diff options
-rw-r--r-- | figs/msg_marg_legend.pdf | bin | 4925 -> 4925 bytes | |||
-rw-r--r-- | figs/msg_marg_params.pdf | bin | 66167 -> 66167 bytes | |||
-rw-r--r-- | figs/msg_marg_spectra.pdf | bin | 19856 -> 20075 bytes | |||
-rw-r--r-- | figures.nb | 969 | ||||
-rw-r--r-- | marginal.bib | 18 | ||||
-rw-r--r-- | marginal.tex | 125 |
6 files changed, 972 insertions, 140 deletions
diff --git a/figs/msg_marg_legend.pdf b/figs/msg_marg_legend.pdf Binary files differindex 4b3e272..0bf074f 100644 --- a/figs/msg_marg_legend.pdf +++ b/figs/msg_marg_legend.pdf diff --git a/figs/msg_marg_params.pdf b/figs/msg_marg_params.pdf Binary files differindex 22f7c37..3168bbe 100644 --- a/figs/msg_marg_params.pdf +++ b/figs/msg_marg_params.pdf diff --git a/figs/msg_marg_spectra.pdf b/figs/msg_marg_spectra.pdf Binary files differindex 46f7969..19eda13 100644 --- a/figs/msg_marg_spectra.pdf +++ b/figs/msg_marg_spectra.pdf @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 1039851, 19511] -NotebookOptionsPosition[ 1028275, 19321] -NotebookOutlinePosition[ 1028674, 19337] -CellTagsIndexPosition[ 1028631, 19334] +NotebookDataLength[ 1071099, 20226] +NotebookOptionsPosition[ 1059056, 20028] +NotebookOutlinePosition[ 1059455, 20044] +CellTagsIndexPosition[ 1059412, 20041] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -3531,6 +3531,175 @@ Cell[BoxData[ Cell[CellGroupData[{ Cell[BoxData[ + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"Limit", "[", + RowBox[{"\[ScriptCapitalS]twin", ",", + RowBox[{"n", "->", "0"}]}], "]"}], ",", + RowBox[{"Assumptions", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"0", "<", "q11d0", "<", "1"}], ",", + RowBox[{"0", "<", "q11d1", "<", "1"}], ",", + RowBox[{"0", "<", "q110", "<", "1"}], ",", + RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], + RowBox[{"Log", "[", "a_", "]"}]}], "+", + RowBox[{"Log", "[", "b_", "]"}]}], ":>", + RowBox[{"Log", "[", + RowBox[{"FullSimplify", "[", + RowBox[{"b", "/", + SuperscriptBox["a", "2"]}], "]"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.9272803840094433`*^9, 3.927280410881407*^9}}, + CellLabel-> + "In[233]:=",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["q110", "2"]}], "-", + RowBox[{"2", " ", + SuperscriptBox["q111", "2"]}], "-", + SuperscriptBox["q11d0", "2"], "+", + SuperscriptBox["q11d1", "2"]}], ")"}], " ", + SuperscriptBox["\[Beta]", "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"q111", "-", "q11d1"}], ")"}], " ", + RowBox[{"(", + RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ", + "\[Lambda]"}], "+", + RowBox[{ + SuperscriptBox["q11d1", "2"], " ", + SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["q220", "2"]}], "-", + RowBox[{"2", " ", + SuperscriptBox["q221", "2"]}], "-", + SuperscriptBox["q22d0", "2"], "+", + SuperscriptBox["q22d1", "2"]}], ")"}], " ", + SuperscriptBox["\[Beta]", "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"q221", "-", "q22d1"}], ")"}], " ", + RowBox[{"(", + RowBox[{"q221", "+", "q22d1"}], ")"}], " ", "\[Beta]", " ", + "\[Lambda]"}], "+", + RowBox[{ + SuperscriptBox["q22d1", "2"], " ", + SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"\[Beta]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "q12d0", " ", "\[Epsilon]"}], "-", + RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+", + RowBox[{"q11d0", " ", "\[Omega]1"}], "-", + RowBox[{"q11d1", " ", "\[Omega]1"}], "+", + RowBox[{"q22d0", " ", "\[Omega]2"}], "-", + RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "+", + RowBox[{"\[Lambda]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+", + RowBox[{"q11d1", " ", "\[Omega]1"}], "+", + RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "q120", " ", "q121"}], "-", + RowBox[{"q121", " ", + RowBox[{"(", + RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-", + RowBox[{"2", " ", "q111", " ", "q220"}], "+", + RowBox[{"q11d1", " ", "q221"}], "+", + RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "q120", " ", "q121"}], "-", + RowBox[{"q121", " ", + RowBox[{"(", + RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-", + RowBox[{"2", " ", "q110", " ", "q221"}], "+", + RowBox[{"q11d0", " ", "q221"}], "+", + RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + SuperscriptBox["q120", "2"]}], "-", + SuperscriptBox["q121", "2"], "-", + RowBox[{"2", " ", "q120", " ", "q12d0"}], "-", + RowBox[{"3", " ", "q110", " ", "q220"}], "+", + RowBox[{"q11d0", " ", "q220"}], "+", + RowBox[{"q111", " ", "q221"}], "+", + RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["q121", "2"], "-", + SuperscriptBox["q12d1", "2"], "-", + RowBox[{"q111", " ", "q221"}], "+", + RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["q120", "2"]}], "-", + SuperscriptBox["q121", "2"], "-", + SuperscriptBox["q12d0", "2"], "-", + RowBox[{"2", " ", "q110", " ", "q220"}], "+", + RowBox[{"q111", " ", "q221"}], "+", + RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["q121", "2"], "-", + SuperscriptBox["q12d1", "2"], "-", + RowBox[{"q111", " ", "q221"}], "+", + RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], ")"}], "/", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"q120", "-", "q12d0"}], ")"}], "2"], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"q110", "-", "q11d0"}], ")"}], " ", + RowBox[{"(", + RowBox[{"q220", "-", "q22d0"}], ")"}]}]}], ")"}], "2"]}], + "]"}]}]}]], "Output", + CellChangeTimes->{ + 3.927277343768147*^9, {3.9272804001319523`*^9, 3.927280411646502*^9}}, + CellLabel-> + "Out[233]=",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ RowBox[{"e1", "=", RowBox[{ RowBox[{"FullSimplify", "[", @@ -4771,6 +4940,560 @@ Cell[BoxData[ CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}}, CellLabel->"In[26]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], +Cell[CellGroupData[{ + +Cell[BoxData["e10"], "Input", + CellChangeTimes->{{3.927282513001899*^9, 3.927282513297226*^9}}, + CellLabel-> + "In[235]:=",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], + +Cell[BoxData[ + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", "y12d0", " ", "\[Epsilon]"}], "+", + RowBox[{"4", " ", "y12d1", " ", "\[Epsilon]"}], "+", + RowBox[{"4", " ", "q12", " ", "\[Epsilon]", " ", "\[Lambda]0"}], "+", + RowBox[{"4", " ", "y111", " ", "y11d0", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{ + SuperscriptBox["y11d0", "2"], " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{"4", " ", "y111", " ", "y11d1", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{"2", " ", "y11d0", " ", "y11d1", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{"3", " ", + SuperscriptBox["y11d1", "2"], " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{"8", " ", "q11d", " ", "z110", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{"8", " ", "q11d", " ", "z111", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{"4", " ", "q11d", " ", "z11d0", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{"4", " ", "q11d", " ", "z11d1", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{"8", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]1", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", + SuperscriptBox["\[Lambda]0", "2"], " ", + SuperscriptBox["\[Sigma]1", "2"]}], "-", + RowBox[{ + SuperscriptBox["y11d0", "2"], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"2", " ", "y11d0", " ", "y11d1", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"3", " ", + SuperscriptBox["y11d1", "2"], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"4", " ", "y11d0", " ", "y221", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"4", " ", "y11d1", " ", "y221", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"4", " ", "z11d0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"4", " ", "q11d", " ", "z11d0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"4", " ", "z11d1", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"4", " ", "q11d", " ", "z11d1", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"8", " ", "z220", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"8", " ", "q11d", " ", "z220", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"8", " ", "z221", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"8", " ", "q11d", " ", "z221", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["\[Lambda]0", "2"], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"4", " ", "q11d", " ", + SuperscriptBox["\[Lambda]0", "2"], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", + SuperscriptBox["\[Lambda]0", "2"], " ", + SuperscriptBox["\[Sigma]2", "2"]}], "-", + RowBox[{"2", " ", "y11d0", " ", "\[Omega]1"}], "+", + RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+", + RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "+", + RowBox[{"2", " ", "y11d0", " ", "\[Omega]2"}], "-", + RowBox[{"2", " ", "y11d1", " ", "\[Omega]2"}], "+", + RowBox[{"2", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-", + RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]2"}], "+", + RowBox[{"Log", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"16", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["y11d1", "4"], "+", + SuperscriptBox["y121", "4"], "-", + RowBox[{"4", " ", + SuperscriptBox["y121", "3"], " ", "y12d1"}], "+", + RowBox[{"6", " ", + SuperscriptBox["y121", "2"], " ", + SuperscriptBox["y12d1", "2"]}], "-", + RowBox[{"4", " ", "y121", " ", + SuperscriptBox["y12d1", "3"]}], "+", + SuperscriptBox["y12d1", "4"], "+", + RowBox[{"2", " ", + SuperscriptBox["y11d1", "3"], " ", "y221"}], "+", + RowBox[{"2", " ", + SuperscriptBox["y121", "2"], " ", "z110"}], "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z110"}], "-", + RowBox[{"4", " ", "y121", " ", "y12d1", " ", "z110"}], "+", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z110"}], + "+", + RowBox[{"2", " ", + SuperscriptBox["y12d1", "2"], " ", "z110"}], "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z110"}], "-", + RowBox[{"4", " ", "q12", " ", "y121", " ", "y221", " ", "z110"}], + "+", + RowBox[{"4", " ", "q12", " ", "y12d1", " ", "y221", " ", "z110"}], + "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y221", "2"], " ", "z110"}], "-", + RowBox[{"2", " ", + SuperscriptBox["y121", "2"], " ", "z111"}], "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z111"}], "+", + RowBox[{"4", " ", "y121", " ", "y12d1", " ", "z111"}], "-", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z111"}], + "-", + RowBox[{"2", " ", + SuperscriptBox["y12d1", "2"], " ", "z111"}], "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z111"}], "+", + RowBox[{"4", " ", "q12", " ", "y121", " ", "y221", " ", "z111"}], + "-", + RowBox[{"4", " ", "q12", " ", "y12d1", " ", "y221", " ", "z111"}], + "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y221", "2"], " ", "z111"}], "-", + RowBox[{ + SuperscriptBox["y121", "2"], " ", "z11d0"}], "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z11d0"}], "+", + RowBox[{"2", " ", "y121", " ", "y12d1", " ", "z11d0"}], "-", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z11d0"}], + "-", + RowBox[{ + SuperscriptBox["y12d1", "2"], " ", "z11d0"}], "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z11d0"}], "+", + RowBox[{"2", " ", "q12", " ", "y121", " ", "y221", " ", "z11d0"}], + "-", + RowBox[{"2", " ", "q12", " ", "y12d1", " ", "y221", " ", "z11d0"}], + "-", + RowBox[{"q11d", " ", + SuperscriptBox["y221", "2"], " ", "z11d0"}], "+", + RowBox[{"2", " ", "q11d", " ", "z110", " ", "z11d0"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z110", " ", "z11d0"}], "-", + RowBox[{"2", " ", "q11d", " ", "z111", " ", "z11d0"}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z111", " ", "z11d0"}], "-", + RowBox[{"q11d", " ", + SuperscriptBox["z11d0", "2"]}], "+", + RowBox[{ + SuperscriptBox["q11d", "2"], " ", + SuperscriptBox["z11d0", "2"]}], "+", + RowBox[{ + SuperscriptBox["y121", "2"], " ", "z11d1"}], "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z11d1"}], "-", + RowBox[{"2", " ", "y121", " ", "y12d1", " ", "z11d1"}], "+", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z11d1"}], + "+", + RowBox[{ + SuperscriptBox["y12d1", "2"], " ", "z11d1"}], "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z11d1"}], "-", + RowBox[{"2", " ", "q12", " ", "y121", " ", "y221", " ", "z11d1"}], + "+", + RowBox[{"2", " ", "q12", " ", "y12d1", " ", "y221", " ", "z11d1"}], + "+", + RowBox[{"q11d", " ", + SuperscriptBox["y221", "2"], " ", "z11d1"}], "-", + RowBox[{"2", " ", "q11d", " ", "z110", " ", "z11d1"}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z110", " ", "z11d1"}], "+", + RowBox[{"2", " ", "q11d", " ", "z111", " ", "z11d1"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z111", " ", "z11d1"}], "+", + RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z11d1"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z11d1"}], "-", + RowBox[{"q11d", " ", + SuperscriptBox["z11d1", "2"]}], "+", + RowBox[{ + SuperscriptBox["q11d", "2"], " ", + SuperscriptBox["z11d1", "2"]}], "+", + RowBox[{"4", " ", "q12", " ", + SuperscriptBox["y121", "2"], " ", "z120"}], "-", + RowBox[{"8", " ", "q12", " ", "y121", " ", "y12d1", " ", "z120"}], + "+", + RowBox[{"4", " ", "q12", " ", + SuperscriptBox["y12d1", "2"], " ", "z120"}], "-", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y221", " ", "z120"}], + "+", + RowBox[{"4", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z120"}], + "-", + RowBox[{"4", " ", "q12", " ", "z110", " ", "z120"}], "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z110", " ", "z120"}], + "+", + RowBox[{"4", " ", "q12", " ", "z111", " ", "z120"}], "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z111", " ", "z120"}], + "+", + RowBox[{"2", " ", "q12", " ", "z11d0", " ", "z120"}], "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z120"}], + "-", + RowBox[{"2", " ", "q12", " ", "z11d1", " ", "z120"}], "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z120"}], + "+", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", + SuperscriptBox["z120", "2"]}], "-", + RowBox[{"4", " ", "q12", " ", + SuperscriptBox["y121", "2"], " ", "z121"}], "+", + RowBox[{"8", " ", "q12", " ", "y121", " ", "y12d1", " ", "z121"}], + "-", + RowBox[{"4", " ", "q12", " ", + SuperscriptBox["y12d1", "2"], " ", "z121"}], "+", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y221", " ", "z121"}], + "-", + RowBox[{"4", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z121"}], + "+", + RowBox[{"4", " ", "q12", " ", "z110", " ", "z121"}], "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z110", " ", "z121"}], + "-", + RowBox[{"4", " ", "q12", " ", "z111", " ", "z121"}], "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z111", " ", "z121"}], + "-", + RowBox[{"2", " ", "q12", " ", "z11d0", " ", "z121"}], "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z121"}], + "+", + RowBox[{"2", " ", "q12", " ", "z11d1", " ", "z121"}], "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z121"}], + "-", + RowBox[{"8", " ", + SuperscriptBox["q12", "2"], " ", "z120", " ", "z121"}], "+", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", + SuperscriptBox["z121", "2"]}], "-", + RowBox[{"2", " ", "q12", " ", + SuperscriptBox["y121", "2"], " ", "z12d0"}], "+", + RowBox[{"4", " ", "q12", " ", "y121", " ", "y12d1", " ", "z12d0"}], + "-", + RowBox[{"2", " ", "q12", " ", + SuperscriptBox["y12d1", "2"], " ", "z12d0"}], "+", + RowBox[{"2", " ", "q11d", " ", "y121", " ", "y221", " ", "z12d0"}], + "-", + RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z12d0"}], + "+", + RowBox[{"2", " ", "q12", " ", "z110", " ", "z12d0"}], "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z110", " ", "z12d0"}], + "-", + RowBox[{"2", " ", "q12", " ", "z111", " ", "z12d0"}], "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z111", " ", "z12d0"}], + "-", + RowBox[{"q12", " ", "z11d0", " ", "z12d0"}], "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z12d0"}], + "+", + RowBox[{"q12", " ", "z11d1", " ", "z12d0"}], "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z12d0"}], + "-", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", "z120", " ", "z12d0"}], "+", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", "z121", " ", "z12d0"}], "+", + RowBox[{ + SuperscriptBox["q12", "2"], " ", + SuperscriptBox["z12d0", "2"]}], "+", + RowBox[{"2", " ", "q12", " ", + SuperscriptBox["y121", "2"], " ", "z12d1"}], "-", + RowBox[{"4", " ", "q12", " ", "y121", " ", "y12d1", " ", "z12d1"}], + "+", + RowBox[{"2", " ", "q12", " ", + SuperscriptBox["y12d1", "2"], " ", "z12d1"}], "-", + RowBox[{"2", " ", "q11d", " ", "y121", " ", "y221", " ", "z12d1"}], + "+", + RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z12d1"}], + "-", + RowBox[{"2", " ", "q12", " ", "z110", " ", "z12d1"}], "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z110", " ", "z12d1"}], + "+", + RowBox[{"2", " ", "q12", " ", "z111", " ", "z12d1"}], "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z111", " ", "z12d1"}], + "+", + RowBox[{"q12", " ", "z11d0", " ", "z12d1"}], "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z12d1"}], + "-", + RowBox[{"q12", " ", "z11d1", " ", "z12d1"}], "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z12d1"}], + "+", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", "z120", " ", "z12d1"}], "-", + RowBox[{"4", " ", + SuperscriptBox["q12", "2"], " ", "z121", " ", "z12d1"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q12", "2"], " ", "z12d0", " ", "z12d1"}], "+", + RowBox[{ + SuperscriptBox["q12", "2"], " ", + SuperscriptBox["z12d1", "2"]}], "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z220"}], "-", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z220"}], + "+", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z220"}], "+", + RowBox[{"4", " ", "q11d", " ", "z110", " ", "z220"}], "-", + RowBox[{"4", " ", + SuperscriptBox["q11d", "2"], " ", "z110", " ", "z220"}], "-", + RowBox[{"4", " ", "q11d", " ", "z111", " ", "z220"}], "+", + RowBox[{"4", " ", + SuperscriptBox["q11d", "2"], " ", "z111", " ", "z220"}], "-", + RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z220"}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z220"}], "+", + RowBox[{"2", " ", "q11d", " ", "z11d1", " ", "z220"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z11d1", " ", "z220"}], "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z120", " ", "z220"}], + "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z121", " ", "z220"}], + "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d0", " ", "z220"}], + "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d1", " ", "z220"}], + "+", + RowBox[{ + SuperscriptBox["y111", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["y11d1", "2"], "+", + RowBox[{"2", " ", "y11d1", " ", "y221"}], "+", + SuperscriptBox["y221", "2"], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", + RowBox[{"(", + RowBox[{"z11d0", "-", "z11d1", "+", + RowBox[{"2", " ", "z220"}], "-", + RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y121", "2"], " ", "z221"}], "+", + RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z221"}], + "-", + RowBox[{"2", " ", "q11d", " ", + SuperscriptBox["y12d1", "2"], " ", "z221"}], "-", + RowBox[{"4", " ", "q11d", " ", "z110", " ", "z221"}], "+", + RowBox[{"4", " ", + SuperscriptBox["q11d", "2"], " ", "z110", " ", "z221"}], "+", + RowBox[{"4", " ", "q11d", " ", "z111", " ", "z221"}], "-", + RowBox[{"4", " ", + SuperscriptBox["q11d", "2"], " ", "z111", " ", "z221"}], "+", + RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z221"}], "-", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z221"}], "-", + RowBox[{"2", " ", "q11d", " ", "z11d1", " ", "z221"}], "+", + RowBox[{"2", " ", + SuperscriptBox["q11d", "2"], " ", "z11d1", " ", "z221"}], "+", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z120", " ", "z221"}], + "-", + RowBox[{"4", " ", "q11d", " ", "q12", " ", "z121", " ", "z221"}], + "-", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d0", " ", "z221"}], + "+", + RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d1", " ", "z221"}], + "+", + RowBox[{ + SuperscriptBox["y11d1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["y121", "2"]}], "-", + RowBox[{"4", " ", "y121", " ", "y12d1"}], "+", + RowBox[{"2", " ", + SuperscriptBox["y12d1", "2"]}], "+", + SuperscriptBox["y221", "2"], "+", + RowBox[{"2", " ", "q11d", " ", "z110"}], "-", + RowBox[{"2", " ", "q11d", " ", "z111"}], "+", "z11d0", "-", + RowBox[{"2", " ", "q11d", " ", "z11d0"}], "-", "z11d1", "+", + RowBox[{"2", " ", "q11d", " ", "z11d1"}], "-", + RowBox[{"4", " ", "q12", " ", "z120"}], "+", + RowBox[{"4", " ", "q12", " ", "z121"}], "+", + RowBox[{"2", " ", "q12", " ", "z12d0"}], "-", + RowBox[{"2", " ", "q12", " ", "z12d1"}], "+", + RowBox[{"2", " ", "z220"}], "-", + RowBox[{"2", " ", "q11d", " ", "z220"}], "-", + RowBox[{"2", " ", "z221"}], "+", + RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}], "-", + RowBox[{"2", " ", "y111", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["y11d1", "3"], "+", + RowBox[{"2", " ", + SuperscriptBox["y11d1", "2"], " ", "y221"}], "+", + RowBox[{ + SuperscriptBox["y121", "2"], " ", "y221"}], "+", + RowBox[{ + SuperscriptBox["y12d1", "2"], " ", "y221"}], "-", + RowBox[{"q12", " ", "y12d1", " ", "z11d0"}], "+", + RowBox[{"q12", " ", "y12d1", " ", "z11d1"}], "-", + RowBox[{"2", " ", "y12d1", " ", "z120"}], "+", + RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "z120"}], "-", + RowBox[{"2", " ", "q12", " ", "y221", " ", "z120"}], "+", + RowBox[{"2", " ", "y12d1", " ", "z121"}], "-", + RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "z121"}], "+", + RowBox[{"2", " ", "q12", " ", "y221", " ", "z121"}], "+", + RowBox[{"y12d1", " ", "z12d0"}], "-", + RowBox[{"q11d", " ", "y12d1", " ", "z12d0"}], "+", + RowBox[{"q12", " ", "y221", " ", "z12d0"}], "-", + RowBox[{"y12d1", " ", "z12d1"}], "+", + RowBox[{"q11d", " ", "y12d1", " ", "z12d1"}], "-", + RowBox[{"q12", " ", "y221", " ", "z12d1"}], "-", + RowBox[{"2", " ", "q12", " ", "y12d1", " ", "z220"}], "+", + RowBox[{"y121", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "y12d1", " ", "y221"}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "z120"}], "-", + RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}], + ")"}]}], "+", + RowBox[{"q12", " ", + RowBox[{"(", + RowBox[{"z11d0", "-", "z11d1", "+", + RowBox[{"2", " ", "z220"}], "-", + RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], "+", + RowBox[{"2", " ", "q12", " ", "y12d1", " ", "z221"}], "+", + RowBox[{"y11d1", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["y121", "2"], "-", + RowBox[{"2", " ", "y121", " ", "y12d1"}], "+", + SuperscriptBox["y12d1", "2"], "+", + SuperscriptBox["y221", "2"], "+", "z11d0", "-", + RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+", + RowBox[{"q11d", " ", "z11d1"}], "-", + RowBox[{"2", " ", "q12", " ", "z120"}], "+", + RowBox[{"2", " ", "q12", " ", "z121"}], "+", + RowBox[{"q12", " ", "z12d0"}], "-", + RowBox[{"q12", " ", "z12d1"}], "+", + RowBox[{"2", " ", "z220"}], "-", + RowBox[{"2", " ", "q11d", " ", "z220"}], "-", + RowBox[{"2", " ", "z221"}], "+", + RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]}], ")"}]}], + "+", + RowBox[{"2", " ", "y11d1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["y121", "2"], " ", "y221"}], "+", + RowBox[{ + SuperscriptBox["y12d1", "2"], " ", "y221"}], "+", + RowBox[{"q11d", " ", "y221", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "z110"}], "-", + RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], + ")"}]}], "+", + RowBox[{"q12", " ", "y221", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "z120"}], "+", + RowBox[{"2", " ", "z121"}], "+", "z12d0", "-", "z12d1"}], + ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "q11d"}]}], ")"}], " ", "y12d1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "z120"}], "-", + RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}], + ")"}]}], "+", + RowBox[{"2", " ", "q12", " ", "y12d1", " ", + RowBox[{"(", + RowBox[{ + "z110", "-", "z111", "-", "z11d0", "+", "z11d1", "-", "z220", + "+", "z221"}], ")"}]}], "+", + RowBox[{"y121", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "y12d1", " ", "y221"}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "q11d"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "z120"}], "-", + RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}], + ")"}]}], "-", + RowBox[{"2", " ", "q12", " ", + RowBox[{"(", + RowBox[{ + "z110", "-", "z111", "-", "z11d0", "+", "z11d1", "-", + "z220", "+", "z221"}], ")"}]}]}], ")"}]}]}], ")"}]}]}], + ")"}]}], ")"}], "/", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["y11d0", "2"], "+", + SuperscriptBox["y11d1", "2"], "+", + RowBox[{"4", " ", + SuperscriptBox["y121", "2"]}], "-", + RowBox[{"4", " ", "y121", " ", "y12d0"}], "+", + SuperscriptBox["y12d0", "2"], "-", + RowBox[{"4", " ", "y121", " ", "y12d1"}], "+", + RowBox[{"2", " ", "y12d0", " ", "y12d1"}], "+", + SuperscriptBox["y12d1", "2"], "+", + RowBox[{"2", " ", "y11d1", " ", "y221"}], "+", + RowBox[{"2", " ", "y11d0", " ", + RowBox[{"(", + RowBox[{"y11d1", "+", "y221"}], ")"}]}], "-", + RowBox[{"2", " ", "y111", " ", + RowBox[{"(", + RowBox[{"y11d0", "+", "y11d1", "+", + RowBox[{"2", " ", "y221"}]}], ")"}]}]}], ")"}], "2"]}], "]"}]}], + ")"}]}]], "Output", + CellChangeTimes->{3.927282513513418*^9}, + CellLabel-> + "Out[235]=",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"] +}, Open ]], + Cell[BoxData[ RowBox[{ RowBox[{"e11", "=", @@ -16389,7 +17112,14 @@ Cell[BoxData[ RowBox[{"ColorData", "[", "97", "]"}], "[", "7", "]"}]}], "}"}]}], ",", RowBox[{"Exclusions", "->", "None"}], ",", - RowBox[{"AspectRatio", "->", "1.05"}]}], "]"}]}]], "Input", + RowBox[{"AspectRatio", "->", "1.0"}], ",", + RowBox[{"PlotRange", "->", + RowBox[{"{", + RowBox[{"Automatic", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.025"}], ",", "0.39"}], "}"}]}], "}"}]}]}], + "]"}]}]], "Input", CellChangeTimes->{{3.905943230252966*^9, 3.9059432467651*^9}, { 3.905943323183587*^9, 3.905943323270744*^9}, {3.905943370808155*^9, 3.905943387776013*^9}, {3.905943727471215*^9, 3.905943760471752*^9}, { @@ -16409,9 +17139,10 @@ Cell[BoxData[ 3.927269454425047*^9}, {3.927269614236217*^9, 3.927269615108109*^9}, 3.9272698197446957`*^9, {3.9272698586251287`*^9, 3.927269939986577*^9}, { 3.927269991827999*^9, 3.9272700136675997`*^9}, {3.9272702891457*^9, - 3.927270291753561*^9}, {3.927270348363011*^9, 3.927270354818643*^9}}, + 3.927270291753561*^9}, {3.927270348363011*^9, 3.927270354818643*^9}, { + 3.927273940047409*^9, 3.927273996696007*^9}}, CellLabel-> - "In[195]:=",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], + "In[225]:=",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], Cell[BoxData[ GraphicsBox[ @@ -18213,11 +18944,11 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.25, 6}, {0., 0.3118787107124662}}, - "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, - "ImageSize" -> {165, 173.25}, "Axes" -> {True, True}, - "LabelStyle" -> {FontFamily -> "Times", - GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1.05, + "PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025, + 0.39}}, "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.}, + "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1., "DefaultStyle" -> { Directive[ Opacity[1.], @@ -18250,11 +18981,11 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.25, 6}, {0., 0.3118787107124662}}, - "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, - "ImageSize" -> {165, 173.25}, "Axes" -> {True, True}, - "LabelStyle" -> {FontFamily -> "Times", - GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1.05, + "PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025, + 0.39}}, "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.}, + "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1., "DefaultStyle" -> { Directive[ Opacity[1.], @@ -19186,11 +19917,11 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, - "PlotRange" -> {{-0.25, 6}, {0., 0.3118787107124662}}, - "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0}, - "ImageSize" -> {165, 173.25}, "Axes" -> {True, True}, - "LabelStyle" -> {FontFamily -> "Times", - GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1.05, "DefaultStyle" -> { + "PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025, + 0.39}}, "Frame" -> {{True, True}, {True, True}}, + "AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.}, + "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times", + GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1., "DefaultStyle" -> { Directive[ Opacity[1.], AbsoluteThickness[2], @@ -19217,7 +19948,7 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], - AspectRatio->1.05, + AspectRatio->1., Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, @@ -19262,39 +19993,15 @@ bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ== Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange->{{-0.25, 6}, {0., 0.3118787107124662}}, + PlotRange->{{-0.2499998724489796, 5.99999987244898}, {-0.025, 0.39}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.05], - Scaled[0.05]}}, + Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{ - 3.905943247877662*^9, 3.905943324716791*^9, 3.905943388948216*^9, { - 3.905943728863911*^9, 3.905943762085963*^9}, {3.905944278783104*^9, - 3.905944327786414*^9}, {3.905944482582052*^9, 3.905944529402162*^9}, { - 3.905944683637107*^9, 3.905944706699599*^9}, 3.906013505666971*^9, - 3.908536707840866*^9, 3.908958029828583*^9, 3.9089581849952*^9, { - 3.90895821712799*^9, 3.908958340960677*^9}, {3.9089584165031767`*^9, - 3.908958464037497*^9}, {3.908958876947516*^9, 3.90895892558123*^9}, { - 3.9089600631672077`*^9, 3.908960084785598*^9}, {3.90896027996911*^9, - 3.908960287630111*^9}, 3.908960324139595*^9, 3.908960678754494*^9, { - 3.908960843335606*^9, 3.908960852479212*^9}, {3.908961163218337*^9, - 3.908961205933471*^9}, 3.908964921691845*^9, {3.9089649630219736`*^9, - 3.908964978816199*^9}, 3.908965368243447*^9, {3.908965406695645*^9, - 3.9089654148124847`*^9}, 3.9089657258933*^9, 3.908965756199148*^9, - 3.927208543931017*^9, 3.927208597000937*^9, 3.927208727318162*^9, { - 3.927210841476163*^9, 3.927210860705484*^9}, {3.9272687722804537`*^9, - 3.927268884156055*^9}, {3.927268945405375*^9, 3.927268968496748*^9}, { - 3.927269024542261*^9, 3.927269028800208*^9}, {3.927269065677116*^9, - 3.927269107959715*^9}, {3.9272692597105923`*^9, 3.9272692843664227`*^9}, { - 3.927269421705351*^9, 3.927269455829315*^9}, 3.927269616288556*^9, { - 3.927269865736536*^9, 3.9272699408023577`*^9}, {3.927269996378302*^9, - 3.927270014681003*^9}, {3.927270267378015*^9, 3.9272702929158983`*^9}, { - 3.927270349408308*^9, 3.927270355752769*^9}}, + CellChangeTimes->{{3.9272739527356052`*^9, 3.927273997648509*^9}}, CellLabel-> - "Out[195]=",ExpressionUUID->"f52a1e87-1e39-4ee2-b780-bed0cdb00335"] + "Out[225]=",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"] }, Open ]], Cell[BoxData[{ @@ -19316,11 +20023,11 @@ pdf\>\"", ",", "mplot2"}], "]"}], ";"}], "\[IndentingNewLine]", CellChangeTimes->{{3.9272696181002073`*^9, 3.927269657220293*^9}, { 3.927270269287866*^9, 3.927270282296212*^9}}, CellLabel-> - "In[218]:=",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] + "In[226]:=",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] }, Open ]] }, -WindowSize->{1918.5, 1023.75}, -WindowMargins->{{0, Automatic}, {0, Automatic}}, +WindowSize->{952.5, 1023.75}, +WindowMargins->{{0, Automatic}, {-537.75, -1.5}}, FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"fe7785c4-a5eb-46c5-8188-772697b31ba4" @@ -19346,7 +20053,7 @@ Cell[CellGroupData[{ Cell[2355, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"], Cell[2529, 75, 899, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ -Cell[3453, 108, 2084, 50, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], +Cell[3453, 108, 2084, 50, 58, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], Cell[5540, 160, 29585, 583, 177, "Output",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] }, Open ]], Cell[CellGroupData[{ @@ -19360,9 +20067,9 @@ Cell[CellGroupData[{ Cell[37481, 814, 196, 3, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], Cell[37680, 819, 217, 3, 25, "Output",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"] }, Open ]], -Cell[37912, 825, 2505, 60, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], -Cell[40420, 887, 5604, 139, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], -Cell[46027, 1028, 7652, 192, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], +Cell[37912, 825, 2505, 60, 77, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], +Cell[40420, 887, 5604, 139, 228, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], +Cell[46027, 1028, 7652, 192, 311, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ Cell[53704, 1224, 694, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], Cell[54401, 1237, 32305, 586, 74, "Output",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"] @@ -19380,7 +20087,7 @@ Cell[151350, 3021, 795, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1 Cell[CellGroupData[{ Cell[152182, 3045, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], Cell[152342, 3050, 6531, 182, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], -Cell[158876, 3234, 1566, 47, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], +Cell[158876, 3234, 1566, 47, 53, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], Cell[160445, 3283, 701, 18, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ Cell[161171, 3305, 237, 4, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], @@ -19394,124 +20101,132 @@ Cell[CellGroupData[{ Cell[164752, 3396, 710, 20, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], Cell[165465, 3418, 623, 9, 25, "Output",ExpressionUUID->"1ba86785-13f6-440b-acc6-140d6fc7710d"] }, Open ]], -Cell[166103, 3430, 3806, 98, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], +Cell[166103, 3430, 3806, 98, 110, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], +Cell[CellGroupData[{ +Cell[169934, 3532, 929, 26, 24, "Input",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"], +Cell[170866, 3560, 4888, 136, 135, "Output",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"] +}, Open ]], +Cell[CellGroupData[{ +Cell[175791, 3701, 994, 24, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], +Cell[176788, 3727, 6520, 175, 141, "Output",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"] +}, Open ]], Cell[CellGroupData[{ -Cell[169934, 3532, 994, 24, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], -Cell[170931, 3558, 6520, 175, 73, "Output",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"] +Cell[183345, 3907, 906, 25, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], +Cell[184254, 3934, 3889, 115, 89, "Output",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"] }, Open ]], +Cell[188158, 4052, 984, 20, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], +Cell[189145, 4074, 2604, 54, 41, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ -Cell[177488, 3738, 906, 25, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], -Cell[178397, 3765, 3889, 115, 55, "Output",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"] +Cell[191774, 4132, 419, 10, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], +Cell[192196, 4144, 5741, 144, 309, "Output",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"] }, Open ]], -Cell[182301, 3883, 984, 20, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], -Cell[183288, 3905, 2604, 54, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ -Cell[185917, 3963, 419, 10, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], -Cell[186339, 3975, 5741, 144, 160, "Output",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"] +Cell[197974, 4293, 431, 10, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], +Cell[198408, 4305, 11240, 318, 390, "Output",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"] }, Open ]], Cell[CellGroupData[{ -Cell[192117, 4124, 431, 10, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], -Cell[192551, 4136, 11240, 318, 177, "Output",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"] +Cell[209685, 4628, 472, 12, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], +Cell[210160, 4642, 1369, 36, 27, "Output",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"] }, Open ]], Cell[CellGroupData[{ -Cell[203828, 4459, 472, 12, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], -Cell[204303, 4473, 1369, 36, 27, "Output",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"] +Cell[211566, 4683, 947, 20, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], +Cell[212516, 4705, 822, 16, 22, "Message",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"] }, Open ]], +Cell[213353, 4724, 1106, 22, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], +Cell[214462, 4748, 3835, 83, 58, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ -Cell[205709, 4514, 947, 20, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], -Cell[206659, 4536, 822, 16, 22, "Message",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"] +Cell[218322, 4835, 1251, 26, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], +Cell[219576, 4863, 1698, 38, 38, "Output",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"] }, Open ]], -Cell[207496, 4555, 1106, 22, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], -Cell[208605, 4579, 3835, 83, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], +Cell[221289, 4904, 964, 25, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], +Cell[222256, 4931, 358, 9, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], Cell[CellGroupData[{ -Cell[212465, 4666, 1251, 26, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], -Cell[213719, 4694, 1698, 38, 38, "Output",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"] +Cell[222639, 4944, 178, 3, 22, "Input",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"], +Cell[222820, 4949, 25956, 544, 622, "Output",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"] }, Open ]], -Cell[215432, 4735, 964, 25, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], -Cell[216399, 4762, 358, 9, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], -Cell[216760, 4773, 886, 18, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], +Cell[248791, 5496, 886, 18, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ -Cell[217671, 4795, 3660, 86, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], -Cell[221334, 4883, 3554, 68, 59, "Output",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"] +Cell[249702, 5518, 3660, 86, 125, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], +Cell[253365, 5606, 3554, 68, 90, "Output",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"] }, Open ]], Cell[CellGroupData[{ -Cell[224925, 4956, 2809, 62, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], -Cell[227737, 5020, 702, 14, 22, "Message",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"], -Cell[228442, 5036, 702, 14, 22, "Message",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"], -Cell[229147, 5052, 702, 14, 22, "Message",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"], -Cell[229852, 5068, 573, 12, 22, "Message",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"] +Cell[256956, 5679, 2809, 62, 72, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], +Cell[259768, 5743, 702, 14, 36, "Message",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"], +Cell[260473, 5759, 702, 14, 36, "Message",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"], +Cell[261178, 5775, 702, 14, 36, "Message",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"], +Cell[261883, 5791, 573, 12, 22, "Message",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"] }, Open ]], Cell[CellGroupData[{ -Cell[230462, 5085, 1903, 52, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], -Cell[232368, 5139, 3400, 89, 75, "Output",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"] +Cell[262493, 5808, 1903, 52, 70, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], +Cell[264399, 5862, 3400, 89, 136, "Output",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"] }, Open ]], -Cell[235783, 5231, 1579, 40, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], +Cell[267814, 5954, 1579, 40, 72, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ -Cell[237387, 5275, 306, 7, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], -Cell[237696, 5284, 75728, 1307, 183, "Output",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"] +Cell[269418, 5998, 306, 7, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], +Cell[269727, 6007, 75728, 1307, 183, "Output",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"] }, Open ]], Cell[CellGroupData[{ -Cell[313461, 6596, 23733, 404, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], -Cell[337197, 7002, 23710, 404, 177, "Output",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"] +Cell[345492, 7319, 23733, 404, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], +Cell[369228, 7725, 23710, 404, 177, "Output",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"] }, Open ]], Cell[CellGroupData[{ -Cell[360944, 7411, 3688, 86, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], -Cell[364635, 7499, 631, 13, 22, "Message",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"], -Cell[365269, 7514, 633, 13, 22, "Message",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"], -Cell[365905, 7529, 631, 13, 22, "Message",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"], -Cell[366539, 7544, 500, 11, 22, "Message",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"] +Cell[392975, 8134, 3688, 86, 104, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], +Cell[396666, 8222, 631, 13, 36, "Message",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"], +Cell[397300, 8237, 633, 13, 36, "Message",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"], +Cell[397936, 8252, 631, 13, 36, "Message",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"], +Cell[398570, 8267, 500, 11, 22, "Message",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"] }, Open ]], Cell[CellGroupData[{ -Cell[367076, 7560, 574, 16, 24, "Input",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], -Cell[367653, 7578, 258, 6, 35, "Output",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"] +Cell[399107, 8283, 574, 16, 24, "Input",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"], +Cell[399684, 8301, 258, 6, 35, "Output",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"] }, Open ]], Cell[CellGroupData[{ -Cell[367948, 7589, 672, 18, 24, "Input",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], -Cell[368623, 7609, 409, 8, 35, "Output",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"] +Cell[399979, 8312, 672, 18, 24, "Input",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"], +Cell[400654, 8332, 409, 8, 35, "Output",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"] }, Open ]], Cell[CellGroupData[{ -Cell[369069, 7622, 574, 16, 24, "Input",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], -Cell[369646, 7640, 309, 7, 35, "Output",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"] +Cell[401100, 8345, 574, 16, 24, "Input",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"], +Cell[401677, 8363, 309, 7, 35, "Output",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"] }, Open ]], Cell[CellGroupData[{ -Cell[369992, 7652, 758, 19, 22, "Input",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], -Cell[370753, 7673, 13360, 311, 72, "Output",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"] +Cell[402023, 8375, 758, 19, 22, "Input",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"], +Cell[402784, 8396, 13360, 311, 72, "Output",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"] }, Open ]], Cell[CellGroupData[{ -Cell[384150, 7989, 3438, 82, 38, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], -Cell[387591, 8073, 243041, 4060, 145, "Output",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"] +Cell[416181, 8712, 3438, 82, 53, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], +Cell[419622, 8796, 243041, 4060, 145, "Output",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[630681, 12139, 166, 3, 50, "Section",ExpressionUUID->"e8e3024e-103e-44c3-bff6-eeb43f1280c8"], -Cell[630850, 12144, 1924, 54, 35, "Input",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], +Cell[662712, 12862, 166, 3, 50, "Section",ExpressionUUID->"e8e3024e-103e-44c3-bff6-eeb43f1280c8"], +Cell[662881, 12867, 1924, 54, 35, "Input",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"], Cell[CellGroupData[{ -Cell[632799, 12202, 683, 19, 22, "Input",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], -Cell[633485, 12223, 43803, 825, 194, "Output",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"] +Cell[664830, 12925, 683, 19, 22, "Input",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"], +Cell[665516, 12946, 43803, 825, 393, "Output",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"] }, Open ]], -Cell[677303, 13051, 3358, 76, 53, "Input",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], +Cell[709334, 13774, 3358, 76, 53, "Input",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"], Cell[CellGroupData[{ -Cell[680686, 13131, 1620, 42, 24, "Input",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], -Cell[682309, 13175, 36033, 662, 183, "Output",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"] +Cell[712717, 13854, 1620, 42, 41, "Input",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"], +Cell[714340, 13898, 36033, 662, 183, "Output",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"] }, Open ]], Cell[CellGroupData[{ -Cell[718379, 13842, 618, 17, 22, "Input",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"], -Cell[719000, 13861, 87714, 1572, 288, "Output",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"] +Cell[750410, 14565, 618, 17, 22, "Input",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"], +Cell[751031, 14584, 87714, 1572, 288, "Output",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"] }, Open ]], Cell[CellGroupData[{ -Cell[806751, 15438, 707, 19, 22, "Input",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"], -Cell[807461, 15459, 44199, 801, 179, "Output",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"] +Cell[838782, 16161, 707, 19, 22, "Input",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"], +Cell[839492, 16182, 44199, 801, 179, "Output",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"] }, Open ]], Cell[CellGroupData[{ -Cell[851697, 16265, 703, 20, 35, "Input",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"], -Cell[852403, 16287, 191, 3, 25, "Output",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"] +Cell[883728, 16988, 703, 20, 35, "Input",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"], +Cell[884434, 17010, 191, 3, 25, "Output",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"] }, Open ]], -Cell[852609, 16293, 480, 14, 39, "Input",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], +Cell[884640, 17016, 480, 14, 39, "Input",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"], Cell[CellGroupData[{ -Cell[853114, 16311, 4325, 102, 56, "Input",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], -Cell[857442, 16415, 170032, 2881, 145, "Output",ExpressionUUID->"f52a1e87-1e39-4ee2-b780-bed0cdb00335"] +Cell[885145, 17034, 4572, 110, 132, "Input",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"], +Cell[889720, 17146, 168535, 2857, 145, "Output",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"] }, Open ]], -Cell[1027489, 19299, 770, 19, 53, "Input",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] +Cell[1058270, 20006, 770, 19, 53, "Input",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"] }, Open ]] } ] diff --git a/marginal.bib b/marginal.bib index efb5d8e..9bc07be 100644 --- a/marginal.bib +++ b/marginal.bib @@ -178,6 +178,20 @@ issn = {1091-6490} } +@unpublished{Huang_2023_Algorithmic, + author = {Huang, Brice and Sellke, Mark}, + title = {Algorithmic Threshold for Multi-Species Spherical Spin Glasses}, + year = {2023}, + month = {mar}, + url = {http://arxiv.org/abs/2303.12172v2}, + archiveprefix = {arXiv}, + date = {2023-03-21T20:09:08Z}, + eprint = {2303.12172v2}, + eprintclass = {math.PR}, + eprinttype = {arxiv}, + urldate = {2024-06-13T13:10:56.404805Z} +} + @unpublished{Huang_2023_Strong, author = {Huang, Brice and Sellke, Mark}, title = {Strong Topological Trivialization of Multi-Species Spherical Spin Glasses}, @@ -374,7 +388,7 @@ @unpublished{Subag_2021_TAP, author = {Subag, Eliran}, - title = {{TAP} approach for multi-species spherical spin glasses I: general theory}, + title = {{TAP} approach for multi-species spherical spin glasses {I}: general theory}, year = {2021}, month = {nov}, url = {http://arxiv.org/abs/2111.07132v1}, @@ -388,7 +402,7 @@ @article{Subag_2023_TAP, author = {Subag, Eliran}, - title = {{TAP} approach for multispecies spherical spin glasses II: The free energy of the pure models}, + title = {{TAP} approach for multispecies spherical spin glasses {II}: The free energy of the pure models}, journal = {The Annals of Probability}, publisher = {Institute of Mathematical Statistics}, year = {2023}, diff --git a/marginal.tex b/marginal.tex index 6514eba..0013a4f 100644 --- a/marginal.tex +++ b/marginal.tex @@ -224,7 +224,7 @@ of its unique coupling with $\hat\lambda$. This gives \tilde q_0&1&q_0&\cdots&q_0\\ \tilde q_0&q_0&1&\ddots&q_0\\ \vdots&\vdots&\ddots&\ddots&\vdots\\ - \tilde q_0&q_0&q_0&\cdots&q_0 + \tilde q_0&q_0&q_0&\cdots&1 \end{bmatrix} \end{equation} with $\sum_{ab}Q_{ab}^2=n+2(n-1)\tilde q_0^2+(n-1)(n-2)q_0^2$, $\sum_aQ_{1a}^2=1+(n-1)\tilde q_0^2$, @@ -690,7 +690,7 @@ m_a$ matrix with one lower and one upper index. After these steps, which follow identically to those more carefully outlined in the cited papers \cite{Folena_2020_Rethinking, Kent-Dobias_2023_How}, we arrive at a form of the integral as over an effective action \begin{widetext} -\begin{equation} + \begin{equation} \label{eq:spherical.complexity} \begin{aligned} &\Sigma_{\lambda^*}(E,\mu) =\lim_{\beta\to\infty}\lim_{n\to0}\lim_{m_1\cdots m_n\to0} @@ -852,7 +852,7 @@ These models have more often been studied with random fully connected couplings between the spheres, for which it is possible to also use configuration spaces involving spheres of different sizes \cite{Subag_2021_TAP, Subag_2023_TAP, Bates_2022_Crisanti-Sommers, Bates_2022_Free, Huang_2023_Strong, -Huang_2024_Optimization}. +Huang_2023_Algorithmic, Huang_2024_Optimization}. Because the energy is Gaussian, properties of the Hessian are once again statistically independent of those of the energy and gradient. However, unlike @@ -893,14 +893,32 @@ spectral widths depending on their precise combination. In Appendix~\ref{sec:multispherical.spectrum} we derive a variational form for the spectral density of the Hessian in these models using standard methods. +Because of the independence of the Hessian, the method introduced in this +article is not necessary to characterize the marginal minima of this system. +Rather, we could take the spectral density derived in +Appendix~\ref{sec:multispherical.spectrum} and found the Lagrange multipliers +$\omega_1$ and $\omega_2$ corresponding with marginality by tuning the edge of +the spectrum to zero. In some ways the current method is more convenient than +this, since it is a purely variational method and therefore can be reduced to a +since root-finding exercise. + +The calculation of the marginal complexity in this problem follows very closely +to that of the spherical spin glasses in the previous subsection, making +immediately the simplifying assumptions that the soft directions of different +stationary points are typically uncorrelated and therefore $X=\hat X=0$ and the +overlaps $Q$ between eigenvectors are only nonzero when in the same replica. +The result has the schematic form of \eqref{eq:spherical.complexity}, but with +different effective actions depending now on overlaps inside each of the two +spheres and between the two spheres. These are \begin{widetext} \begin{equation} \begin{aligned} - &\mathcal S_\mathrm{MSG}(\hat\beta,C^{11},R^{11},D^{11},G^{11},C^{22},R^{22},D^{22},G^{22})= \\ + &\mathcal S_\mathrm{MSG}(\hat\beta,C^{11},R^{11},D^{11},G^{11},C^{22},R^{22},D^{22},G^{22},C^{12},R^{12},R^{21},D^{12},G^{12} + \mid E,\omega_1,\omega_2)= \\ &\quad \mathcal S_\mathrm{SSG}(\hat\beta,C^{11},R^{11},D^{11},G^{11}\mid E_1,\omega_1) +\mathcal S_\mathrm{SSG}(\hat\beta,C^{22},R^{22},D^{22},G^{22}\mid E_2,\omega_2) - -\epsilon(r_{12}+r_{21})+\hat\beta(E-E_1-E_2) \\ + -\epsilon(r^{12}_d+r^{21}_d)+\hat\beta(E-E_1-E_2-\epsilon c_d^{12}) \\ &\quad +\frac12\log\det\left( I+ @@ -916,13 +934,13 @@ spectral density of the Hessian in these models using standard methods. -\log\det(I+(G^{11}G^{22})^{-1}G^{12}G^{21}) \end{aligned} \end{equation} - +and \begin{equation} \begin{aligned} - \mathcal U_\mathrm{MSG}( + &\mathcal U_\mathrm{MSG}(\hat q,\hat\lambda,Q^{11},Q^{22},Q^{12}\mid\lambda^*,\omega_1,\omega_2,\beta) \\ &\sum_a^n\left[\hat q_a(Q^{11}_{aa}+Q^{22}_{aa}-1)-\beta(\omega_1Q^{11}_{aa}+\omega_2Q^{22}_{aa}+2\epsilon Q^{12}_{aa})\right] - +\lambda(\omega_1Q^{11}_{11}+\omega_2Q^{22}_{11}+2\epsilon Q^{12}_{11}) \\ - &+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{ab}^n(Q^{ii}_{ab})^2-2\beta\lambda\sum_a^n(Q^{ii}_{1a})^2+\lambda^2(Q^{ii}_{11})^2\right] + +\hat\lambda(\omega_1Q^{11}_{11}+\omega_2Q^{22}_{11}+2\epsilon Q^{12}_{11}) \\ + &+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{ab}^n(Q^{ii}_{ab})^2-2\beta\hat\lambda\sum_a^n(Q^{ii}_{1a})^2+\hat\lambda^2(Q^{ii}_{11})^2\right] +\frac12\log\det\begin{bmatrix} Q^{11}&Q^{12}\\ Q^{12}&Q^{22} @@ -930,6 +948,91 @@ spectral density of the Hessian in these models using standard methods. \end{aligned} \end{equation} \end{widetext} +where again the problem of fixing marginality has completely separated from +that of the complexity. The biggest change between this problem and the +spherical one is that now the spherical constraint in the tangent space at each +stationary point gives the constraint on the order parameters +$q^{11}_d+q^{22}_d=1$. Therefore, the diagonal of the $Q$ matrices cannot be +taken to be 1 as before. To solve the marginal problem, we take each of the +matrices $Q^{11}$, $Q^{22}$, and $Q^{12}$ to have the planted replica symmetric +form \eqref{eq:Q.structure}, but with the diagonal not necessarily equal to 1, so +\begin{equation} + Q^{ij}=\begin{bmatrix} + \tilde q^{ij}_d & \tilde q^{ij}_0 & \tilde q^{ij}_0 & \cdots & \tilde q^{ij}_0 \\ + \tilde q^{ij}_0 & q^{ij}_d & q^{ij}_0 & \cdots & q^{ij}_0 \\ + \tilde q^{ij}_0 & q^{ij}_0 & q^{ij}_d & \ddots & q^{ij}_0 \\ + \vdots & \vdots & \ddots & \ddots & \vdots \\ + \tilde q^{ij}_0 & q^{ij}_0 & q^{ij}_0 & \cdots & q^{ij}_d + \end{bmatrix} +\end{equation} + +\begin{widetext} + \begin{equation} + \begin{aligned} + &\sum_{i=1,2}f_i''(1)\left[ + \beta^2\left( + (\tilde q^{ii}_d)^2 + -(q^{ii}_d)^2 + +2(q^{ii}_0)^2 + -2(\tilde q^{ii}_0)^2 + \right) + -2\beta\hat\lambda\left( + (\tilde q^{ii}_d)^2-(\tilde q^{ii}_0))^2 + \right) + +\hat\lambda^2(\tilde q^{ii}_d)^2 + \right] + +\hat\lambda\left( + \tilde q^{11}_d\omega_1+\tilde q^{22}_d\omega_2+2\tilde q^{12}_d + \right) \\ + &-\beta\left( + (\tilde q^{11}_d-q^{11}_d)\omega_1 + +(\tilde q^{22}_d-q^{22}_d)\omega_2 + -2\epsilon(\tilde q^{12}_d-q^{12}_d) + \right) \\ + &+\frac12\log\bigg[ + \left( + 2q^{12}_0\tilde q^{12}_0-\tilde q^{12}_0(\tilde q^{12}_d+q^{12}_d) + -2\tilde q^{11}_0q^{22}_0+\tilde q^{11}_d\tilde q^{22}_0+\tilde q^{11}_0q^{22}_d + \right) + \left( + 2q^{12}_0\tilde q^{12}_0-\tilde q^{12}_0(\tilde q^{12}_d+q^{12}_d) + -2q^{11}_0\tilde q^{22}_0+q^{11}_d\tilde q^{22}_0+\tilde q^{11}_0\tilde q^{22}_d + \right) \\ + &\qquad\qquad+2\left(3(q^{12}_0)^2-(\tilde q^{12}_0)^2-2q^{12}_0q^{12}_d-3q^{11}_0q^{22}_0+q^{11}_dq^{22}_0+\tilde q^{11}_0\tilde q^{22}_0+q^{11}_0q^{22}_d + \right)\left( + (\tilde q^{12}_0)^2-(\tilde q^{12}_d)^2-\tilde q^{11}_0\tilde q^{22}_0+\tilde q^{11}_d\tilde q^{22}_d + \right) \\ + &\qquad\qquad+\left( + 2(q^{12}_0)^2-(\tilde q^{12}_0)^2-(q^{12}_d)^2-2q^{11}_0q^{22}_0+\tilde q^{11}_0\tilde q^{22}_0+q^{11}_dq^{22}_d + \right)\left( + (\tilde q^{12}_0)^2-(\tilde q^{12}_d)^2-\tilde q^{11}_0\tilde q^{22}_0+\tilde q^{11}_d\tilde q^{22}_d + \right) + \bigg] + \\ + &-\log\left[(q^{11}_d-q^{11}_0)(q^{22}_d-q^{22}_0)-(q^{12}_d-q^{12}_0)^2\right] + \end{aligned} + \end{equation} +\end{widetext} +To make the limit to zero temperature, we once again need an ansatz for the +asymptotic behavior of the overlaps. These take the form +$q^{ij}_0=q^{ij}_d-y^{ij}_0\beta^{-1}-z^{ij}_0\beta^{-2}$, with the same for +the tilde variables. Notice that in this case, the asymptotic behavior of the +off diagonal elements is to approach the value of the diagonal rather than one. +We also require $\tilde q^{ij}_d=q^{ij}_d-\tilde y^{ij}_d\beta^{-1}-\tilde +z^{ij}_d\beta^{-2}$, i.e., that the tilde diagonal term also approaches the +same diagonal value. + +As before, in order for the volume term to stay finite, there are necessary +constraints on the values $y$. These are +\begin{align} + \frac12(y^{11}_d-\tilde y^{11}_d)=y^{11}_0-\tilde y^{11}_0 \\ + \frac12(y^{22}_d-\tilde y^{22}_d)=y^{22}_0-\tilde y^{22}_0 \\ + \frac12(y^{12}_d-\tilde y^{12}_d)=y^{12}_0-\tilde y^{12}_0 +\end{align} +One can see that when the diagonal elements are all equal, this requires the +$y$s for the off-diagonal elements to be equal, as in the GOE case. Here, since +the diagonal elements are not necessarily equal, we have a more general +relationship. \begin{figure} \includegraphics{figs/msg_marg_legend.pdf} @@ -1137,8 +1240,8 @@ Given these simplifying forms of the ansatz, taking the superdeterminant yields where once again $\odot$ is the Hadamard product and $A^{\circ n}$ gives the Hadamard power of $A$. We can already see one substantive difference between the structure of this problem and that of the spherical models: the effective -action in this case mixes the order parameters $G$ due to the fermions with the -ones $C$, $R$, and $D$ due to the other variables. This is the realization of +action in this case mixes the order parameters $G$ due to the Grassmann variables with the +ones $C$, $R$, and $D$ due to the other variables. Notice further that the dependence on $Q$ due to the marginal constraint is likewise no longer separable. This is the realization of the fact that the Hessian properties are no longer independent of the energy and gradient. |