summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--marginal.tex25
1 files changed, 14 insertions, 11 deletions
diff --git a/marginal.tex b/marginal.tex
index f19c096..ec28568 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -86,19 +86,23 @@ more useful.
-An arbitrary function $g$ of the minimum eigenvalue of a matrix $A$ can be expressed as
+An arbitrary function $g$ of the minimum eigenvalue of a matrix $A$ can be
+expressed as
\begin{equation}
- g(\lambda_\textrm{min}(A))
- =\lim_{\beta\to\infty}\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{-\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{-\beta\mathbf x'^TA\mathbf x'}}g\left(\frac{\mathbf x^TA\mathbf x}N\right)
+ g(\lambda_\textrm{max}(A))
+ =\lim_{\beta\to\infty}\int
+ \frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)e^{\beta\mathbf s^TA\mathbf s}}
+ {\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')e^{\beta\mathbf s'^TA\mathbf s'}}
+ g\left(\frac{\mathbf s^TA\mathbf s}N\right)
\end{equation}
Assuming
\begin{equation}
\begin{aligned}
- &\lim_{\beta\to\infty}\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{-\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{-\beta\mathbf x'^TA\mathbf x'}}g\left(\frac{\mathbf x^TA\mathbf x}N\right) \\
- &=\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf x)}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf x')}g\left(\frac{\mathbf x^TA\mathbf x}N\right) \\
- &=g(\lambda_\mathrm{min}(A))
- \frac{\int d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf x)}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf x')} \\
- &=g(\lambda_\mathrm{min}(A))
+ &\lim_{\beta\to\infty}\int\frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)e^{\beta\mathbf s^TA\mathbf s}}{\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')e^{\beta\mathbf s'^TA\mathbf s'}}g\left(\frac{\mathbf s^TA\mathbf s}N\right) \\
+ &=\int\frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{max}(A)I)}(\mathbf s)}{\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{max}(A)I)}(\mathbf s')}g\left(\frac{\mathbf s^TA\mathbf s}N\right) \\
+ &=g(\lambda_\mathrm{max}(A))
+ \frac{\int d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{max}(A)I)}(\mathbf s)}{\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{max}(A)I)}(\mathbf s')} \\
+ &=g(\lambda_\mathrm{max}(A))
\end{aligned}
\end{equation}
The first relation extends a technique first introduced in
@@ -108,9 +112,8 @@ over a spherical model whose Hamiltonian is quadratic with interaction matrix
given by $A$. In the limit of zero temperature, the measure will concentrate on
the ground states of the model, which correspond with the eigenspace of $A$
associated with its minimum eigenvalue $\lambda_\mathrm{min}$. The second
-relation uses the fact that, once restricted to the sphere $\mathbf x^T\mathbf
-x=N$ and the minimum eigenspace, $\mathbf x^TA\mathbf
-x=N\lambda_\mathrm{min}(A)$.
+relation uses the fact that, once restricted to the sphere $\mathbf s^T\mathbf
+s=N$ and the minimum eigenspace, $\mathbf s^TA\mathbf s=N\lambda_\mathrm{min}(A)$.
The relationship is formal, but we can make use of the fact that the integral
expression with a Gibbs distribution can be manipulated with replica