212c883bf766a5ec035ae01688b5b328 /marginal.tex
parent4aae138676907599c1fbfe698da2bb7861d4f12e (diff)
downloadmarginal-9688a70b3b0964bbab687e086017e8c089069afe.tar.gz
marginal-9688a70b3b0964bbab687e086017e8c089069afe.tar.bz2
marginal-9688a70b3b0964bbab687e086017e8c089069afe.zip
Some tenative work.
Diffstat (limited to 'marginal.tex')
-rw-r--r--marginal.tex31
1 files changed, 29 insertions, 2 deletions
diff --git a/marginal.tex b/marginal.tex
index fb212db..59c9bc8 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -71,18 +71,45 @@ associated with the minimal eigenvalue $\lambda_\mathrm{min}$.
\end{aligned}
\end{equation}
+\begin{equation}
+ \beta^2f''(1)\sum A_{ab}^2+\hat x^2f''(1)A_{11}^2+\beta\hat xf''(1)\sum_a A_{1a}+\hat\beta^2f(C_{ab})+(2\hat\beta(R_{ab}-F_{ab})-D_{ab})f'(C_{a-b})+(R_{ab}^2-F_{ab}^2)f''(C_{ab})
+ +\log\det\begin{bmatrix}C&iR\\iR&D\end{bmatrix}-\log\det F
+\end{equation}
+
\section{Superfield formalism}
\begin{equation}
- \pmb\phi=\pmb\sigma+\bar\theta\pmb\eta+\bar{\pmb\eta}\theta+\hat{\pmb\sigma}\bar\theta\theta+\mathbf x\bar\vartheta\theta+\mathbf x\bar\theta\vartheta
+ \pmb\phi_a(1)=\pmb\sigma_a+\bar\theta(1)\pmb\eta_a+\bar{\pmb\eta}_a\theta(1)+\hat{\pmb\sigma}_a\bar\theta(1)\theta(1)
\end{equation}
\begin{equation}
- \int d\theta\,d\bar\theta\,d\vartheta\,d\bar\vartheta\,(\bar\vartheta\vartheta+\beta+\hat\beta\bar\vartheta\vartheta\bar\theta\theta)H(\pmb\phi)
+ \pmb\xi_b(1)=\pmb\sigma_1+\mathbf x_b\bar\vartheta(1)\theta(1)+\mathbf x_b\bar\theta(1)\vartheta(1)
+\end{equation}
+\begin{equation}
+ \int d\theta\,d\bar\theta\,\left[
+ (1+\hat\beta\bar\theta\theta)H(\pmb\phi)
+ +\int d\vartheta\,d\bar\vartheta\,H(\pmb\xi)
+ \right]
=\hat{\pmb\sigma}^T\partial H(\pmb\sigma)
+\pmb\eta^T\partial\partial H(\pmb\sigma)\pmb\eta
+\beta\mathbf x^T\partial\partial H(\pmb\sigma)\mathbf x
+\hat\beta H(\pmb\sigma)
\end{equation}
+\begin{equation}
+ \int d1\,d2\,(1+\hat\beta\bar\theta(1)\theta(1))(1+\hat\beta\bar\theta(2)\theta(2))
+ f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)
+ +\int d1\,(1+\hat\beta\bar\theta(1)\theta(1))f\left(\frac{\pmb\phi_a(1)\cdot\pmb\xi_b(2)}N\right)
+\end{equation}
+
+\section{Twin spherical model}
+
+$\Omega=S^{N-1}\times S^{N-1}$
+\begin{equation}
+ H(\pmb\sigma)=H_1(\pmb\sigma^{(1)})+H_2(\pmb\sigma^{(2)})+\epsilon\pmb\sigma^{(1)}\cdot\pmb\sigma^{(2)}
+\end{equation}
+\begin{equation}
+ \overline{H_s(\pmb\sigma_1)H_s(\pmb\sigma_2)}
+ =Nf_s\left(\frac{\pmb\sigma_1\cdot\pmb\sigma_2}N\right)
+\end{equation}
\section{Multi-species spherical model}