1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
|
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 14.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 1071099, 20226]
NotebookOptionsPosition[ 1059056, 20028]
NotebookOutlinePosition[ 1059455, 20044]
CellTagsIndexPosition[ 1059412, 20041]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Settings", "Section",
CellChangeTimes->{{3.915530723154801*^9,
3.915530723762684*^9}},ExpressionUUID->"926df485-ea0b-4c71-a1d6-\
03ba4988e06d"],
Cell[BoxData[
RowBox[{
RowBox[{"fontSize", "=", "11"}], ";"}]], "Input",
CellChangeTimes->{{3.9267606761876593`*^9, 3.926760678954088*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"],
Cell[BoxData[
RowBox[{
RowBox[{"labelStyle", "=",
RowBox[{"LabelStyle", "->",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", ",",
RowBox[{"FontSize", "->", "fontSize"}]}], "}"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.91553073185975*^9, 3.915530734154885*^9}, {
3.9155307742942944`*^9, 3.915530775499718*^9}, {3.91553085987768*^9,
3.915530886189825*^9}, {3.924161179907159*^9, 3.924161182353354*^9}, {
3.926760681810741*^9, 3.9267606859704237`*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"],
Cell[BoxData[{
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"Plot", ",", "labelStyle", ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameStyle", "->", "Black"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"ListPlot", ",", "labelStyle", ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameStyle", "->", "Black"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"LineLegend", ",", "labelStyle"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.915530863366059*^9, 3.915530917598553*^9}, {
3.9155330354943447`*^9, 3.915533038598446*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"]
}, Open ]],
Cell[CellGroupData[{
Cell["Large deviation function", "Section",
CellChangeTimes->{{3.915530936792725*^9,
3.9155309437666197`*^9}},ExpressionUUID->"e26a72a6-0937-45b0-a625-\
f1bdf166fa4e"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"G", "[", "\[Sigma]_", "]"}], "[", "\[Omega]_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["\[Omega]",
RowBox[{"2", "\[Sigma]"}]]}],
SqrtBox[
RowBox[{
FractionBox[
SuperscriptBox["\[Omega]", "2"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}], "+",
RowBox[{"Log", "[",
RowBox[{
FractionBox["\[Omega]",
RowBox[{"2", "\[Sigma]"}]], "+",
SqrtBox[
RowBox[{
FractionBox[
SuperscriptBox["\[Omega]", "2"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.915530599745296*^9, 3.915530671233981*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"pG", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"ReIm", "[",
RowBox[{
RowBox[{"G", "[", "1", "]"}], "[", "\[Omega]", "]"}], "]"}], "]"}],
",",
RowBox[{"{",
RowBox[{"\[Omega]", ",",
RowBox[{"-", "0.1"}], ",", "4.1"}], "}"}], ",",
RowBox[{"FrameLabel", "->",
RowBox[{"{",
RowBox[{"\"\<\[Mu] / \[Sigma]\>\"", ",",
RowBox[{
SubscriptBox["G", "0"], "[", "\[Mu]", "]"}]}], "}"}]}], ",",
RowBox[{"Epilog", "->",
RowBox[{"Inset", "[",
RowBox[{
RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "/@",
RowBox[{"Range", "[", "2", "]"}]}], ",",
RowBox[{"{",
RowBox[{"\"\<Real part\>\"", ",", "\"\<Imaginary part\>\""}],
"}"}]}], "]"}], ",",
RowBox[{"Scaled", "[",
RowBox[{"{",
RowBox[{"0.23", ",", "0.15"}], "}"}], "]"}]}], "]"}]}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.1"}], ",", "4.1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.7"}], ",", "1.7"}], "}"}]}], "}"}]}], ",",
RowBox[{"ImageSize", "->", "340"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.914674053452658*^9, 3.914674367442272*^9}, {
3.914674480941107*^9, 3.914674575350315*^9}, {3.914674677944824*^9,
3.914674791554554*^9}, {3.9155306818184958`*^9, 3.915530695322906*^9}, {
3.915530737284401*^9, 3.915530746827622*^9}, {3.915530779484833*^9,
3.915530780148059*^9}, {3.915530891127125*^9, 3.915530922455567*^9}, {
3.9241609780538807`*^9, 3.924160982965692*^9}, {3.924162186828877*^9,
3.9241621901083317`*^9}, {3.924162311335291*^9, 3.924162320022914*^9}, {
3.9267607225073366`*^9, 3.926760768524247*^9}, {3.9267620978944073`*^9,
3.9267621072226877`*^9}, {3.926762329962654*^9, 3.9267623500744543`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.],
LineBox[{{-0.0999999142857143, -7.675411500440888*^-17}, \
{-0.09871178473364958, 2.01225452783994*^-17}, {-0.09742365518158486,
2.6030553560758866`*^-17}, {-0.09484739607745543,
2.8253767851352487`*^-17}, {-0.08969487786919655,
6.859234331144472*^-18}, {-0.0793898414526788,
5.233436261661969*^-17}, {-0.05877976861964332, \
-1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \
{-0.001339285714285714, 5.063646068673217*^-17}}], LineBox[CompressedData["
1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K
38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw
LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD
PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e
XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o
eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm
9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO
n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8
jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q
2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit
6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK
"]], LineBox[CompressedData["
1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU
pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X
75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y
tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9
FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q
fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS
HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF
Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp
wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN
FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ
O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J
W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu
8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL
S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ
TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr
Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u
Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U
qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW
RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL
BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT
hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv
sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK
7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5
C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.],
LineBox[{{-0.0999999142857143,
1.6707545588821862`}, {-0.09871178473364958,
1.6694680198193697`}, {-0.09742365518158486,
1.6681814397590167`}, {-0.09484739607745543,
1.665608158790747}, {-0.08969487786919655,
1.6604611284764783`}, {-0.0793898414526788,
1.65016531439713}, {-0.05877976861964332,
1.6295676323304158`}, {-0.01755962295357235,
1.5883557241483424`}, {-0.001339285714285714,
1.5721356124090882`}}], LineBox[CompressedData["
1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK
S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44
dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5
jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3
6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j
8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2
bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2
p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS
+0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm
ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw
g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN
e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt
CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO
8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh
UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy
wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L
VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY
xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx
6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF
BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH
tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O
3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC
VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc
bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5
JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv
39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ
MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi
XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL
hNWmwsjGKvgfw+mI8A==
"]], LineBox[CompressedData["
1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi
BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv
+7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z
jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z
7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s
cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK
2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp
L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW
UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl
ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW
3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf
n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx
bjB/r4OXJvt0ej38B+c4z40=
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ], {}}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.0999999142857143, -7.675411500440888*^-17}, \
{-0.09871178473364958, 2.01225452783994*^-17}, {-0.09742365518158486,
2.6030553560758866`*^-17}, {-0.09484739607745543,
2.8253767851352487`*^-17}, {-0.08969487786919655,
6.859234331144472*^-18}, {-0.0793898414526788,
5.233436261661969*^-17}, {-0.05877976861964332, \
-1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \
{-0.001339285714285714, 5.063646068673217*^-17}}],
Line[CompressedData["
1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K
38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw
LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD
PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e
XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o
eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm
9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO
n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8
jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q
2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit
6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK
"]],
Line[CompressedData["
1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU
pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X
75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y
tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9
FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q
fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS
HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF
Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp
wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN
FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ
O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J
W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu
8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL
S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ
TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr
Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u
Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U
qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW
RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL
BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT
hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv
sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK
7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5
C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[{{-0.0999999142857143,
1.6707545588821862`}, {-0.09871178473364958,
1.6694680198193697`}, {-0.09742365518158486,
1.6681814397590167`}, {-0.09484739607745543,
1.665608158790747}, {-0.08969487786919655,
1.6604611284764783`}, {-0.0793898414526788,
1.65016531439713}, {-0.05877976861964332,
1.6295676323304158`}, {-0.01755962295357235,
1.5883557241483424`}, {-0.001339285714285714,
1.5721356124090882`}}],
Line[CompressedData["
1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK
S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44
dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5
jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3
6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j
8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2
bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2
p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS
+0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm
ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw
g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN
e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt
CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO
8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh
UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy
wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L
VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY
xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx
6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF
BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH
tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O
3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC
VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc
bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5
JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv
39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ
MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi
XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL
hNWmwsjGKvgfw+mI8A==
"]],
Line[CompressedData["
1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi
BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv
+7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z
jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z
7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s
cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK
2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp
L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW
UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl
ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW
3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf
n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx
bjB/r4OXJvt0ej38B+c4z40=
"]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>, "PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.0999999142857143, -7.675411500440888*^-17}, \
{-0.09871178473364958, 2.01225452783994*^-17}, {-0.09742365518158486,
2.6030553560758866`*^-17}, {-0.09484739607745543,
2.8253767851352487`*^-17}, {-0.08969487786919655,
6.859234331144472*^-18}, {-0.0793898414526788,
5.233436261661969*^-17}, {-0.05877976861964332, \
-1.769167389050454*^-17}, {-0.01755962295357235, -2.91692446950796*^-18}, \
{-0.001339285714285714, 5.063646068673217*^-17}}],
Line[CompressedData["
1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAFV/xFV/xVT+XnOdlnzCNPGXl7u3K
38M/W+s4od8CWTwARMECtVjOP6Sp7G+7DW08MH/JqGza1D+wc6QvglRlvEsw
LCl1J9o/MPfEPNhZkbxJj47GGubfP4x93995KnA8GLDLKffE4j+gr0kTYXaD
PIECzRxcZuU/3jdob0Yyd7zcK06ej0DoP6j3alf0Eng8LD9MTD7q6j/olA4e
XPyFPHGLHfKDhu0/HsU+Rh2+XbxUVzcTzC3wP2DM/8vAAFO86V2ewxOA8T8o
eiJfI6loPPdPRbvC7vI/L3mXwssPkLx/3tUuvVb0P05nylKfgIa8AuKkOHWm
9T/2hL95daJ/vP7Qs4mUEvc/sFlYFXdsfbz1NAFxcWb4P0cbqzUdpI68ZISO
n7XW+T8A+G+Z3/savE1wBUpFQPs/HK3QwCKMabwx0bqKkpH8PxYtkvWVHXq8
jh2wEkf//T/vtUVwigZrvObe4zC5VP8/sdXVOY7QcDxdVEwn9Fn/P/xfGV2q
2nK81Mm0HS9f/z+b+vdyhCpyvMO0hQqlaf8/Wkg36JyBdjygiifkkH7/Pyit
6JckO3E8WjZrl2io/z9oHUQb2RR+PKiDOqiD+v8/1HV/8cLcXTzkY+yK
"]],
Line[CompressedData["
1:eJwdjwtMk1cUgP+/VV6WTXkoW5h23QhTZKxMCSKOExgp8y0gOimPoQhBEVFU
pAjUKcIo2gKVARMqyuhmodJiFakceRTNwKG2tYiPKbjy1IA4i+Jjd7vJzc2X
75wvuZ/GpYTGMyiKCiL3v3dxS79HC4MCKjZpyoZD4x3uH6NCG8K+ZX52Ce5Y
tPPd9gWzCI+9H0rM4uLaWu9+rT3hvQb9M6Yv2vVvj9oym7DpWmUQNwB1rhW9
FgcKcorz07wygzBnU0+Y1Jl4yd9rObU89C9i9ni7EM8/Y7RyXo2N1jt1yZ8Q
fxK2qYyhuDtQBrPYxN/bZaQTNqLHIUOznENY/1Kqd9yM1c/9VQPuZJ51QjLS
HIXRnqmewkUUXE2DtsYtsfhRYo18vieZ9yvpThr4AcUP7Ku+96YADMUzYubF
Y/b1hwU9/oTNeslGeif6MR2tkwNIrzEs4aAxGV+u4B22CyQsBEGqOgV3qZXp
wTzSC/YI+KAzFfmVOfHNGyiIjdTm3zLuw2ebg5SScMLrayPfTO9HoaPVq4RN
FLAXd6z90j0df80rEDlFEV9e9yhClIETe06qkxNJf0pQcelENubyFDQ7m4LZ
O5ou5PocRRdGyqqXQuLV5oLBp0fxnJYr7T5CgSwjVBNWm4s3uRe/OPgT6Y+J
W33Zefixa9u621LSp7YN/7awAJXjplNHFBTcHBnTVHWJMfBc+eAWJdnXrAwu
8pGgIT6Ky1WR+cKBgYRqCb7u6+94cJH8r+d+wYXMIvxW93TUp52C9bIbYXXL
S7C3jOk3fJcCsT+rou1xKTKCvO6ssaYBdCvfVemqMCtjfsWkLQ0u7ctCVGwZ
TjfYx5axaKAOnHY1R8vwBXts+MkcGtjV6gm4L0PzO/lbgSsNQ8cFcU19p7Hr
Msftdy4NYp1HYJL5DJZ4z02z4tMQ8vnZzjofObpx3s7B82Tf4fzl0DvnMf1u
Rs0pNQ15oxVOF+gG7BZP+WZqaHDaoxlb4dmAe99PxizTkp5oSN52pAFb74/U
qa/R8ETPiJQuVWFUae938oc0jIeF60Mq1ShlNQolLAbYtFOLvynQ4ExL0sTW
RAaMdy2wvfKnFjnlN47XuzJBlv26cPlqHWoPrLOYOpiQ+CJujUjUjQ6rUplL
BTNg7vhVt3lVt9G8WdW3220mXGfU99AsE1qWDKWEds8EF5nkcZPmHnZYtcgT
hFagrOdRveJH+KGjWhG5yBqOHUpXTMMAznUOCf/xsTVoeaWKrAgzlm9405kv
sgEnrnnrzzHDyOfXWJYusYVfBClK26wx7OM/63IesYV9z/cjZ8Y4GksjdhiK
7eCQ+ZKX5MoEFl6Pru9cNQvOVi0U3VJO4uFrkcpoigWSXQaTQfEPvqDSBUY5
C8LSHF67l1nws6+WjGbH2MPtW3/19bW+Qq2pfbDQaA9f/3+m8V8uZ/2X
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[{{-0.0999999142857143,
1.6707545588821862`}, {-0.09871178473364958,
1.6694680198193697`}, {-0.09742365518158486,
1.6681814397590167`}, {-0.09484739607745543,
1.665608158790747}, {-0.08969487786919655,
1.6604611284764783`}, {-0.0793898414526788,
1.65016531439713}, {-0.05877976861964332,
1.6295676323304158`}, {-0.01755962295357235,
1.5883557241483424`}, {-0.001339285714285714,
1.5721356124090882`}}],
Line[CompressedData["
1:eJwVzQ0w1GkcB/AlyunMlXRcKELrZcld7mgrXyqF1Ko2bMPYM7E4yV6HOSnK
S9NWrFqq9XJKFon2RHkd1UYhJW93hFBe2hB73tau3fs38zzzzGe+39/vMQ44
dSRQlUQiHSbu13e9/wxxjiE3LUl+zkCKwJGpyeb3IuhFKQT5gnmQ9j5VrfB5
jYNDHmQKYw62cU2FYb2d2KzNv3Vw5j8csKVYRJJ7MRDoU9udJ4FbakrjhtH3
6Mvq/tC0awZ6whaLhefDELDNVFuef8F51VYD36ARnAikqP/pMok+q0M5qU7j
8FqZMuWXKQYFHh6OYjF8OMm66ZbjYF82lCQkT+KlY7tpT/sI6N72615ZT6N2
bPcRqs8HfPLLEa2Ln8GTppIA0g9DWKC51DybkmDx8tpb3rH9iBvosqnzmsX2
p53t2at7oDp81yFSMIf9RaN85vddULQ9vMTTXkClX7rjv2pvMWenwmYHLcKS
+0neL27GicSUvyq6pXj0rntHTbMIByPU3V2cZLgbnmb0h7QabS4acRwXGbKm
ub4HWqtB119d/sZdhsqwSIftt6vh27hm4/FjMtQyNq5huFUj1MBAEh4qg/lw
g3oxvwrJL3/i3+TJQOk4myFwrkS9EVP8eVwG3s6I4KjbFfjxbTXnWpocGrEN
e8vvCxEg6PV1uyFH7sc0c16CELwzSzakbDnK5zOTeceFmDejdpwslOOE56pt
CxpC1MZU6bvVy/Ek505H6utSuJpW3ldOyCF09+KE0O+DGV3xOsx1GRFHu0fO
8gpwzaMr1+TQMtpsWUOj7gUQGc/93nt0GQ4x62l8lQJseWWn6+q/DFL6zOeh
UwJMGJX7m0Qtw3PMxEdBy0d0c9l0T94yBidYbk835iHFUKi9X0n0+cq/n0uy
wZswf5elpsCaRM19VrHZuFVzO0/yjQJtJTkyq5XZuMu4bpejowBzW2+QUj8L
VelRXnMWhI/UHNCg8fFRaxc/j66ArXL/l7iODIj7KgKkDAVyL2sty4My8KXY
xormT/RvNEaZytKx5GZUuxRC5HuKgqPN0vFd8oqBw3EKPNkTUUS7cB1URZMx
6R7xvzbLQeLHhVPrbvGxB0RuvM09QJoKl6yasuJyYt5C/JnpkApPaske73oF
BmkT9ZPVVxEYxQ0s7VSAdPNdo6CdA+6UV5Gvksgp04wpWhIy6t6wy9SU4KoH
tvxckIjMK65UDU0lBhc3OTuSEiGwpLY81CFyaegDweMLqAkynNS0VGKaTc0O
3xmP0YEPtlV0JZgMk4v39kXDj+5BnmUokatuMebnEIXOpnLDrf6EycwK2ERC
VJ6kmR+iBInp8Lh7y2nkcsgfuecIv9gxqZIZDl0St7clQYl4neldeQ1hSIlc
bFt5ibDWUJVUGoqzzKa62OuEG3TMC+JZOP7LbzeCC5VwmhUKdbV+xdvijqt5
JcS+jIjMJj1/uBrvTBwoI3yv1pK+1Rf232qx6XWEC7MsUwu8UHo+kpX6jJjv
39pltpqOLQv9fs0vvu4r1E/gHIbOcKm7UzvR32BvLRK54Yq3rvOZfwizQ0LJ
MS5Y0Rpn/6iPcH5S/6ZIZ8TsHreeGSJckb3W9fQOSB57mlLGCHP7B3sy7RBi
XbWBNUG4zfUKa5yCwTvGa+/MENY8mSU02wwfPc6q/nnCpFlyUrA2ChOohQlL
hNWmwsjGKvgfw+mI8A==
"]],
Line[CompressedData["
1:eJxFx2tIk3EAhfHXmc7N1trWIstLGtNYrotMtJhQEzKwzWZrWm5rpc5RylKi
BkJzJZFs3VYpGRpE1j6MzWYfIqcGORtZDKmpLCpcENVipQhLtFlB/M+Bh8Mv
+7ixsp5GUdSev/37/OHwlmEatZv6v8kdLyOWFNjeGNdnpcLyhwVhLwv2pd+Z
jnHhtqrAwVt8WGJPDBSsgx/TG31NGfC9OYnnUx6sFTWLLEI4zdDnyBTB196z
7h4ugM3+D9aABFb3ttUPKuBodan7uhK28JIXGqrgB5estjUaeLalc6DJAF8s
cyZsNMPun1M97U6YVrptUkZPIBbk/OaM9MNJsROztQYacU736yuu9ERi79mK
2NQozC1vTixsXUH8udoTOiVIIo6JvxgrX8GjycOOBksyMZs34KwR0onX8vcp
L8zA3YqlsQ5bCrFa3RcrFDOIQ+roOP8bHOxSnXx7g0l82a91jZWnEp9/UePW
UiuJ5ylTa9ABb9oujpiPsogDt9m5DOYq4icTHzOLH8Ga5YrBbj2b+NmAkROl
ryaW2ZxzDQw4VPf1zQwTnufXdgZZ8GaTasMQD74qKRHYsmCtj7lTWARHesrW
3y+GTWfaFzN2wfa8+BCnBB7rmJUuSGGRfHq/Xw4/zeVvlR6A9y4r2F4FrOsf
n3Ar4ZvcEVXXETg7sljEUcOu58VpVg3sP+15d04HH5L98P46BocF+b0ttbAx
bjB/r4OXJvt0ej38B+c4z40=
"]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>, "PlotRange" -> {{-0.1, 4.1}, {-1.7, 1.7}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {340, 340/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->InsetBox[
BoxData[
FormBox[
TemplateBox[{"\"Real part\"", "\"Imaginary part\""}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.368417, 0.506779, 0.709798]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.368417, 0.506779, 0.709798]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.880722, 0.611041, 0.142051]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.880722, 0.611041, 0.142051]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, Background -> Automatic,
StripOnInput -> False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
TemplateBox[<|
"color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|
"color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
"RGBColorSwatchTemplate"]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}]}], "]"}]& ), Editable -> True],
TraditionalForm]],
Scaled[{0.23, 0.15}]],
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
TagBox[
RowBox[{
SubscriptBox["G", "0"], "(", "\[Mu]", ")"}], HoldForm],
TraditionalForm], None}, {
FormBox[
TagBox["\"\[Mu] / \[Sigma]\"", HoldForm], TraditionalForm], None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->340,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-0.1, 4.1}, {-1.7, 1.7}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.91467428176404*^9, {3.914674315286446*^9, 3.914674367653089*^9}, {
3.914674511733942*^9, 3.914674575663275*^9}, {3.914674678219386*^9,
3.9146747919968357`*^9}, {3.9155306879078913`*^9, 3.9155306956452303`*^9},
3.915530747157572*^9, 3.915530784019471*^9, {3.9155308952600613`*^9,
3.9155309238035173`*^9}, 3.915532486262419*^9, 3.915771556736268*^9,
3.916292519478231*^9, {3.924160983419207*^9, 3.924160986282316*^9},
3.924161184537413*^9, 3.924162190364997*^9, {3.924162312284491*^9,
3.9241623202322807`*^9}, {3.926760723533168*^9, 3.926760740655086*^9},
3.926760772978333*^9, {3.926762098244166*^9, 3.926762107827166*^9}, {
3.92676233110467*^9, 3.926762350345076*^9}, 3.9271760125323696`*^9},
CellLabel->"Out[7]=",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/large_deviation.pdf\>\
\"", ",", "pG"}], "]"}]], "Input",
CellChangeTimes->{{3.92416107227991*^9, 3.92416110122348*^9}, {
3.926760703598503*^9, 3.926760712779284*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"],
Cell[BoxData["\<\"~/doc/research/frsb_kac-rice/papers/marginal/figs/large_\
deviation.pdf\"\>"], "Output",
CellChangeTimes->{{3.924161094512546*^9, 3.924161102039678*^9},
3.924161186466563*^9, 3.924162191599287*^9, 3.924162320711782*^9, {
3.926760725505782*^9, 3.926760742789874*^9}, 3.926760774237672*^9, {
3.926762102041052*^9, 3.926762108382854*^9}, 3.926762353553878*^9,
3.9271760149471283`*^9},
CellLabel->"Out[8]=",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"f34", "=",
RowBox[{"Function", "[",
RowBox[{"q", ",",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{
SuperscriptBox["q", "3"], "+",
SuperscriptBox["q", "4"]}], ")"}]}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.924161369901463*^9, 3.924161381181401*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Mu]m", "[", "f_", "]"}], ":=",
SqrtBox[
RowBox[{"4",
RowBox[{
RowBox[{"f", "''"}], "[", "1", "]"}]}]]}]], "Input",
CellChangeTimes->{{3.893505745813592*^9, 3.893505753575885*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"f_", ",", "\[Mu]_"}], "]"}], "[", "\[Lambda]_", "]"}], ":=",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f", "]"}]}]],
SqrtBox[
RowBox[{"1", "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Lambda]", "-", "\[Mu]"}], ")"}], "2"],
SuperscriptBox[
RowBox[{"\[Mu]m", "[", "f", "]"}], "2"]]}]]}]}]], "Input",
CellChangeTimes->{{3.895206238820385*^9, 3.895206269434855*^9}, {
3.895206301235565*^9, 3.895206327707943*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"340", "/", "3."}]], "Input",
CellChangeTimes->{{3.92676122589403*^9, 3.926761230869504*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"],
Cell[BoxData["113.33333333333333`"], "Output",
CellChangeTimes->{{3.926761228984556*^9, 3.926761231318728*^9},
3.927176015496025*^9},
CellLabel->"Out[12]=",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"plotSpec", "[",
RowBox[{"\[Mu]_", ",", "lab_"}], "]"}], ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"f34", ",", "\[Mu]"}], "]"}], "[", "\[Lambda]", "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "15"}], "}"}], ",",
RowBox[{"AspectRatio", "->",
RowBox[{"2", "/", "3"}]}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "3"}], ",", "15"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"4",
FractionBox["4", "10"],
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameStyle", "->", "Black"}], ",",
RowBox[{"ImageSize", "->", "118"}], ",",
RowBox[{"PlotRangeClipping", "->", "False"}], ",",
RowBox[{"Frame", "->", "True"}], ",",
RowBox[{"FrameTicks", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"None", ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{"None", ",",
RowBox[{"{", "0", "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"ImagePadding", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic"}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",", "Automatic"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",\
CellChangeTimes->{{3.895206335716663*^9, 3.895206991361381*^9}, {
3.895207039378053*^9, 3.895207059810026*^9}, {3.895207141811533*^9,
3.895207259773934*^9}, {3.895208615831658*^9, 3.895208730425652*^9}, {
3.895208838140219*^9, 3.895208840299837*^9}, {3.924161536072356*^9,
3.924161555080598*^9}, {3.924163189991559*^9, 3.924163211615596*^9}, {
3.926760792780966*^9, 3.926760811804823*^9}, {3.926760862262025*^9,
3.926760865550117*^9}, {3.9267609191675*^9, 3.926761098970653*^9}, {
3.926761143347569*^9, 3.9267611774925413`*^9}, {3.926761234053639*^9,
3.926761261549888*^9}, {3.926761382752357*^9, 3.926761382912137*^9}, {
3.926761546923317*^9, 3.92676154998751*^9}, {3.9267615927161493`*^9,
3.926761666941782*^9}, {3.926761736607151*^9, 3.9267617376231403`*^9}, {
3.926761851425713*^9, 3.926761878833948*^9}, {3.9271760310236397`*^9,
3.9271760311464663`*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"],
Cell[BoxData[
RowBox[{
RowBox[{"plotSpecWith\[Mu]Arrow", "[",
RowBox[{"\[Mu]_", ",", "lab_", ",",
RowBox[{"lab2_", ":", "None"}]}], "]"}], ":=",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"plotSpec", "[",
RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",",
RowBox[{"Prolog", "->",
RowBox[{"{",
RowBox[{
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"Dashed", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}],
"]"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\[Mu]\>\"", ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black",
",",
RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "/", "2"}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Arrowheads", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",",
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "+",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<2\[Sigma]\>\"", ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", ",",
RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "+",
RowBox[{
RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}]}],
RowBox[{"(*",
RowBox[{"Epilog", "->",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{"Bold", ",",
RowBox[{"FontFamily", "->", "Times"}], ",", "Black", ",",
RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"15.5", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}], ",",
RowBox[{"FrameLabel", "->",
RowBox[{"{",
RowBox[{"None", ",", "lab2"}], "}"}]}], ",",
RowBox[{"RotateLabel", "->", "False"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.895207041002092*^9, 3.89520705502596*^9}, {
3.895207323903994*^9, 3.895207346375869*^9}, {3.895207386000701*^9,
3.895207478002494*^9}, {3.895208660000988*^9, 3.895208665288981*^9}, {
3.895208845532427*^9, 3.895208847221174*^9}, {3.895208902317669*^9,
3.895208902621669*^9}, {3.924161569803562*^9, 3.92416157199356*^9},
3.92416160537091*^9, {3.924161669195086*^9, 3.924161677339909*^9}, {
3.924161885591449*^9, 3.924161886295874*^9}, {3.924163229224842*^9,
3.924163238832789*^9}, {3.926760887735845*^9, 3.926760895487254*^9}, {
3.926761390288784*^9, 3.926761432385374*^9}, {3.926761827641113*^9,
3.9267618299854116`*^9}, {3.926761917490697*^9, 3.926761920730276*^9}, {
3.927175932778327*^9, 3.927175942497558*^9}},
CellLabel->"In[23]:=",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"],
Cell[BoxData[
RowBox[{
RowBox[{"plotSpecWithIso", "[",
RowBox[{"\[Mu]_", ",", "\[Lambda]i_", ",", "lab_", ",",
RowBox[{"lab2_", ":", "None"}]}], "]"}], ":=",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotSpec", "[",
RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Prolog", "->",
RowBox[{"{",
RowBox[{"(*",
RowBox[{
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]i", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]i", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["5", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
"\"\<\!\(\*SubscriptBox[\(\[Lambda]\), \(0\)]\)\>\"", ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
",",
RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]i", "+", "0.1"}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["6.25", "8"]}]}], "}"}]}], "]"}], ","}], "*)"}],
RowBox[{
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"Dashed", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}],
"]"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<\[Mu]\>\"", ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black",
",",
RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "/", "2"}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Arrowheads", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",",
RowBox[{"Arrow", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "+",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<2\[Sigma]\>\"", ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", ",",
RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Mu]", "+",
RowBox[{
RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["5", "16"]}]}], "}"}]}], "]"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Epilog", "->",
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "[", "1", "]"}], ",",
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{"\[Lambda]i", ",", "0"}], "}"}], "]"}]}], "}"}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",",
RowBox[{"SingleLetterItalics", "->", "False"}], ",",
RowBox[{"Directive", "[",
RowBox[{"Bold", ",",
RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
",",
RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"15.5", ",",
RowBox[{
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}], "}"}]}],
",",
RowBox[{"PlotRangeClipping", "->", "False"}], ",",
RowBox[{"FrameLabel", "->",
RowBox[{"{",
RowBox[{"None", ",", "lab2"}], "}"}]}], ",",
RowBox[{"RotateLabel", "->", "False"}]}], "\[IndentingNewLine]",
"]"}]}]], "Input",
CellChangeTimes->{{3.895207524427265*^9, 3.8952077663032837`*^9},
3.895207868345312*^9, {3.895208668664829*^9, 3.895208669984865*^9}, {
3.895208789995199*^9, 3.895208790603132*^9}, {3.895208852260318*^9,
3.895208852893114*^9}, {3.895208907053636*^9, 3.895208909325506*^9}, {
3.924161579145795*^9, 3.924161601233445*^9}, {3.924161683147279*^9,
3.924161706499589*^9}, {3.924161755060856*^9, 3.924161863463529*^9}, {
3.92416326394566*^9, 3.924163267761709*^9}, {3.926761195167242*^9,
3.926761202022335*^9}, {3.926761477210664*^9, 3.9267614847470922`*^9}, {
3.9267618341854877`*^9, 3.926761834514394*^9}, {3.926761924210748*^9,
3.926761945522861*^9}, {3.927175946998015*^9, 3.927175962055725*^9}, {
3.927176043113257*^9, 3.927176043208865*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"pS1", "=",
RowBox[{"plotSpecWith\[Mu]Arrow", "[",
RowBox[{"4", ",", "\"\<a\>\"", ",",
RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.895206695763502*^9, 3.895206699170811*^9}, {
3.8952070659141197`*^9, 3.89520706748992*^9}, {3.8952078755934877`*^9,
3.895207930386267*^9}, {3.895208671944873*^9, 3.89520867356842*^9}, {
3.924161638762431*^9, 3.9241616551542883`*^9}, {3.924161914919391*^9,
3.924161915904595*^9}, 3.924163199007743*^9, 3.926760876790394*^9,
3.92676120921328*^9, {3.92676142139275*^9, 3.926761424824665*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI
yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH
v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m
uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX
5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi
eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4
8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4
aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH
FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi
xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq
fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X
NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ
5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h
HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B
sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R
zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh
7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz
gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT
lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy
nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P
IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV
zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8
y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f
SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR
e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx
NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP
5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO
f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw
mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs
IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z
IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0
saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX
72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd
jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh
TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI
FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4
JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam
J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM
/gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg
8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG
TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be
7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om
tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w
d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9
YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/
CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta
+NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O
f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6
TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s
QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a
qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY
KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw
Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD
Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6
9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8
v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0
rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U
wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc
9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT
HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN
79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV
LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu
iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu
G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h
BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G
xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL
ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM
qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea
Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5
4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n
OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa
dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm
gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU
fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL
/lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV
/btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9
YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy
cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8
2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo
uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI
I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c
lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg
nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw
vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4
Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS
WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl
UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL
YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK
4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf
pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P
j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7
xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp
pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4
tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE
x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s
0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U
Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt
hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY
wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP
kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn
ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant
LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm
/uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK
KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD
jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff
puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ
MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV
+ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL
ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY
oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp
i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4
tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4
lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z
sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ
BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1
3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p
p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s
RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4
/u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7
7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG
18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx
mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ
+y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7
NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz
gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr
hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka
nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d
uheZ2Bv9d32MjQ38H2V+zho=
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI
yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH
v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m
uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX
5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi
eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4
8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4
aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH
FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi
xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq
fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X
NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ
5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h
HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B
sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R
zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh
7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz
gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT
lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy
nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P
IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV
zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8
y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f
SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR
e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx
NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP
5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO
f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw
mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs
IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z
IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0
saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX
72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd
jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh
TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI
FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4
JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam
J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM
/gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg
8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG
TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be
7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om
tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w
d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9
YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/
CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta
+NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O
f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6
TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s
QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a
qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY
KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw
Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD
Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6
9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8
v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0
rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U
wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc
9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT
HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN
79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV
LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu
iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu
G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h
BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G
xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL
ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM
qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea
Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5
4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n
OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa
dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm
gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU
fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL
/lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV
/btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9
YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy
cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8
2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo
uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI
I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c
lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg
nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw
vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4
Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS
WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl
UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL
YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK
4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf
pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P
j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7
xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp
pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4
tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE
x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s
0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U
Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt
hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY
wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP
kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn
ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant
LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm
/uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK
KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD
jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff
puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ
MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV
+ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL
ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY
oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp
i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4
tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4
lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z
sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ
BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1
3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p
p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s
RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4
/u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7
7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG
18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx
mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ
+y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7
NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz
gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr
hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka
nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d
uheZ2Bv9d32MjQ38H2V+zho=
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13c8Vf8fB3AZ2Vx7hnsvoqxKROX9LiVRSL7ID2lSRpRVSqEhlAZCRoTI
yOaeW52oKJSSQmZRSSl7RX6nv87j+cfncx7nM96v96HvP2Z7iJODgyNoCQfH
v2dT9pnOiMVF0iVLbM6xbSt8CDIT0h9eJIkNejPX/vrCvtBN220+LJJHpg/m
uO88CT/Pb7joRS6SOxVUk2mnz0JwtOHTyNxFUnOm11VxVzhw3VjNkX19kRTX
5Jd6f/08XE3U3lhzapHMLpNL+ZR4EeTTNU51H1gkq6+12qX5R4JegdKElMEi
eeXg6ONVTdHALpVbtVp5kbSscw2asb0CZixJHyu+RVLrlgmPUN1VcK4TGLz4
8S85IXJSP/nRNbjcN9U5HfqX3D6rM6KvcROSW38JXPL4S4bxpv7+XXYT7r/4
aiRt+5fkxcbAuvVx0FT84Za+2l+y+3fq5V8YDyJhlbv9GhfIITk7uLT8FigH
FIVzVCyQb15tzWpIvgV6R3JKYtMWyIj7Hs0Ngomwa1eCaJHfAsn0fSp8+lsi
xNEDG4dkFkibXXlqJyKTIVvKZ+7kkgUy1nHS9fzPZKjkP6zJ/2Oe3Gib5CBq
fRvaRv+7tPzxPFlhXnq+RTQF5GvXmh48OE/WVXu+iwtLhTv7J4nu4j/k0u+X
NXpk7kCJ/fB3r+Q/ZJxC+bcEvAO1Fl9k5yP+kHyeg3V9Hnegf/X7QHmHP2SZ
5Zf9+tV3QJ2rYrXDwhz5io5pK2wzIP+u//032+dIL7lIwicgEyoHxpOefp4h
HX7tOz54IQs4rx/r8WyYIf031QtF38sCq40/GJKlMySfjIXsrxdZ8DX+c/7B
sBlSfTTCeE4gG6S3vX3EozJDTiytyN8ekw1BeUWftrlMk+EFQ1WZ53Ngnc8R
zaa2SbJstvtA165cOC//xdufnCQVzI627/DOhTd1bqWK9ybJqcfpfQmRueCh
7LjeO3CSvGTRfI/1OBcS35jtFJGaJJcsK3PYppkHs6tV/WxsJ8jagefqX6bz
gJjuqW5tGiNtZ9zeN5zJh1Vacd2KlWNkqbO2S+7NfMh12855KH2M9Hw9kOmT
lw/xL8ssJ/3GyDUGhpsrW/PB93Zkj5TMGCksEJ1guKIA1GA1t8O+UTLwhNUy
nbcFoCIsmF764zd5+6BxNJ1WBE0rHJvYG4fI5C71u5zaxaDH3YChQkOk8c+P
IgcNiiGue30Fdn4ntzSWSjyCYnC+ppz2PPg7ySl7lmFvWww/J78eay4bJGUV
zveoBRWDcE2ARL/mN5IQG725jSwGK4ebTgLSA+T67BDNoe0lkM6b+rakq5P8
y5LSnbQohVBf/3DO052kgswThr9tKTh3WK7ZrdBJqrIVTw3vKQXZ/Lm4iT0f
SXLFxmPNHqVw3crR0bCtndzv8Vpn18VSiIiX6H349j1pZHSmaNeTUnhtJtkR
e6WZlN+SquKnVwanZ1nrRy4Wkt6hS4X+4yyHdFf1y1KdLfBWcvGtqksFRPXx
NM7mfIG6930PA1MrwdjEyWlD5Ai4h5/NFU+pglcrpqxBZQq+Z/crGflVw5bP
5mYX102Bwq9Zmxj/aiCSbm94ZTMFIjfY9O6gasjl26T5v7ApuMSndDcotBrO
f43mDPo8BQWNy/FadDVsyKRXFGVNwyRHfoVNdjXky+2UV9Kchdzv9C+SbdVw
mS9rYH7VPLyxVLrYsYYFHwwfzd01nwce8590LwMWMNw/0Cz3zkPXlaSO+XUs
IJ7zbUyKmQe+kd40WRMW/Az3jl/7bR4G9OSuG5mzwGrBwMwnZQG8jPlu0J1Z
IDn28l7v0kUoPKj37ko4C5qHg9Z+GuZAqz0CL8dfssAxr3atxhwHJs5ODZk0
saDvoLDBsaVLsHTLwOyl1ywY6cw0WFBagqabJvok3rFAvOGVoZzNEmSMregX
72KBfQ7TeFfpElzVQOoWDbOgx7XZpCaQEyfZghdcRAk4LC8PfBGceM3dxNJd
jIDf7w+CdSwnntj6QuSYBAEcO+eg+x4nBlbUxAbLEMBYr7Zptp0Tj+pZXDyh
TI2XCTFdtZ4L/9fyIJ9fl4BfzermGYtc6LpyapC1g4ByyRPNRYLcWJ94+mOI
FQGn9pD2D2W4kXB1+77ehgCefodDbbrc+OfmE7fK3QQoTkWGC7txo0aP5ZM4
JwIsFH88PPmEG32YOnHT7gRkezxYZRvGgxt7r3I6hhFwtPBP9d4rPGixqtam
J5wAvbFt6J3Egy/fHKnff56AhyF9VpElPKiDe3QPXyKg5aqY1+NPPPjBK3DM
/gr1fRUnclZsXopJqYpRfYkEOC9Zp8DFxYsXl58WTCgiQCjcvRRFeJHTyrCg
8QEBjzhvbQ+V48W64o/EYjEBStxTQbO6vBi8p4xxoIyA3qXlrb+defHJpyiG
TDUB+4X0rnZV8qK5bC1Nv4aAIzIaSyqP8mHwaM5S0xYC5BMdEscD+HAus7be
7B0BDbKXdFeF8aFi2+y8eSsBK+S/uhTc4sNBEe9n5h8I+KmYRWQ+40MVa4Om
tR8J8GWo+Mcq8WOwZ9fA808EBGrLfvNo4Ufh2GwH8jcB/C0XxpN6+JE5qF5w
d4SAlMDxxYYhfow7261/cZSAGvK1rDaXAN43TO/fOk59r+0Fi9E1AjgttYv9
YIqAzMCxwpPxAmjgIX5Se4GAtQpuxP0MAeRLs1KbpPyCfFXXWSiAx1zc+dh/
CRjmy+vdWCeAYisaT2ziYMO623vFOKcFcKvQtf51XGx4RTb5RzkKYu+pk9ta
+NjgdtA4jH1QED/rypw4w8+GMb7cKz99BfGSV0ebugAbZG0jcqwuC2J9kc1O
f0E27B8wahcnBDHSO/nHrDAbZvjurb+tIIQyiT9pxeJsiC6UNG9aLoTt1g+6
TSTYoGQbbrewRgjPRIV9aaRsetvFe+8OIYx6UpvTJ8mGq9qS6cwzQjjddm9s
QpoNqrZhnAU9Quj/2abuhTwbMle3KAkPCeHjwYqHaxTYoCzBXO8zKYROLt2a
qZTlW5+d0BMSxr/zhIenIhtE7fm+lBsJ44xOwqnJZWyIMdizRHqrMM6lTGrY
KbFBQOb+siAbYRT1Sbcqoczdbmlv5C6MIzpiHO7KbJjbE1v/KE4Yk5hUyKuw
Idi4r1/pjjCKhwS4i9PZMCm/iuNcvjDmb4/ffoDySGfLus21wmjUYR3AwWDD
Vxfp+3W/hdFzXNlLg8mGgybudcv/CGOG4J94H8qflKo/Ry4VwbxvC4ZllLt6
9yhYLhNBUMgbMFRlw9t9qTHNFiJIajZ80lFjg9XmX7l69iJ4eljutQflJgY8
v75PBBVp31ZnUK7r71vYHSyC36yUDwurs2HLs1XyFREi6FGWor+Jck1WuIF0
rAhe4H0YcoLyw0Oqx9qzRXBRn9P/HWVjs4BooxIRfGJqpLZkORuq1OvuJT8U
wYmC1dbalEu/ufc5vxNBH5Uo4TDKei+q5x/1iCCX1VRGLuXCXH455SERLFPc
9OA15dwj+bs+cYgit1CMvrQGG9Qt5r03C4limkligSHluyt2Rt2VEcUdBrdT
HSin/fhVe0hHFOtqkoduUFZogt46I1Fstc8wK6KcWHDtz/KtohhTVqrwgvJN
79X6Q/8TRbWRpaumKdOsImws3UWRXrPLT0iTOk86rV4Fx0Xxz/qqFSqUBUXV
LguHiqJdubHLasqRvwOyfS6L4sv1vXymlJe+qatpjhNFicx72raUI4plevTu
iOKEf0LjXsoc1z3mrueLoglH0WdPyqF+LOnxSlHs2DlyPJByT4B57ranonhu
G7fWOcomp9qMUppFMfH+OvlIymmhhxtHOkWRnz9241XKC+GTzlsHRXEoiS/h
BmXnS+d/JU2IYrBRDjP+33zP+TGIg4ZSRzy+/rOI+dvIjKU03GVt3RP3b/6G
xLeNQjQcqHIS/DfeZ4eb/JQ4DYskoryv/Hvf6+UHVORoyA7u4r5E+bXN73wL
ZRoaZdq8DaX8t6Vywl+NhmEjAy3+lHX+C92YvpKG4kdu8R+h7Nq29eLLVTSM
qTwU8L9/67lHuHnckIaFGjuld1B+1Nkqo2RCQ8dyi5/GlH+6pLiZb6HmG3ea
Xk5Zse9A3nELGoLaKUMJyjv2rxxLsaFhpXZWwTy1X6cHxozr7WmokNBqP0C5
4DARMepMw4KYpQYNlLsGw5oUDtCwfEDf4t/+bximufoeo+E28BXzo+x1rD0n
OYBaD7rfM2vKKaPpv5+F0LCOaV+gRXl+UidMLpKGqnuL5T9R51EreOql6VUa
dqRJZ1RTdp57JO4TR8MzQqbOVymz/+7Iqr1DQ7W4Jl99ykPnJId/5tDQqlOm
gZuyPFfXWplCGmbf53H8d19O8XrWe7JomGmdIeb57/7QLg9JttDwR9mDufPU
fTx6w2YNtNMw/uHgtBnlZEnZ00d6aNja46nJS3lO9p7w4yEapnst0wyn7juL
/lzPnUsM/xdWnrSfqgeDd2NOXucXw4X8ekNpyrLqdrVsUTG0iq/gf0HVl+AV
/btpimJ4h9Fvrk553ZolQSx9MeTyY69+RdWrqi0bHwkeFkOZhv6sZ1T9uxh9
YbuclxhKCQ4edqFs1/LqvfpxMfQNM/eaoOrlyF7XX5tCxVCR6xUuo7wi5Kxy
cIIYxogmizhR9TetpCZsoE4Mr+1o1TxH1WevGX6RsSYxfBnkIbMgxYb1YJu8
2CKGpquHzYIptzd9LpXvFUPp4/s8j1D1XXyQa8BmWgyTUsTqDah8uKhkZvZo
uTjmCNmWnKHyw+7Q1ZYGbXGM89Qs6RFiA7Pgg2v7GnH0y9Ee3Uj5iZF70DiI
I/06rJqm8mjOLjJX01Ecz5bxF9lR+eUT3SCQECmOx9zEz7A52WA/Y9Xs810c
lW/JBxhS+SnfHXlA8rc4PvkSWekzSUBPTe00a0Icz8MGn6wJAg5FG6jwcEjg
nPk3EKTy119Jye+2tAQuDzzhUUfl980tw+IvTCWw+Htq0dggAW+uRdvT0yQw
vkOWk0Hlf1zA86G6uxLYQIt/uryDAEenxVCvPAl8pxowtbKdgD7miXtV5RK4
Z2fJA12qf/hd6TSzs1ECuQbWe6pS/YdIt2byqRkJ1JUv6al9SYCl5ovud7aS
WLkw5N5SRfVHKhla446SeDDBOSWmkurnpE+FiO+VxHuO0pNbKv71P1pyuzwl
UcHSRry4lICxnli71xGS2PHKbOJYIQHJcQ6NL8olMfOrqGxCJgFDi1+rH0lL
YWxA3/uT0QSkT5G83YpS6DO+bOnMZQLshhPt5xlSmH7aYJd/JAGPP1pMGOtK
4cYP+QbuFwi4UVGkW71NCk2zj681OEuAsWdgTmmwFB631a0KPk5A1AeeuHsf
pdDPaYvDFQcC9D3fDLn2SWH9vccjP/6j1n8xeZP0Vyncu8y3w9yOgDWaer/P
j0rhJsW1txaofrQrxMliP580XvniyLa1IECX/oBjmYE0zjQYu+RvIKDV09H7
xnVpVL/FlS+hQoDyknyzM+YyuFf9nGLBJxZ4OE31yVjJ4NV1vMtzellQXLYp
pHS3DF4L+nEqrZsFmw+3P/jmKoPCjdoLlztYcLiRR842QAY/puq67XjLgqJ4
tx/qmTIo8t3MNPQJC0xWSF9780cG/StVz9xMZYHz7rAO5gNZbFZ0ETpqy4KE
x5466ypkccs+np2PrFnwRtM+YgdbFme/bzssspMFWzhWagfUy2LVcJfy/W0s
0C5sPVfXK4uN1r236zew4O9SDY0jNDlUX2ool6zOgjvE68AiPznMpmsIJM5U
Qz9dUdJIXx77YwdKG+OrQXzljO8XI3nUlsmMqbtRDZv1W19dB3l8PZ+0h4yt
hjtmMZeGLOTxPeg23L9cDa6e83O398ljodipEY8z1fCxvOvT36vy6PP1W2bY
wWpo2Zb64Nl3ebTRD5lRWlUNT7yVLG3SFdDh4cn+9qdVMLj2i+YHjWX4/KxP
kmxVJVSpdQ9q5SvhGckHOzLOVoDPdqWWWn4VjA6NI4RWlsOm6wNub4RU8Omn
ituvVctBsuP+725RFUwvsteOUSoHwsNQeFZKBYmW0V1zYuXAE2ljrstQwant
LdqZM2WQUhf++LYxNf7SubOKz8ugwfTbfX9PFZz9IGmU4lQG6ibFEeqvVPCm
/uZ9BYGlMGF3TJrjjQpqfQgSKT9WCjWeOnkdLSp4quzo+0rq/9g5qeB1TLsK
KrWrJBc6lcKNiVy58X4VtFVdt3evSSks3s94QM6pYKf0+uLX3KXQLnOz01GD
jnYN9C3FV0rg8mjAmugIOobZcdV8vVIMOUcn3e0v0pFXdWNk3oViqO33T6Ff
puOaxJpnh84Uw/z7EzzVV+nIc5IR2OBVDL6EX9tAEh3bLrulm1oWg32Ed4hJ
MR3v/nJ492NpMahKHXo62kXHOPA+f3G0CDZdHZh+2EvHQaWRIJPeInDlPagV
+ZmOWw0U3L42FUHi7P54pUE6Hv2kcJsntwgEe9zcLcfpeNI++WyoSxGM5TgL
ZvMz0H3V0RaT54VArrPb7WjAwA61vBi+SwXQasw85GbEwP6JW62PfQtgaMNY
oMcGBurP1o85OxWA5KZrycGbGfi8fU+jtXYBHN3e9CnRioGXJ9Q9+FvyQdpp
i2/HYQaOc/TnxUnng3eI/hWnWwwMeCF2VygqD8LPcKXvT2bgq82ZC4a+eZB4
tqX4aCoDW32e39xknwe1Eb6tp+4ysK81q3mYngeyMQUKtx8w8F3fsti0qlx4
lqJ6v7OegR/b4lVmO++BwmPJeucZBi6JevS6kDsHtGK7uvT+MDB48OXxim/Z
sMEta4z7LwOT9UyFYxuywZlTX6mQi4mSHCeMKmKzIcVsd8CCCBN/qHO/qZLJ
BsXm68w0NSb6CVdJvl+WBVp39hgd12DiNX1L48SFu7DBj25ttpKJwgVbXil1
3wVniZJTv/SYOPLnvwt+t+9CqsObtyYbmMhlsmKSX+ouKPWJnOu1ZeJjCc7p
p3MZoFPyIb7sPyauP/DxlcyHDDAJT8u/5MhEjkeFztIlGeCqqtOm68pEvi1s
RcHDGZDusVPn3BEmnvEZULjReAdURqO7VM4xUVQtNMCOJx30anePTYQzUXd4
/u/HojTAmwp8Ly8wsXrT2lP/OaSB29r8NX7RTCw+wqItyU6FjJMNUTUJTFy7
7h5NeHUKMDj5jfYXMpFRwiWkxZsEK51VtE4UM/HIk64bj64lgn6lofL5MibG
18hKfpdJhK1HD/PksJgYIvnsY6DSLbB6dmam8iETV1wMg4jUBLBXiv9RTzJx
mzxEn5ZLAI+Wp2+/P2diHZHWs4M3Hny1Op/NvWBih+5vrZTgODh5caxKsImJ
+y2Tvj//chOijOlp2i1M/JzeraFcegNuxq27bvKeiW16IllutBuQ8sv6vHU7
NZ9Cq1Kix3UozAw96tfDxEqtF1Y/uK5B5Xy8S/gnJi4/dnylftRVeGxfaHNz
gNqvuuDRqJkYqC9+Zpr1jYkfwsai3K2j4Y1Al0HFEBPLTb9Or426DO0HxzXr
hpno+ifEOC/zEnx6LLCsbYSJ7c0habmxF2BIlkEbHGdiBfNXma5pBIwdN+Ka
nWKiV6jCpXPZ5+BPk80U/xyTqp/DbzJFQ4B7ucd3+QUmPnWJTurtOg5CMy9d
uheZ2Bv9d32MjQ38H2V+zho=
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[
Rational[2, 3], 0.6666666666666666],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{None,
FormBox[
RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}], TraditionalForm]},
FrameStyle->GrayLevel[0],
FrameTicks->{{{}, {}}, {{}, {{0,
FormBox["0", TraditionalForm]}}}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{Automatic, Automatic}, {4, Automatic}},
ImageSize->118,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}},
PlotRangeClipping->False,
PlotRangePadding->{{0, 0}, {0, 0}},
Prolog->{
ArrowBox[
NCache[{{0, Rational[1, 24]/Pi}, {4, Rational[1, 24]/Pi}}, {{
0, 0.013262911924324612`}, {4, 0.013262911924324612`}}]], {
Dashing[{Small, Small}],
LineBox[
NCache[{{4, 0}, {4, Rational[1, 3]/Pi}}, {{4, 0}, {
4, 0.1061032953945969}}]],
InsetBox[
FormBox[
StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{2, Rational[5, 48]/Pi}, {2, 0.033157279810811534`}]]}, {
Arrowheads[{-Automatic, Automatic}],
ArrowBox[
NCache[{{10, Rational[1, 24]/Pi}, {4, Rational[1, 24]/Pi}}, {{
10, 0.013262911924324612`}, {4, 0.013262911924324612`}}]]},
InsetBox[
FormBox[
StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{7, Rational[5, 48]/Pi}, {7, 0.033157279810811534`}]]},
RotateLabel->False,
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.895206699369146*^9, 3.89520674386379*^9, {3.895206800311884*^9,
3.8952068894420347`*^9}, {3.895206959308638*^9, 3.895206992894684*^9}, {
3.8952070620060863`*^9, 3.895207067724165*^9}, {3.895207143255886*^9,
3.895207260626754*^9}, {3.895207406363961*^9, 3.895207444229038*^9},
3.895207478790277*^9, {3.89520759340065*^9, 3.895207626329248*^9}, {
3.895207672105403*^9, 3.895207766860739*^9}, 3.895207868876601*^9, {
3.89520792560944*^9, 3.895207930957688*^9}, {3.895208673993223*^9,
3.895208731333771*^9}, 3.895208855336532*^9, 3.895208910073511*^9, {
3.924161545406942*^9, 3.924161606347749*^9}, {3.924161639114283*^9,
3.924161707916535*^9}, 3.924161917425612*^9, {3.924163199195035*^9,
3.9241632684587812`*^9}, 3.926760829972809*^9, {3.9267608635048943`*^9,
3.926760947218087*^9}, {3.926760983716619*^9, 3.9267609989132347`*^9}, {
3.926761038325932*^9, 3.926761077719367*^9}, 3.926761157084555*^9, {
3.926761202690482*^9, 3.926761262528049*^9}, 3.926761385096426*^9, {
3.926761425364373*^9, 3.92676143349012*^9}, 3.926761485486828*^9,
3.926761551172861*^9, {3.926761617471798*^9, 3.926761626745406*^9}, {
3.926761661177988*^9, 3.926761668201248*^9}, 3.926761738520466*^9, {
3.926761836696477*^9, 3.926761880005011*^9}, {3.926761921727672*^9,
3.926761946295723*^9}, {3.927175956327639*^9, 3.9271759631334057`*^9}, {
3.927176015783972*^9, 3.927176044384246*^9}},
CellLabel->"Out[32]=",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"pS2", "=",
RowBox[{"plotSpecWith\[Mu]Arrow", "[",
RowBox[{"6", ",", "\"\<b\>\"", ",",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}], ",",
RowBox[{"Opacity", "[", "0", "]"}]}], "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8952070062646313`*^9, 3.8952070063126*^9}, {
3.895207089642592*^9, 3.8952070914663*^9}, {3.8952079701475897`*^9,
3.8952079709309177`*^9}, {3.895208773410845*^9, 3.895208774210402*^9},
3.924163254848674*^9, 3.926761180572352*^9, {3.926761451041807*^9,
3.926761459473476*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI
ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u
rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n
+PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl
3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D
7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ
h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX
U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej
+vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m
Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4
x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi
FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST
oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft
KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK
ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee
0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW
s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy
LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu
6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D
2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc
NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj
XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw
ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd
c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf
4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB
4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S
UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X
AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg
zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770
UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3
EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV
xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd
ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em
S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH
tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi
CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O
EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g
AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei
CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4
SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44
95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc
0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1
3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn
wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD
3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR
swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe
JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE
OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0
r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg
0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c
+51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg
E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1
L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ
0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+
s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW
6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL
+mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s
V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ
yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K
eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls
g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH
xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM
w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF
j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2
oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b
rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ
4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ
6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ
2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF
ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa
IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5
UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5
f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf
UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn
64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY
NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9
yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq
SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa
DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0
6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr
E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX
gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG
5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni
GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W
xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu
KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31
JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90
qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN
aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx
D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7
P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c
Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ
NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2
C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37
s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV
M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs
pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0
DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph
r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER
WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e
CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8
C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM
C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs
/3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7
Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI
2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ
HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+
X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/
BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4
30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq
40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS
wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ
5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL
9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B
hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu
zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG
szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN
JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+
hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l
37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L
dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67
orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved
54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl
3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl
tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/
AVhmp4Y=
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI
ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u
rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n
+PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl
3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D
7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ
h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX
U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej
+vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m
Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4
x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi
FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST
oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft
KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK
ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee
0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW
s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy
LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu
6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D
2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc
NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj
XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw
ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd
c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf
4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB
4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S
UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X
AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg
zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770
UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3
EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV
xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd
ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em
S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH
tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi
CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O
EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g
AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei
CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4
SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44
95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc
0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1
3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn
wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD
3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR
swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe
JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE
OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0
r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg
0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c
+51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg
E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1
L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ
0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+
s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW
6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL
+mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s
V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ
yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K
eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls
g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH
xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM
w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF
j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2
oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b
rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ
4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ
6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ
2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF
ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa
IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5
UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5
f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf
UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn
64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY
NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9
yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq
SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa
DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0
6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr
E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX
gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG
5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni
GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W
xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu
KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31
JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90
qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN
aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx
D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7
P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c
Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ
NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2
C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37
s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV
M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs
pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0
DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph
r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER
WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e
CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8
C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM
C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs
/3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7
Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI
2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ
HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+
X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/
BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4
30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq
40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS
wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ
5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL
9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B
hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu
zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG
szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN
JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+
hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l
37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L
dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67
orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved
54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl
3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl
tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/
AVhmp4Y=
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13k4VN8bAHDylRTZxswYe5ihhYpE4X1RKiWVkkqUFomSLJWibGXLHonI
ll22Yu5IpahIJMkuImtlz1Z+9/fXfT7Puc+59z3Le94jb+N44MwSLi4uZ24u
rv8/BVL6KJdfyIEAT6lHSb4RLP4ZLhiKsYVPHOaduJ/nof/De5fJNV5QIe2n
+PyPG3yMo+v+cgqG82OnT9fe9YBjT4uWTLZFwsutx66JuXrBR6m2H6OesbDl
3c2OqCofMPBdUvNTPhGszu1du9jsB61TUYddbZIhknrDuqPsDkRlZryfUE+D
7xmHnwbfCIBlIvW5o01ZwGnQDbHODIaKN99lHTNywYOe9n6zbAjolc2/m9bJ
h730k1aOPqEw4yi01XVlEYxqcgxfCYXDl10SLhpXiuF3OBsP5IZDoYJC7kTX
U4j+PPbAaXsEOHzVlL1cUAobF7aJHbaNhC49Kx7Hg+XQtFv2n+iNe1BGP6ej
+vwF7PyWZkibvQd7ZkuJ6YiXoLx2ONDIORpUPldMPJ1/BRLSH8ubrGPg++2m
Mxq1b0AoVv1soXQsHP71d9eGS9XQ5VW9XdUwHozavH+EKdZAXWvoG72keNB4
x+cz2lwD568Wp/L9iwfhZJGyJ/q1cLTv1eHxoofQlyVKi+GvB11gjJqJJkKi
FTNAvK0Bvsw8yz9b/wiUJ49wd+t8hubPgRtz5x5BYcDdazkJn6Fy079dtxST
oKp40s7QphHCNxQrtbglwa/lr42dBr+AvbFtXzo1GXRKrAVq/zSDpvARi4Ft
KdAqFBvqS+mC8rszqv/OpcHptA98+9y6wGnBcUoxIA1+buG6JdncBZKP8taK
ZaYBV5G6VovJN9gTw/9+10AaUDofKF8S6YbNF65v0D79GHQ07PgT7vfA5Uee
0HwgHQK/8dbMPu4D8fmDL+uFMmHuQU5VYmMfbA9alL6vnAl2h8wqti/5AXZW
s2Gonwk7qx+xw4//AI3KEWnNy5nAV7w1Q4XSD42uaYbPGzLB946T3xGvAbBy
LvnrFZIFN1U7gH1sGPYLxd2tG8+GLXpHj+r4j4JKaqGDi3sejOSuPxufMApu
6b2ZjLt5kCDNd3mheBTCUq6Z5ifmAc/fooCy7lG4t2dqd9abPPjAEWTrbB2D
2GU8eu2CT8Ba+xVN99cYbPfhvrLv4RPw1VD+ontwAv67Z3kq2iIfaldPm4Lc
NHgd0FB9alEA23p2Gt3WmobLNnxvZk4UABEbp1O7bxrYayZKNtkVQMYyfZVj
XtNw1yOiK+5aAfj+CFpypWcaeD3HVRkPCkAnWf5pXuof2P83xv9HSwFkS5gw
ZFRmQXnG+/afg4UQsCy1d2HDAtjcaVkbsKUI6n5e2dT9kwtvMjZytIqL4Vcd
c2fSIg8m2LS+fiv0DCy5tSR5ePiQu9yhdOmGEnBbR+8/18CPJ0WGfZqopcDf
4DcR28mPS2Q2nLvAKIV4t4nF6iF+bM24Vs0tUwqvXnykr+NZjvFRdwQVlEpB
4ICf8Zj6cmyUv5GzQ70Ukt3Gc6/dW465RYeRYVoKtS8+uARarMC5NkPBEd9S
UDzgtSSnUwDXl1f4XB0k39/YICM4JIA73qt1GY6UgqyYwtaLUwK4Kq4YBX+X
AqPxjfN6AUFUWZJNfzBZCkLmy/qKtQUx6/Bj1fjFUpg7Evr2eZQgnt2r52Mg
zoZPJx8G1xmvRIk63rVSwAZPJzZ14pkQcllNKyjeZUOn686MHa+F0Clk7770
UDbouX/Vjq8TQj3KCnPlCDb89Z6y3D4ghO4Sm0cVYsj26vufagSEsXCs+RJ3
EhuetzXSZPSEEZMz15oXs4Hzb09qxSNhHHFTLTzfwoahW5SfI4+Fkc4M3ZTV
xgYGT/smWq4wjhlS0vo72ODOZ//Wni2MovFFxpY9bNgiHDBEaRDGa+qbX6wd
ZgNbvnK9LY8Ifg9KrDi/wIaSbbrPV5wVQajoJKykCbgd5LdLwkEE//Nov2Em
S8DBhtovzMsiOCQWY2IkT8CotdUvfU8R/CS1KMVUImD19ZuyV6NFcEoz6ebH
tQQkFLzy6q0SQWfuiMKKrWR/MkZGz1miKDzZl7bVguzvTEhD9TpRvDtyXGDi
CAEKOU1WzeqiOFzuEJJxjICX2rZXJkAUd8DbH4LWBMwd9M9QsRBFydqH46/O
EHAxqHp5tL8oGkJyVd1lAsxn9tZdHBTFsX/USt8gAhgd/qcov0WRXrvr+49g
AjpfVfxhT4riCXPTMztCCDgTpCnHyyWGK3Ib7vGEE+AiI+MURxXD9uL0J+ei
CYjc9lP0naEYOqR+Xeh7REB9WJC5fIIY/h2VScgrJiDKtXKoKkUM09ceyOl4
SoDF0UVPh0wxXLb+qdKKEgK+KTinlxSL4UHzb0dPsgn4/ezojEmNGF75Ht44
95yAlR0qD9xnxFDfMGxjTxUBu1XedXw+QMFb1qvHfb4SwCWXtHbCgoLzOZpc
0c0EFFPdr4taU1AjPlL7cQsBMv+tldhvT0HPHGm1V20EjHeGHvzoQ8HUVsc1
3V0EPIg6XPOumIKns5Nj3vcTYBq0njFAUHBY/bdz+QAB/3nz2/G9oqBDbpNn
wSA5no6cpUa1FAzk3yofMUyAgbGswes+Cu69kPJQ9zcBQ4s/Sp9TxfHU5OxD
3WkCEqdf8HVIiaOOspq7+B9yPn/eN19YJY4eer13hkmXtxpPblETR8Xya1oR
swREPM1TK90hjk0mv8bfLxCwxd7tceFVcbScTRztWcKBwCbeqPRWcbzedIFe
JsgBDfv6IatvZLtL9V/TlRzoXHygT/0hjrpGvAd7SKurrP/tOyaOfA7uZkuE
OdB+/aixzTIqWniLJ6mJckBN/gmXtCYVT3SUBQGVA61Prx1u3ErFRjndQIK0
r/G2vCB9KsaqCM2r0zjQ7NxybG4PFfUb59VX0TngXcVT8vUUFZt2q/GOSHCg
0d7iQkQ4FQu8mjdtkuaAJ5fCm10xVAyMSbeJIa1y7yeD+yEVn9Knl8z8v73c
+51jBhW995slFMtwgCWSq2Dygor39Wv1JeU40JB2xf2/Sirya1sIOJG+scXg
E6eairaBXcaVpOtPffVc3URF6zgpRTt5Drg/427l+0nFTsXPOxNWcUBx94f1
L8ap2Hutsrif9Meu6DtuM2T/s7L31BQ4oMC/dlMfDw2L9usVEaQ/HDMPq2DQ
0PaS7dlyRQ64jcr1X5OjoRNPr9s8aXm/Yd0NTBoqByksaCqR7Xm3hhM30HD+
s9iZTNKy3NlGHjtp2D37puA6kwPnjk5/o+2l4esk46vZpPOL9K8XmtHwzIjW
6xbSBmebn/Rb0TDG68KPDSwOBL1QMPY+TUOqTkX5MdKNdMdeqfM01LkWL+lL
+mwNr8QBVxo25M7b1JN+ori/aMSdhpxVd00mSc94xJvcuUVDQ/HnZVRlcr2s
V/cuC6JhwKuVKodJfw7wlDocTsOBpVuZrqSlvr9/NhZNQ71uRkY46bx7J4aZ
yTTUfMm3pYr0n1/Zfq/SaahuLW3cSRp3/pG1zKVh/9s/nZOkA5IMiOlCGm7K
eTDDr0LO19zdg+GlNPx1kz9GmrTkwZZfa8ppWHl1B6FG+nSuYkDVaxqeDjls
g6Rzl15SOPmehtbuOqGmpKetOc/nP9IQS2fwOGlgL7WIbqShl1/IFTvS/qIH
xte30vB+9+JGF9Kf7B8G13SR37u719mDNKNygHm2j4Z9gje0/EifktF4xTVM
w67HAd5BpHOu3DwWN0rGd+Lq/jDSU/XVU5umyfh5dqVFktZbTQ2rn6fhHskF
j3uk7/icXG3PTcf8qfC2/7u+PecNLx8d2UnLy6NIS2jOWD0SoGPx6BmlCNI2
oYazW0TpOOiaIhJCOnsgJPILjY7Jtyu8/UlP6reuuyRNR/ktFVe9SOvGKb1b
rkDHx3ZJE1dJ3568ZJOmTMcL+VYTF0nXmZQtgCods+xnrpwiTU/ni2lVp2MQ
4eBlTvokl9kGV206qnuyhXaSzjqSUCMEdHx5pH2VFumJwsEzWdvoqF3YQDBJ
6whs4tpuTMdHebFfxUjXltdouB+iY8tMcOIgOZ9UOq2OcoyOO6wKjRtIWznZ
2D05Qccv0Q/c2aRHFWYf9trT8SJvyjkf0toe27RuOtFRzYZgniXt3RTaIHGF
ju5d3nY7SFMCmHym3nQ80yHqwUv6eI9T0uAdOp6OrDPpIdfr463Pt/repWNa
IyvlOWmtX2aX2PfpuKEkos2RtKWZV4vCEzr2hz3wriD3S3S5varWUzpOgMK5
UNL1KuY+ezh0bHUaCDlKehvXmnWub8nxNFxMHCb347rcxltVXXQ89mdN3Qy5
f8/RX3xp7aOjyeVzz0tIJ/tkrv49TMc+x9sjLqSpRz0baTPkfPOoCw6R+eDf
UmVlO2EJdOCqN39B5g+ty6IeHlQJPGMTb3yJ9OWOhU/hUhIYHtniKUv6R9Gn
64SyBPZE2GZcJfNR3YnrdSv0JVBIk++fOJmvHhEf3fKcJFD+QFfKghSZb5XY
NRVXJFBJKD06nDQlPEXuq4cEGmWUvVMk7W97tXoxQAIPZd8Y2i7JASfKKpn9
yRJog8PyzmS+NbjoWjnRIIGRldp7romT+bHFmrGsRQLNSrVUxikceLbN2FGq
SwLLtZdvsyO9WlJWYvuwBFp2sTceEOOA6Lt3DtE8DDxSZTy2UoQD3+WlKNoa
DCxn8bSqC5Dta2Yu9WkzUDlQzjNuBfk9jcbacGCgm/rD+9ykHxkF3xkyZqC0
6O717/nJ9WK/MBd3koHy7/z7t/OR8RW3d/8LYeClX4rHp7g5sLy8VC87ioFr
E02PbiOt/TYq7vADBuqXUz6Ec3HgfsueQ/lpDGy5MCGgvEjWK//K3p0sY+BX
gRguA/I8bNjx8MmbQQbWWK+PXEOer0v2XxNw+s3AlNvLak5OEbDh6CE76SkG
5hs4ukZPEhDmIKjgxiWJ2anH5OfHCdgb7hHNokmiFFR9KiDP6/etxz0Ct0ni
GesUl0byvH95QWb3vkRJ3NC9s+AnWT9884+1cUuTxLHT5pXtZH3BnUpxj8+W
xCT9Qq5qsv4waF2eOVAiiczXTiMJXwioNPqz1KteEo9nvwrf+ImAatn6igJu
KZy9/amL6x0BjZ+8toidlsLesPTGzWR9NDmysF/7vBQWDdtaDhcSIL7sqp31
JSn8KhXM87CAjF/v4v3sG1L4wKwvby6PgJaso9OG96SwY2Hp5cRMsl7zUS90
qZLCidB+u5AEAgY29ak0KUsj362qpVx3CEgX7/btUpXGOSEuSU8/As5OtXcN
aEjjbfdU8zkfAvqKG+/NozTOnBw0+HmLgB71N9zyR6QxZMf5H2XuBLRvSGmx
D5DG93dmhHgukvXdupMB3EPSWN46EKBsRkCJUsfA2mwZ/Pvgs/VrGgEOKdW7
P+bL4Ba/zuwhcQLk5EvzHJ/J4CrDzzuEKQQESkW6FL6SwevIf9FcmABLsV1c
Ws0y6KJ51e7jMrKe435KM+SVRc9t7u8dZtlg3B5sdMRaFkU0D948QdbzF3fJ
NFTwy2F/2USFQBQb9MN7T9QLyKFL2qBfZDgbKC1ZvzuE5DBb2mgdnbxPEOc2
C86Ky+H0fBlTMpANvP77dqqtkkO5HVDEd4sN8VXe5XFb5NBp42iquz0bqg37
s1zs5XBMsNXsNbKBqZfvw6yVQ7Ev1cdLe0th8qAjlateDosq75/60U3ev+xV
M1sa5LDszSZ70a5SsIzN+RjcLIeD+Qoep1tKIWIyQ2Liuxyeo0TcH60thcWs
pCcv5uSwcJ+KSMazUmimRbZZKMujxBTvbMjtUggYc1UP8pHHAfLCIyJXCi+0
DppZaK7CHal9I4a6JSBZTnlrObMKgyYWbu6VegarlvBr2+QqoPcP5cHt34ph
r2/XvwQnRYyMFNJp3FMEB3J/T113UcSYlDlRW6MiONS0OGJxRRG/j0hGT0ER
WCrLtYl6KOLv0bBQXvUisPtwouS2vyJm8+l/HqUXgS+lx/FioiJKhx5PHP1e
CERq7zfdWkU8LGK5z9mtEJQqByvalZWQ12BnrGlwAVzdRxzLXqOEt/i6+Gt8
C6C6LXDymqoSjrEMRtGjAC6Nr2HSNJSw9tNjbqmL5P1b9mLAflDCfScC7UJM
C2Cf+7hp1SElXJYzm3pcpADc1ebbn3gr4aZ1a0wcwvLhA1Hj6umnhEILJSIs
/3yQNYpfaeKvhP/1J+i13cyHN5a6OHRXCbXbfTLVHPNBKPBmimKsEpYsSUu7
Y5IPqb0852OfKGHU7QO9Q8vyoS5W4I93uxKq+wtKH53MA0be2gshXUoYvMLI
2/FbHpyt2PM9tkcJaU9U2pw+5MHCUHBd/oASurrmNeik5oGKjmBG56QSDjZQ
HvcfyAOfTsEjWwSZOLy99MKFnFzYrCDEGdNlIn+1C3Vhbw54b1bb8BeZ6KF+
X9pSKwc+7jZNX7aNiSoPgzakyOfAaZfQSFljJhoKQnDfRDaEVwo5mJgzMfG/
BpZGTDYM2wpLZ15kYpuf87Ly5ixIzBG5eSKRiTL0meYz2zOhN3T17OZkJnY4
30lvW5sJq50NnYXSmKg6ktyykZIJz7RdbcuzmPixbMWCT08GfKxqNpV6xsTq
40e/PvbIgH/fEuWaPzDJ/Kz6Myo3HSzFVStM55gY0Ws7wRlNg+QZIx3WXybS
wmbHbn1Og4E262f/Fsn/3fZ6mvosDVySw7NyeVnY1PNVsMg9DYLVpiJWiLDQ
5PEZ8XvcacDZVXbqLYuFc5fvvdTiTQWGpzEvHGJh58ugL/+1J4HFUKGlmQUL
9xlFJFUWJUGMuWSx7TEWJq4a5JUNSgKK2ohN2EkW3v+lIhumlQQrv9192X2B
hTd8JlTFQh7Bnj3TtOlLLMw0EFXQt3kEQaVWjstdWLhT2Dt9ZNMjWBauJqPu
zkKiMM7dvCQRlhh8uu57m4XJ3S77b2ECYJ725/sBLNzkXMGd3fUQbjKSV+cG
szAhs9vWw+MhLIxfbvkSwcLvK30muovjYTqFspmVSPbntmXfiHAcaAh7hGxN
JuNRiP4Sl/IAnG/09Zmmkf35LZaf0XgAowefRV3NZuHL/ry9vaaxMMRrMf6+
hIU6Y2L3DexjQPnyy12dBAsPmZit8xuOBttO5aTx5yx0NxuTqj0XDb3PZk0l
37BQTrf3V9iRe7BKwSZd7S0LJT61Cd39EAUnQ6v/GVazcDaC72Dw1ijotI3L
dahn4cc1cv5KApEg1cjD6/WZha8Vlw70OETAMXSwvNdEjuduH57vb8Ohma67
orydhRufd+4ZswsDql+aTUMXC9XWf2P6WYXCoTFB4kcPC+urU475Nd2Fhved
54QGWZhlzpUX6hUIwpo7XiqMsLD46bzi7mx/ME1+QtP6zUKm/dm5O3m3IWQl
3XHPOAsvvC3Uod3yhQ/ut6pOTLFQMNxwDddKb1jePyDtOsNCy+lav1BHT9hl
tt81YJ6FjO7PY3z2V8D/BfvDw38sjI7TEI0UPw/nfb+valkk46u5+hV37of/
AVhmp4Y=
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[
Rational[2, 3], 0.6666666666666666],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{None,
FormBox[
StyleBox[
RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}],
Opacity[0], StripOnInput -> False], TraditionalForm]},
FrameStyle->GrayLevel[0],
FrameTicks->{{{}, {}}, {{}, {{0,
FormBox["0", TraditionalForm]}}}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{Automatic, Automatic}, {4, Automatic}},
ImageSize->118,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}},
PlotRangeClipping->False,
PlotRangePadding->{{0, 0}, {0, 0}},
Prolog->{
ArrowBox[
NCache[{{0, Rational[1, 24]/Pi}, {6, Rational[1, 24]/Pi}}, {{
0, 0.013262911924324612`}, {6, 0.013262911924324612`}}]], {
Dashing[{Small, Small}],
LineBox[
NCache[{{6, 0}, {6, Rational[1, 3]/Pi}}, {{6, 0}, {
6, 0.1061032953945969}}]],
InsetBox[
FormBox[
StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{3, Rational[5, 48]/Pi}, {3, 0.033157279810811534`}]]}, {
Arrowheads[{-Automatic, Automatic}],
ArrowBox[
NCache[{{12, Rational[1, 24]/Pi}, {6, Rational[1, 24]/Pi}}, {{
12, 0.013262911924324612`}, {6, 0.013262911924324612`}}]]},
InsetBox[
FormBox[
StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{9, Rational[5, 48]/Pi}, {9, 0.033157279810811534`}]]},
RotateLabel->False,
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.895207006790284*^9, {3.895207070220139*^9, 3.8952070917239933`*^9}, {
3.895207143838638*^9, 3.89520718662168*^9}, {3.8952072225436153`*^9,
3.895207261231798*^9}, {3.895207414307035*^9, 3.895207445020737*^9},
3.895207479012274*^9, {3.895207593605205*^9, 3.89520762652086*^9}, {
3.895207672440133*^9, 3.89520776704414*^9}, 3.895207869061739*^9,
3.895207971302621*^9, 3.895208774788427*^9, 3.895208856296947*^9,
3.895208911233605*^9, 3.924161607806319*^9, 3.924161708547617*^9,
3.924161888307276*^9, {3.92416324696364*^9, 3.924163268743547*^9},
3.9267609838904743`*^9, {3.9267611808104887`*^9, 3.926761262911172*^9}, {
3.926761436461685*^9, 3.926761485701083*^9}, 3.926761551329531*^9,
3.926761627535708*^9, 3.9267616683618813`*^9, 3.926761738675971*^9, {
3.9267618371538763`*^9, 3.9267618801693287`*^9}, 3.9267619465042458`*^9, {
3.927175957106708*^9, 3.9271759633798437`*^9}, {3.927176016114229*^9,
3.927176044606139*^9}},
CellLabel->"Out[33]=",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ps6", "=",
RowBox[{"plotSpecWithIso", "[",
RowBox[{"8", ",", "0", ",", "\"\<f\>\"", ",",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}], ",",
RowBox[{"Opacity", "[", "0", "]"}]}], "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.89520778997552*^9, 3.8952077901675262`*^9}, {
3.895207839433116*^9, 3.8952078422645893`*^9}, {3.895208024284871*^9,
3.895208026220129*^9}, {3.895208867468687*^9, 3.8952088688522387`*^9}, {
3.924161720316*^9, 3.924161720643152*^9}, 3.924163261168485*^9,
3.926761190108756*^9, {3.926761464570071*^9, 3.926761464866471*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI
zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR
KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve
GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0
bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW
8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy
PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ
b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip
6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV
VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG
qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ
yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73
8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe
umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I
kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl
ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo
jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi
EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX
imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh
RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o
LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y
6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9
N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL
Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM
D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os
xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf
FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3
V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV
QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ
RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy
/jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO
T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y
WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc
MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB
mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE
Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm
nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9
5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS
y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr
UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw
o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v
hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx
/LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp
u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP
69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4
X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4
vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX
uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek
Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC
kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7
BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu
OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF
0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3
J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi
dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+
2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U
0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i
3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3
fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj
2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8
SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ
c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet
GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7
RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP
1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P
Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T
hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0
BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P
jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG
ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG
Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y
Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ
PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD
/QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p
eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk
T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379
ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh
wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj
y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/
p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H
VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI
V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN
+ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf
evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk
TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu
/T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc
091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj
z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp
BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ
8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX
AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u
IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG
HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7
OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx
xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL
3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0
OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON
27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5
g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf
nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6
5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz
VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx
uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c
O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB
Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V
XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv
VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os
ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6
Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36
vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu
ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r
UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga
yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa
5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2
7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo
HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E
PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG
OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh
DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku
BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ
eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz
KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38
ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX
7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP
PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6
rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF
a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI
zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR
KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve
GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0
bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW
8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy
PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ
b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip
6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV
VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG
qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ
yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73
8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe
umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I
kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl
ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo
jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi
EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX
imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh
RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o
LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y
6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9
N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL
Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM
D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os
xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf
FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3
V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV
QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ
RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy
/jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO
T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y
WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc
MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB
mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE
Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm
nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9
5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS
y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr
UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw
o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v
hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx
/LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp
u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP
69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4
X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4
vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX
uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek
Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC
kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7
BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu
OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF
0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3
J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi
dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+
2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U
0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i
3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3
fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj
2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8
SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ
c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet
GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7
RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP
1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P
Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T
hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0
BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P
jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG
ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG
Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y
Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ
PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD
/QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p
eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk
T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379
ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh
wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj
y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/
p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H
VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI
V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN
+ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf
evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk
TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu
/T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc
091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj
z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp
BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ
8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX
AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u
IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG
HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7
OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx
xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL
3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0
OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON
27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5
g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf
nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6
5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz
VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx
uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c
O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB
Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V
XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv
VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os
ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6
Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36
vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu
ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r
UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga
yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa
5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2
7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo
HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E
PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG
OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh
DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku
BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ
eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz
KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38
ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX
7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP
PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6
rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF
a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwV13k4VVsUAPB7iZAkGTLdwdTlIpUklbVIEyVDqTxFJVOGZHiikCkiQ6iI
zEJmwj23JEmlDFEiMqSJRJQGlHfeX+f7fd/Ze6999tlr7c085mFxgodCofhR
KZT/n5rnPFr5KRT0iX8iTh1XhxfiZw9aL6HgwlUzB5eS0+BfHDlSIknBlcve
GrrZ+wPDKNmdqkDBkPrn02WrgqG5L+v3Pg0KdqaJnh7NCwFXr9KwAl0Knvf0
bOx9FQZiS7jL5rdSkEl9HH2pKwLqsh+l7t1LQdbYslv0/Ejg6xwq/3GCgmLW
8YT7ZDQUO3/ZZOxJQX3OzW63U5fAgjrbnH6WgnbfO6b+GYiFG1or3hglUjAy
PF3U8mE8GD2mO127QUHT9T6f9jkkwJit+rfPhRQc+n7EP5F6GXTitgkmNlDQ
b+1RoWlWIrR/+Xf98BcKHo6QMHfcngwHCxvXs2YpSNf749fcngxD9kt1PPip
6L4vz6Fm/xX42pet84dGxbqcgqh1B6+CWEvrBmkzKjoHBvU825wCVvmKeuaV
VHSVtToTkpUGA0fd9a7VU3EhKcIikD8dHOU5eoMtVJzYmmrA55IOfkmmm9xG
qLhkq3nXF/UbkBpyZnOUOA+qm/RER+dkwMCRdv37vjw4WWdU66aZBQ4yMiAQ
yoObJWFs5EAWTL60h71xPDhtZTU0HpwFlD2z8OYmDx4QqeppfJ4FCpuUDX73
8OBZ+S/qLe7Z4CAVsHXNJl583NNeteNaDky0q+zMWuBFSnd/+YrbeVAt7tVe
umQRjmo1Whm9yAP/Q/es7kgtwmnd31r4LQ/4Rg6ceLV6ETa7h86kaeWD3I/I
kKV2izD76rdEamE+GMt9vnOmYRHqrcg1lUu4CXlOZWsszvNh3eA/vwYNC8Gl
ZK7O9hIf7u1WjXlkUwha0zvQLYUPVURrfC/5FsKdgCHTyAo+/Dqx+v3twkLo
jF3uWj/Mh5+2BD0JFSkCym2vfDVDfmyy2Jp5rLMIbKi6sry8i3FOpWax+bZi
EA5xrESRxag6XhKgYl0Md3mu7gqUXox7fWJmP7gXA23Rj39/r16MKY6W7arX
imGQv/rFpM1ibCzZcYs7WgzHhLVi+2sWY+T3zY+1o0rAWYpFrXERQNNNthOh
RCn4aqz86NQpiK3HgguLfctBsDP8W8qAIGZG/rWtCSqHNN9vCy1jgmjwst2o
LrIc7t9rW6nBK4S9xjue5aaWg7BFuPHUOiGUpYKmQn05ZPtOl5xJFkLzq1/y
6ngroPXeM++LB5dg7/GcycyoClCyOM9TPCCMUp9NaC4hlZC9tpO2dEwYRVq9
N1pEVQJ9heIm9xlhPLLha8T6+EqQedHkpSW8FLucNdu+pFfCMiuB99Ubl+LL
Lz6ZypxKmD0U9+hu0lKsS/V6WDNRCc+Ppse0G4vg7MbPQcFWVRDoyZH8VrMM
D29prcmQroZaoy13lzgsR4MSumFm7G2w+mXa7j4qhq4XDj5IaaoBE9XHb7os
xDH64uUCRW4tUBhZ6t8OimPLQAz9b30tVEv6B4jZiiM/defUy8Za8vurS5uf
FMeSJEbRuZZamB6I29cWKo6Khn1JJb21kJp04OnjanEceb/oRPzPWhhb+FB3
V1ICA7MLzFzW1MHFbr6km68l0O42PaAkvQ60T3aMHRmSwMcTO3kqMutgYCHV
QPKDBNpabfKrzKmDdapak2FTEthAP7+urLAO+gOsjY8JSGLGtvD5uNt1sJpZ
RpHXkcSu45vPTT6rgxcnD7pdTpDE65K569izdUCn3tp+bqcUJg3ElBCmHHCy
/jEkZSqF0mt8K9aac6C8yiCg0lIKna6qDxdYcsDQoafs4xEp3PuB2Rx3kAMO
T/mkLXyk0GRypnrHMQ6UJtt9VsmWQoujsal2PhzQV5OM75iTwn6PTEG9VA7Y
WJ7vVSxbiZQbmq15Axy4Un9SU/f2SpT6ExrTM8SBDlWr0N3clXjg9PsdgiMc
MKKwNXwercRrpa+q7T9yQKPkRXDz4EpEgRwf3q8c+MvPYjmLSuN46TKeYQoB
mUSbb6mnNOIabgadScBrZc7Txn+l8bbOqk4xRQLEE3IYr85Jo3dly7JFygRE
Ovq1LERJ4402n9IhFgGe4go082xp9AC38BAtAgzdfR5+65RGxS/xv5yAgBGm
nPhGbRnMHPZ/9uAfAsTYv0693yiDnsXqQjaHyfe1X7QmgAwKj8zcmD5CxrM9
5sKYsQxGalPbZY4RcOTk/Oz1ozJYarHT/IATGV91//DfWBlclEmuoDcBnTvS
y5pGZfAfX77XKdEE8JifEfaclEHeYJHIPzEErLHe7yw/I4MfHi69YhtLQLzr
UkVfiizKZ0530hIIME04d2WVlCxWaPzzKuoKAU9eHz530UgW3fwqDMSyCGhw
o5mYZcgii9NrOFFNwFBkyjHfPFl8dmJV54YaAqi54v5pt2QxbOji+aBacj6v
hQo/1cpi2q18A0GCgIfbf/Kf75DFc/mZpvz3CGihdzRWUOXw7dHcl/mPCXjx
/LzeCns5LI2yMA99TcD38XnzjS5yOC4TZJfQR4CEgJ+z7Sk5xI7Iq+n9BFjp
u1+7dVYOjbVEA8sHCOgtsv6xNVkOtU4Prm14S8BA6LpK72Y5PBNf4nxhjIBP
69+rdrPkcaZxs1PNLwJuSgyHDWrKY9Vrg7/hvwlwmOkf/KQtj0v20rosZwl4
X/0ieQ7lMTbuz8axOQLermuiMg/JY4t4DoVngYD+NTm9J6PkcSG45fKbRVy4
vjxD2ydOHs+L7mUl8HHBeio1LjBZHt1DeRYM+bnQW355W0KWPK67GHQqazEX
uleHVNRw5DG6LNhxlxAXOjSORlHH5FFj/8T9bcu4ELf08Duhr/Kof+HBmTek
Tb8cBPEf8pgy3eTtJcqF1mKzGRUeGobdvKedupwLLWw8uluGhoeLbg52ruBC
kyp941VjGr45xf31VYoLoYKySZlmNHzvRfvqupILhqOSk4VWNDzwyEL9I+n7
BSJ5d47RMPZujFe3NBfqV/0VfetPw+j4BsiU5UKt8ptP6rdouNvy7fAQjQuu
OS0mbeU05GvhPtCjc4HBrCv1qKFhKFVVOZH0RblE78r7NBRT/e0ADC7YrNhF
0e2h4fYzcx/DmVwQTdA53vuGhhd7Fx51kX4ootTsP0LDeWt+FkOBC5pCC9F3
J2hIYe92qiZNod6W2spHR/nepZ9bFLlQHZjt/06IjkcG/n0mrMQF5/m4N+Gi
dCzfZ6i5h3TnT5ecx7J0/Dyn4PWEdN4EY7XpWjrGLtPkLVcm18dV5PLkBjq+
2VD36T1pkbG57/Fb6KilNGUqo8IFv/fdRNdOOo7XJKQHkjbuj9l+yJYcr++U
0fpVXPh7yL9w1p6OJ37t17IlXfXKUTjNhY5VwEq/QFquy7BzwIeOPx+X/u4i
3WGmtT44gI7sIo/Rn6TD2+SvMc/Tce13HWsZFhcmnvw6bB9Dx5gdk/XWpLN3
fGjgu0zH7u9jlX6kDzzsUrx5lY4fLHhYyaSFt96P2JlOx30SerRy0g0NpaOj
2XS0L7+S/IS0j37a7ugCOi45JBc7TFrtTlSZeikdJxe1L/5FOrHW3seDQ8c8
SksgQ5ULO9db9Ijeo6PDwsqza0nPV8KmyiY6GtpmzxqSrtDSuGHZQsekXqdZ
c9IOpTLUmXY6+nxyD7AlLaMuYH/lJR0fNNecO0m6vXCmeUMfHdVOGVJ9SYet
GlHtHaKjTNYK/iDSunkdMf4f6Pi8mx0TQXpcoX5SdpyOVntjEmNIZ2Xesrg7
RccQQR25BNJWtJTbR37S8XeTqkoSaaG0iJWUP3TU4HGqSCY9JEzcNaMy8DjP
1N3/TTzV8mAuYmDRoyaT/99PuniTMc3PwPfiI9b/9+e+i9bZKMjAJjeTz/+P
Z5Dwzq5DmIE9Xzef/D8e8d6iyTfLGGiyVUo1kPRHhmfgZzEGJrf0KHn/37/T
hqW/JRjYmBR0xIn0pfI/1/mlGeh5ULDbmrTdrwdq4nIM7PL2ijYhvRYvcph0
BpZMEYF6pPkizXauVmDg7qD+slWke9olX21WZuAF3xe0FaSLpN6cMGYx8F7P
jafz5Hqds835foDNwPa9G2rekTa76Rx6QpOBMpopAy2kFSdXi3mtYeBp93tG
ZaR/6PzIDNZmoFJ17qcE0mnNIfXX9Rj4RSV51Jy0h8iuPYVbGFj6LnH7atKG
Vsv6a5CB4k90h4VIf3p//ffz7QyUPH6w/Q75v3I1jkUO7mLg8vEHComkY31Y
Ul92M9DRsLbKkfQ6vtvaApYMvKK7InYJaf49AQ8krBh4/Yvzq9fk/ulJMrBQ
PMRATFU6UkA6UKnNQ9+WgXNbbijqk27Z+rHI+yQDW1j+l/aR+zE9umRjiDsD
/QJaGiRIn+ryehznycAf11XWvCT3s+RxyoeifxmYld/+2JT00RBp5nAoAz9p
eXSqk/lBu2WwbCKCgVWFReODZP7gF8vXn49ioH5N6NYE0sVZa22k4sn59XXk
T5D551eDydU9aQyMkxU3TCLz1VMBMZV/Mhi40SEANpK+YdZT7ZTNwKODc379
ZH4zGrLvDC1g4M/YhQx50nEL55YS1QyUqKHcuSjPBRX98lCVVgbuHdGTEZXh
wvd9HpKUDgYOtG9pzSTz6/2TmoW9nQy89P7AzGrSNinFbTE9DPTXCsvdRebj
y98LpL+NkPFUx591keTCQlFW2b1Z8n89s5Z6TIwLz+7bGab8YeAdZ4H5XjL/
p/bQX56mMFHvUaaLGWkd/huzyvxMfCNHZOuS9cL1aOq2mOVMpCmMBvxYSq6H
VGLfQRYT2ZeYd1YJciFf08J9LZuJi3O9P0YIcMFr23KqsCYT/yRNhr0j65WI
V5zKvXVM1Kgal7hO1jOjtmhPZWCiIe/bmBleLpSHhS2e3s/EiuL6atu/BERN
+ayLDmWiucaVpQLTBOS7zDhaRTBxe+4z141TBDSOeKcxo5golvt0l/NXAuZf
evHVxTJxSvzq2aYJAk4Rnq/epTBxyDPovtNnst6HugXolzPJ+2NcgdM7ApQk
TjyY6mdinv7ffqOXBBjEvvt5Z5CJne7ri7e9IM9Li+3VI98yUTV6z3ejLgKu
/T6WTPvExJYHpyb0nxOwZMDO0eQbE+fqcsMZrQRM59ssyRNUwEPxfVKpTQTc
091neVBHAaPn3549UUmeT/QUT9htVMDzB4fFZCsIGNs87eu0WQF3yWq/bCsj
z4cG8al+hgro6v7wjVYJAS67ng1fM1VAA1++nwM3CZC0NjrV66CAz4SowiNp
BLgFaF+yvqqAel3zdZHhBISc4804lqqAU8Z9u3nDyHiDOstd0hVQfXcx79kQ
8nuFnnrhn6OAomZ9PY5BBKyMKZa9XkbG27lzpeoZAprSlIr6HingstnSTHNX
AmTrxR/Z/FJAt39KnHTNCVCP6+/XmlPA1gNZQ0l7Cdhslzu96K8CKnVFlE3u
IcCGR5tWwquII00fzDKNCUjbbunzR0QRD0ytSvmylQC59gTFG8qKmBLz9OcG
HQJoQyLBgxaKaCJGS4mSJkCBR3DjsRJFXDdcfVy4jwNsG4a6V7kiVgTQbdt7
OKBds4EeVqWIjb+zTeK7ObDNxYEvn6OIv5e0zSzpJO8PnQ+ejz5UxFbt4KCx
xxwoyQ508RxQxDWbXce31nBAd+v368HLlHDj9Ser7OM4YBo2+PeGpxKuDoyL
3LCJAxYlkzMB3kqYdtxNJUuXA/u7F8YP/quEMnadLwV0yPsDi9Endk4JLb+0
OnRqccD5mV1tRKQSvr1WhKYqHAgTf+vhnqGEOp05xp9EOUDkvhva0qqEziON
27Pe1YHyw9HGfpYyusSpP6dE1EF7ivDPkH5lPHnYOD+/qhYyipcH2WWo4LI5
g/T7+TUgE2jMB/tX4cQpG1m94NtAXDoxuE+GhfMDPuk/BKphp01sj7U8C9Uf
nCsq56mGbrXa53YMFvZIJzg6zFfB1COBJlcVFtqVhw43TZKnCp7igrC1LNQ6
5me3p7sKrvpOe1Ybs9Bx9ba2yOwq8LYNWiQewEKvYePKqA1VoLkmRbWrj4Wz
VdXMJItKqGkjVPIGWHjcbt/qZJNKANd+xX+HWfh29q9lglElWU/oNNmPLGwx
uvfUX6cSTsvnix2fJuMNZ3YtlyHbC1bNTQuooms+/2KToQrQf/usVUxHFZ2c
O7TvOlXAnkTKaYt4VYwzK7pLdSqHNo7n7qOJqsiTMJvQd6QczIbeqpy6oopB
Z6IOlOwvBwuNh32X0lRxNvd+kO7WcrB6FLXtSYEqfgrIuvNZvhyOzIlJ431V
XORlyDydUwYex5UbNKZVsfn8YPScfSl8jbqSunlGFaklmeYeZqVwunyxj8kv
VexWSX7StqkUvP+Mqjr/VUWlB20sM7FS8LtampgrpIZE37WJA/UlEPx0g6Os
ohri37ZaS7ESSFhnLCK4Tw3LKDfEkwtugbBq9fiIlRoalkUIlF++BZE02tP6
Q2r4bE7Ar+rsLQgWnL7gbauG7yy9P5w2uwXugynUIRc1nP2893LrjyLYHT36
vea8Gpr6NOhy9YtAYCSyz75MDe/vUVUO4hRAWM80ByrVsNpvk79yZgFQ2myu
ydxWQ9oWgWdFEQXws05rfwdBjvf4ULOZZQF8iO1p29SshvwjGbp/x25Ckx6r
UeyNGo4ksNv+XXETgi8/KmgQYuPdkttn+bflgcnYFOvSUjYu3L1zTmVVHkga
yhUeEmXjpStHPcQF86B46lThtAQbt88l1Fs9y4UeM5kiJSYbRaCj/R+zXNBa
5nYrcgMbHWMzX4ftyYE5h6vs/XpsZC5OyxBRz4Hm+vu3mFvYeNKOxtovlAM2
7pLFhCEbNx2+8EqsORsiW+8Vj+9ho9qu3h/KetkwHC1WambPRsF5iwz6iiwo
HtmsKe/IxoYLj9OKxjPBb5Nj6agzG93d5Pq7HmaCyGduaYgHG/X5Hxv/8M0E
PeMTZdX+bBQTDBs0LcgAvuy41efPsVE15nh4zr4M6PjNKdsTzMYlUzx5VEoG
OBSKlH8IZ2OycNgsx/IGXBaoK1+ZwMbx6z9d5SfS4LDdW633iWy8mNXwvDEh
DVh1whUVV9iY2u8ioqidBvWORyuM09h4Q9R9dND7Oow1C1WevUn27znHvfku
BW7T1q/dVcTG9y+yBMLPpkCwr22lRAkbr1e/2nZNLAUkVaorSyvJePvW7eTZ
eA0Mww9XDd1lY847L/72k1eA3+GV6FgDGzXMy3jffEyGJ9vN3b89YKPMi4Hz
KXbJYCawTZWfvNTFpm19JLYjCcRH6yOWtbJx1zcnl7XVidDzRPfdyg42jt38
ZdYolwi20eoZ7G420pz1Um0HEkDBNX9eu5eN4hGlDFOdBPiwm2Gt38/G8FOX
7Y9fiAd3EXEJ87dsNHA75hCoEAtrJy+dtn7PxszS0wpicTEw07644/gnNipP
PI+4PnIR6srPa7h9Jtvz2srulY2CswlzF30nyPhO7zp6YfUFwNM+n4Km2Pg6
rs4gSTIceC0nt0V9J/1Uy2zf/RBoXuecc/knG1Ws5NIzJILhovgIJW2WjQMF
a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr
"]]}, "Charting`Private`Tag#1"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-3., 15.}, {0., 0.16976527263135505`}},
"Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {118,
Rational[236, 3]}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> Rational[2, 3],
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[
Rational[2, 3], 0.6666666666666666],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{{
RGBColor[0.368417, 0.506779, 0.709798],
PointSize[0.05],
PointBox[{0, 0}]}},
Frame->{{True, True}, {True, True}},
FrameLabel->{None,
FormBox[
StyleBox[
RowBox[{"\[Rho]", "(", "\[Lambda]", ")"}],
Opacity[0], StripOnInput -> False], TraditionalForm]},
FrameStyle->GrayLevel[0],
FrameTicks->{{{}, {}}, {{}, {{0,
FormBox["0", TraditionalForm]}}}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{Automatic, Automatic}, {4, Automatic}},
ImageSize->118,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-3., 15.}, {0., 0.16976527263135505`}},
PlotRangeClipping->False,
PlotRangePadding->{{0, 0}, {0, 0}},
Prolog->{
ArrowBox[
NCache[{{0, Rational[1, 24]/Pi}, {8, Rational[1, 24]/Pi}}, {{
0, 0.013262911924324612`}, {8, 0.013262911924324612`}}]], {
Dashing[{Small, Small}],
LineBox[
NCache[{{8, 0}, {8, Rational[1, 3]/Pi}}, {{8, 0}, {
8, 0.1061032953945969}}]],
InsetBox[
FormBox[
StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{4, Rational[5, 48]/Pi}, {4, 0.033157279810811534`}]]}, {
Arrowheads[{-Automatic, Automatic}],
ArrowBox[
NCache[{{14, Rational[1, 24]/Pi}, {8, Rational[1, 24]/Pi}}, {{
14, 0.013262911924324612`}, {8, 0.013262911924324612`}}]]},
InsetBox[
FormBox[
StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
Directive[FontFamily -> "Times",
GrayLevel[0], FontSize -> 11], StripOnInput -> False],
TraditionalForm],
NCache[{11, Rational[5, 48]/Pi}, {11, 0.033157279810811534`}]]},
RotateLabel->False,
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.895207790740121*^9, {3.895207839744895*^9, 3.895207870243621*^9},
3.895208026480008*^9, 3.895208869333159*^9, 3.895208913648329*^9,
3.924161611725056*^9, {3.924161710538059*^9, 3.924161720851728*^9},
3.924161760789225*^9, {3.924161828428911*^9, 3.924161866638994*^9}, {
3.924163256019329*^9, 3.9241632689619246`*^9}, {3.926761187709559*^9,
3.926761263193915*^9}, {3.9267614370306377`*^9, 3.9267614865111933`*^9},
3.926761551544959*^9, 3.926761627762596*^9, 3.926761670173362*^9,
3.926761738825984*^9, {3.926761837375955*^9, 3.926761880360046*^9},
3.926761946675086*^9, {3.927175957860818*^9, 3.927175963570401*^9}, {
3.927176016405114*^9, 3.927176044825283*^9}},
CellLabel->"Out[34]=",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_less.pdf\>\
\"", ",", "pS1"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_eq.pdf\>\"\
", ",", "pS2"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/spectrum_more.pdf\>\
\"", ",", "ps6"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.924161919335609*^9, 3.924161984768268*^9}, {
3.924162080650302*^9, 3.924162081777878*^9}, {3.92676129203915*^9,
3.9267613047263827`*^9}},
CellLabel->"In[35]:=",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"]
}, Open ]],
Cell[CellGroupData[{
Cell["Two-sphere", "Section",
CellChangeTimes->{{3.9155323567472897`*^9,
3.915532358033332*^9}},ExpressionUUID->"8475cc42-326a-4ebf-b66b-\
7d80366a5280"],
Cell[BoxData[
RowBox[{
RowBox[{"p0RSBrules", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], ".",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
"}"}]}], "]"}]}], ":>",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"adt", " ", "bdt"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "b0tl"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a0tu", " ", "bd"}], "+",
RowBox[{"adt", " ", "b0tu"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}], "a0tu", " ", "b0"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a0tl", " ", "bdt"}], "+",
RowBox[{"ad", " ", "b0tl"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}], "b0tl", " ", "a0"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ad", " ", "bd"}], "+",
RowBox[{"a0tl", " ", "b0tu"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}], "a0", " ", "b0"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", " ", "bd"}], "+",
RowBox[{"ad", " ", "b0"}], "+",
RowBox[{"a0tl", " ", "b0tu"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "3"}], ")"}], "a0", " ", "b0"}]}]}],
"\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "+",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
"}"}]}], "]"}]}], ":>",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"adt", "+", "bdt"}], ",", "\[IndentingNewLine]",
RowBox[{"a0tu", "+", "b0tu"}], ",", "\[IndentingNewLine]",
RowBox[{"a0tl", "+", "b0tl"}], ",", "\[IndentingNewLine]",
RowBox[{"ad", "+", "bd"}], ",", "\[IndentingNewLine]",
RowBox[{"a0", "+", "b0"}]}], "\[IndentingNewLine]", "}"}]}],
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"-",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}]}], ":>",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "adt"}], ",",
RowBox[{"-", "a0tu"}], ",",
RowBox[{"-", "a0tl"}], ",",
RowBox[{"-", "ad"}], ",",
RowBox[{"-", "a0"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"logDet", "[",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "]"}], ":>",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}],
RowBox[{"Log", "[",
RowBox[{"ad", "-", "a0"}], "]"}]}], "+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"adt", " ", "ad"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}], "adt", " ", "a0"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "a0tl"}]}], "]"}]}]}],
",", "\[IndentingNewLine]",
RowBox[{
SuperscriptBox[
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "2"], ":>",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
SuperscriptBox["adt", "2"], ",",
SuperscriptBox["a0tu", "2"], ",",
SuperscriptBox["a0tl", "2"], ",",
SuperscriptBox["ad", "2"], ",",
SuperscriptBox["a0", "2"]}], "}"}]}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"sumDiag", "[",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "]"}], ":>",
RowBox[{"adt", "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "ad"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"sum", "[",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{
"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "]"}], ":>",
RowBox[{"adt", "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}],
RowBox[{"(",
RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["n", "2"], "-", "1", "-",
RowBox[{"3",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]}],
"\[IndentingNewLine]", "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.9060154869143467`*^9, 3.9060156486206284`*^9}, {
3.906015706414013*^9, 3.906015879409375*^9}, {3.9060159104259157`*^9,
3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, {
3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9,
3.906017993144882*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"],
Cell[BoxData[
RowBox[{
RowBox[{"matForm", "[",
RowBox[{"p0RSBmat", "[",
RowBox[{"n_", ",",
RowBox[{"{",
RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
"}"}]}], "]"}], "]"}], ":=",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"a", "=",
RowBox[{"Unique", "[", "a", "]"}]}], "}"}], ",",
RowBox[{
RowBox[{"Array", "[",
RowBox[{"a", ",",
RowBox[{"{",
RowBox[{"n", ",", "n"}], "}"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"a", "[",
RowBox[{"1", ",", "1"}], "]"}], ":>", "adt"}], ",",
RowBox[{
RowBox[{"a", "[",
RowBox[{"i_", ",", "i_"}], "]"}], ":>", "ad"}], ",",
RowBox[{
RowBox[{"a", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":>",
RowBox[{"a0tu", "/;",
RowBox[{"(",
RowBox[{
RowBox[{"i", "==", "1"}], "&&",
RowBox[{"j", "!=", "1"}]}], ")"}]}]}], ",",
RowBox[{
RowBox[{"a", "[",
RowBox[{"i_", ",", "j_"}], "]"}], ":>",
RowBox[{"a0tl", "/;",
RowBox[{"(",
RowBox[{
RowBox[{"i", "!=", "1"}], "&&",
RowBox[{"j", "==", "1"}]}], ")"}]}]}], ",",
RowBox[{
RowBox[{"a", "[",
RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"],
Cell[BoxData[{
RowBox[{
RowBox[{"A", "=",
RowBox[{"p0RSBmat", "[",
RowBox[{"7", ",",
RowBox[{"{",
RowBox[{"adt", ",", "a0tu", ",", "a0tl", ",", "ad", ",", "a0"}],
"}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"B", "=",
RowBox[{"p0RSBmat", "[",
RowBox[{"7", ",",
RowBox[{"{",
RowBox[{"bdt", ",", "b0tu", ",", "b0tl", ",", "bd", ",", "b0"}],
"}"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, {
3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9,
3.906016427035625*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input",
CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"adt", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu"},
{"a0tl", "ad", "a0", "a0", "a0", "a0", "a0"},
{"a0tl", "a0", "ad", "a0", "a0", "a0", "a0"},
{"a0tl", "a0", "a0", "ad", "a0", "a0", "a0"},
{"a0tl", "a0", "a0", "a0", "ad", "a0", "a0"},
{"a0tl", "a0", "a0", "a0", "a0", "ad", "a0"},
{"a0tl", "a0", "a0", "a0", "a0", "a0", "ad"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.9060165121210833`*^9, 3.906186585845617*^9,
3.906188367634499*^9, 3.906445737287404*^9, 3.906526380957107*^9,
3.907146520679757*^9, 3.907328401870837*^9, 3.90852775810122*^9,
3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9,
3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9,
3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9,
3.916379988951159*^9, 3.92726705097127*^9, 3.9272670916913843`*^9},
CellLabel->
"Out[10]//MatrixForm=",ExpressionUUID->"ab6f4526-c3bb-4b3a-81ed-\
e5649ee31393"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"matForm", "[", "A", "]"}], ".",
RowBox[{"matForm", "[", "B", "]"}]}], "-",
RowBox[{"matForm", "[",
RowBox[{
RowBox[{"A", ".", "B"}], "/.", "p0RSBrules"}], "]"}]}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, {
3.906016344778521*^9, 3.906016369306422*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"},
{"0", "0", "0", "0", "0", "0", "0"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.906016302200728*^9, 3.9060163698749247`*^9}, {
3.906016412112354*^9, 3.906016427752605*^9}, 3.906186586394137*^9,
3.906188367784443*^9, 3.906445737488733*^9, 3.906526381171613*^9,
3.9071465208390102`*^9, 3.907328401969231*^9, 3.90852775852439*^9,
3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9,
3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9,
3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9,
3.916379989103819*^9, 3.927267051024227*^9, 3.927267091746293*^9},
CellLabel->
"Out[11]//MatrixForm=",ExpressionUUID->"f0727734-e4df-49a4-948d-\
8f277e06e8c3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"logDet", "[", "A", "]"}], "-",
RowBox[{"Log", "[",
RowBox[{"Det", "[",
RowBox[{"matForm", "[", "A", "]"}], "]"}], "]"}]}], "/.",
"p0RSBrules"}], "//",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{"#", ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"ad", ">", "a0"}], ",",
RowBox[{"a0", ">", "0"}], ",",
RowBox[{"ad", ">", "0"}], ",",
RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input",
CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9},
3.9061865868641443`*^9, 3.906188367909843*^9, 3.906445737894533*^9,
3.906526381387528*^9, 3.907146521410756*^9, 3.907328402072982*^9,
3.908527759253859*^9, 3.908535176992972*^9, 3.908603305293064*^9,
3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9,
3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9,
3.9157715663195257`*^9, 3.916379989663705*^9, 3.927267051079937*^9,
3.927267091844021*^9},
CellLabel->"Out[12]=",ExpressionUUID->"1ba86785-13f6-440b-acc6-140d6fc7710d"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[ScriptCapitalS]twin", "=",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Q11", "=",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
"q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
"}"}]}], "]"}]}], ",",
RowBox[{"Q22", "=",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
"q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
"}"}]}], "]"}]}], ",",
RowBox[{"Q12", "=",
RowBox[{"p0RSBmat", "[",
RowBox[{"n", ",",
RowBox[{"{",
RowBox[{
"q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}],
"}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "\[Beta]"}],
RowBox[{"(",
RowBox[{
RowBox[{"\[Omega]1", " ",
RowBox[{"sumDiag", "[", "Q11", "]"}]}], "+",
RowBox[{"\[Omega]2", " ",
RowBox[{"sumDiag", "[", "Q22", "]"}]}], "+",
RowBox[{"2", " ", "\[Epsilon]", " ",
RowBox[{"sumDiag", "[", "Q12", "]"}]}]}], ")"}]}], "+",
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
RowBox[{"\[Omega]1", " ", "q11d1"}], "+",
RowBox[{"\[Omega]2", " ", "q22d1"}], "+",
RowBox[{"2", " ", "\[Epsilon]", " ", "q12d1"}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["\[Sigma]1", "2"],
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Beta]", "2"],
RowBox[{"sum", "[",
SuperscriptBox["Q11", "2"], "]"}]}], "+",
RowBox[{
SuperscriptBox["\[Lambda]", "2"],
SuperscriptBox["q11d1", "2"]}], "-",
RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
RowBox[{"(",
RowBox[{
SuperscriptBox["q11d1", "2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}],
SuperscriptBox["q111", "2"]}]}], ")"}]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["\[Sigma]2", "2"],
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Beta]", "2"],
RowBox[{"sum", "[",
SuperscriptBox["Q22", "2"], "]"}]}], "+",
RowBox[{
SuperscriptBox["\[Lambda]", "2"],
SuperscriptBox["q22d1", "2"]}], "-",
RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
RowBox[{"(",
RowBox[{
SuperscriptBox["q22d1", "2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}],
SuperscriptBox["q221", "2"]}]}], ")"}]}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"],
RowBox[{"logDet", "[",
RowBox[{
RowBox[{"Q11", ".", "Q22"}], "-",
RowBox[{"Q12", ".", "Q12"}]}], "]"}]}]}], "//.", "p0RSBrules"}]}],
"\[IndentingNewLine]", "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.905848963495986*^9, 3.905849056640668*^9}, {
3.905849098609572*^9, 3.905849153378747*^9}, {3.905849229244924*^9,
3.905849299413603*^9}, {3.9058497801426687`*^9, 3.905849929641574*^9}, {
3.905850661167429*^9, 3.905850663479553*^9}, {3.9058506988640537`*^9,
3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, {
3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9,
3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"Limit", "[",
RowBox[{"\[ScriptCapitalS]twin", ",",
RowBox[{"n", "->", "0"}]}], "]"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"0", "<", "q11d0", "<", "1"}], ",",
RowBox[{"0", "<", "q11d1", "<", "1"}], ",",
RowBox[{"0", "<", "q110", "<", "1"}], ",",
RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"Log", "[", "a_", "]"}]}], "+",
RowBox[{"Log", "[", "b_", "]"}]}], ":>",
RowBox[{"Log", "[",
RowBox[{"FullSimplify", "[",
RowBox[{"b", "/",
SuperscriptBox["a", "2"]}], "]"}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.9272803840094433`*^9, 3.927280410881407*^9}},
CellLabel->
"In[233]:=",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["q110", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q111", "2"]}], "-",
SuperscriptBox["q11d0", "2"], "+",
SuperscriptBox["q11d1", "2"]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
"\[Lambda]"}], "+",
RowBox[{
SuperscriptBox["q11d1", "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["q220", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q221", "2"]}], "-",
SuperscriptBox["q22d0", "2"], "+",
SuperscriptBox["q22d1", "2"]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"q221", "-", "q22d1"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q221", "+", "q22d1"}], ")"}], " ", "\[Beta]", " ",
"\[Lambda]"}], "+",
RowBox[{
SuperscriptBox["q22d1", "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"\[Beta]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q12d0", " ", "\[Epsilon]"}], "-",
RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
RowBox[{"q11d0", " ", "\[Omega]1"}], "-",
RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
RowBox[{"q22d0", " ", "\[Omega]2"}], "-",
RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q120", " ", "q121"}], "-",
RowBox[{"q121", " ",
RowBox[{"(",
RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
RowBox[{"2", " ", "q111", " ", "q220"}], "+",
RowBox[{"q11d1", " ", "q221"}], "+",
RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q120", " ", "q121"}], "-",
RowBox[{"q121", " ",
RowBox[{"(",
RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
RowBox[{"2", " ", "q110", " ", "q221"}], "+",
RowBox[{"q11d0", " ", "q221"}], "+",
RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
SuperscriptBox["q120", "2"]}], "-",
SuperscriptBox["q121", "2"], "-",
RowBox[{"2", " ", "q120", " ", "q12d0"}], "-",
RowBox[{"3", " ", "q110", " ", "q220"}], "+",
RowBox[{"q11d0", " ", "q220"}], "+",
RowBox[{"q111", " ", "q221"}], "+",
RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d1", "2"], "-",
RowBox[{"q111", " ", "q221"}], "+",
RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["q120", "2"]}], "-",
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d0", "2"], "-",
RowBox[{"2", " ", "q110", " ", "q220"}], "+",
RowBox[{"q111", " ", "q221"}], "+",
RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d1", "2"], "-",
RowBox[{"q111", " ", "q221"}], "+",
RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], ")"}], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"q120", "-", "q12d0"}], ")"}], "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q220", "-", "q22d0"}], ")"}]}]}], ")"}], "2"]}],
"]"}]}]}]], "Output",
CellChangeTimes->{
3.927277343768147*^9, {3.9272804001319523`*^9, 3.927280411646502*^9}},
CellLabel->
"Out[233]=",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e1", "=",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"Limit", "[",
RowBox[{"\[ScriptCapitalS]twin", ",",
RowBox[{"n", "->", "0"}]}], "]"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"0", "<", "q11d0", "<", "1"}], ",",
RowBox[{"0", "<", "q11d1", "<", "1"}], ",",
RowBox[{"0", "<", "q110", "<", "1"}], ",",
RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"q22d0", "->",
RowBox[{"1", "-", "q11d0"}]}], ",",
RowBox[{"q22d1", "->",
RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, {
3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9,
3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["q110", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q111", "2"]}], "-",
SuperscriptBox["q11d0", "2"], "+",
SuperscriptBox["q11d1", "2"]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
"\[Lambda]"}], "+",
RowBox[{
SuperscriptBox["q11d1", "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "q11d0"}], ")"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], "2"], "+",
RowBox[{"2", " ",
SuperscriptBox["q220", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q221", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
"\[Beta]", " ", "\[Lambda]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"\[Beta]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q12d0", " ", "\[Epsilon]"}], "-",
RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
RowBox[{"q11d0", " ", "\[Omega]1"}], "-",
RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d0"}], ")"}], " ", "\[Omega]2"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"q120", "-", "q12d0"}], ")"}], "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}]}],
"]"}]}], "+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+",
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d1", "2"], "-",
RowBox[{"q111", " ", "q221"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d0"}], ")"}], " ", "q11d0"}], "+",
RowBox[{"2", " ",
SuperscriptBox["q120", "2"]}], "-",
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d0", "2"], "-",
RowBox[{"2", " ", "q110", " ", "q220"}], "+",
RowBox[{"q111", " ", "q221"}]}], ")"}]}], "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+",
SuperscriptBox["q121", "2"], "-",
SuperscriptBox["q12d1", "2"], "-",
RowBox[{"q111", " ", "q221"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"q110", " ",
RowBox[{"(",
RowBox[{"1", "-", "q11d0"}], ")"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["q120", "2"]}], "-",
SuperscriptBox["q121", "2"], "-",
RowBox[{"2", " ", "q120", " ", "q12d0"}], "-",
RowBox[{"3", " ", "q110", " ", "q220"}], "+",
RowBox[{"q11d0", " ", "q220"}], "+",
RowBox[{"q111", " ", "q221"}]}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"q111", " ",
RowBox[{"(",
RowBox[{"1", "-", "q11d1"}], ")"}]}], "+",
RowBox[{"2", " ", "q120", " ", "q121"}], "-",
RowBox[{"q121", " ",
RowBox[{"(",
RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
RowBox[{"2", " ", "q110", " ", "q221"}], "+",
RowBox[{"q11d0", " ", "q221"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"q111", " ",
RowBox[{"(",
RowBox[{"1", "-", "q11d0"}], ")"}]}], "+",
RowBox[{"2", " ", "q120", " ", "q121"}], "-",
RowBox[{"q121", " ",
RowBox[{"(",
RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
RowBox[{"2", " ", "q111", " ", "q220"}], "+",
RowBox[{"q11d1", " ", "q221"}]}], ")"}]}]}], "]"}]}],
")"}]}]}]], "Output",
CellChangeTimes->{{3.905850829877305*^9, 3.905850839465863*^9}, {
3.905851005629496*^9, 3.905851024399541*^9}, {3.90585312526083*^9,
3.90585314326528*^9}, 3.9058615885407877`*^9, 3.905912499053171*^9,
3.905931598682398*^9, 3.906014581119566*^9, {3.906014625989239*^9,
3.906014632954865*^9}, 3.906016701530336*^9, 3.906016767211265*^9,
3.906018142729081*^9, 3.906186592965066*^9, 3.906188369691762*^9,
3.906445739624508*^9, 3.906526383503549*^9, 3.907146523319407*^9,
3.9073284035521383`*^9, 3.908527761322122*^9, 3.908535178552448*^9,
3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9,
3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9,
3.915532493400175*^9, 3.915771567714175*^9, 3.9163799917950907`*^9,
3.92726705254059*^9, 3.927267093315587*^9},
CellLabel->"Out[14]=",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e2", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"e1", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "->", "0"}], ",",
RowBox[{"q120", "->", "0"}], ",",
RowBox[{"q121", "->", "0"}], ",",
RowBox[{"q12d0", "->", "0"}], ",",
RowBox[{"q12d1", "->", "0"}]}], "}"}]}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["q111", "2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
"q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, {
3.906186913895919*^9, 3.906186964896375*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["q110", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q111", "2"]}], "-",
SuperscriptBox["q11d0", "2"], "+",
SuperscriptBox["q11d1", "2"]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
"\[Lambda]"}], "+",
RowBox[{
SuperscriptBox["q11d1", "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "q11d0"}], ")"}], " ", "q11d0"}],
")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"q220", "-", "q221"}], ")"}], " ",
RowBox[{"(",
RowBox[{"q220", "+", "q221"}], ")"}]}]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
"\[Beta]", " ", "\[Lambda]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], "2"], " ",
SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"q11d0", "-", "q11d1"}], ")"}], " ", "\[Beta]", " ",
RowBox[{"(",
RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"q11d1", " ",
RowBox[{"(",
RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}],
")"}]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
RowBox[{
SuperscriptBox["q111", "2"], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
"q11d1"}]}], "]"}], "-",
RowBox[{"2", " ",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"(",
RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}],
"+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d0", "+",
RowBox[{"2", " ", "q220"}]}], ")"}]}], "+",
SuperscriptBox["q221", "2"]}], "]"}]}], ")"}]}]}]], "Output",
CellChangeTimes->{
3.906186880315091*^9, {3.906186921002465*^9, 3.906186965149336*^9},
3.906188370518162*^9, 3.906445740478343*^9, 3.9065263844885607`*^9,
3.907146524270124*^9, 3.907328404486239*^9, 3.908527762345582*^9,
3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9,
3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9,
3.915532082121131*^9, 3.915532494340509*^9, 3.915771568554364*^9,
3.916379992916336*^9, 3.927267053334233*^9, 3.927267094186154*^9},
CellLabel->"Out[15]=",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"e3", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"D", "[",
RowBox[{"e2", ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"\[Lambda]", ",", "q110", ",", "q111", ",", "q11d0", ",", "q11d1",
",", "q220", ",", "q221"}], "}"}], "}"}]}], "]"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.905853319610465*^9, 3.905853347658437*^9}, {
3.905853411443419*^9, 3.9058535161262627`*^9}, {3.905853841139458*^9,
3.905853844563665*^9}, {3.9058539127007103`*^9, 3.905853914092967*^9}, {
3.9058542703157997`*^9, 3.905854333908738*^9}, {3.905854765669025*^9,
3.9058547679168243`*^9}, {3.905861540945331*^9, 3.90586155147735*^9}, {
3.905931930671042*^9, 3.905931935878457*^9}, {3.906014640147063*^9,
3.906014648273918*^9}, {3.906016798634808*^9, 3.906016810306693*^9}, {
3.9061871443158627`*^9, 3.906187168844187*^9}},
CellLabel->"In[16]:=",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"],
Cell[BoxData[
RowBox[{
RowBox[{"rules", "=",
RowBox[{"{",
RowBox[{
RowBox[{"q110", "->",
RowBox[{"q11d", "-",
RowBox[{"y11", "/", "\[Beta]"}], "-",
RowBox[{"z110", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q111", "->",
RowBox[{"q11d", "-",
RowBox[{"y11", "/", "\[Beta]"}], "-",
RowBox[{"z111", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q11d0", "->",
RowBox[{"q11d", "-", " ",
RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
RowBox[{"z11d0", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q11d1", "->",
RowBox[{"q11d", "-", " ",
RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
RowBox[{"z11d1", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q220", "->",
RowBox[{"q22d", "-",
RowBox[{"y22", "/", "\[Beta]"}], "-",
RowBox[{"z220", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q221", "->",
RowBox[{"q22d", "-",
RowBox[{"y22", "/", "\[Beta]"}], "-",
RowBox[{"z221", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q22d", "->",
RowBox[{"1", "-", "q11d"}]}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9,
3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e4", "=",
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"e3", "//.", "rules"}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{
3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-",
FractionBox["q11d",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
RowBox[{"q11d", " ", "z11d0"}], "+",
RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
RowBox[{"4", " ", "q11d", " ",
SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
FractionBox["1",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
RowBox[{"q11d", " ", "z11d0"}], "+",
RowBox[{"q11d", " ", "z11d1"}]}]], "-",
RowBox[{"4", " ",
SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ",",
RowBox[{
FractionBox["q11d",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
RowBox[{"q11d", " ", "z11d0"}], "+",
RowBox[{"q11d", " ", "z11d1"}]}], ")"}]}]], "+",
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "+", "z11d0", "-",
RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"q11d", " ", "z11d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["q11d",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
RowBox[{"q11d", " ", "z11d0"}], "+",
RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
FractionBox[
RowBox[{"1", "-", "q11d"}],
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "+", "z11d0", "-",
RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"q11d", " ", "z11d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}]]}], ")"}]}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}],
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "+", "z11d0", "-",
RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"q11d", " ", "z11d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
FractionBox["1",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "+", "z11d0", "-",
RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"q11d", " ", "z11d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
RowBox[{"4", " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], "}"}]], "Output",
CellChangeTimes->{
3.906187758262377*^9, 3.906187802390731*^9, {3.906187867026927*^9,
3.906187872126379*^9}, 3.906188383111711*^9, 3.906189229151506*^9,
3.90619068735071*^9, 3.906445753142694*^9, 3.906526396982582*^9,
3.907146536871374*^9, 3.907328416692205*^9, 3.908527776739359*^9,
3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9,
3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9,
3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9,
3.916380012398842*^9, 3.9272670660374203`*^9, 3.9272671062765293`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e5", "=",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"e3", "//.", "rules"}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input",
CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["1",
RowBox[{"y11", "-", "y11d"}]], "+",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"y11", "-", "y11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"y11", " ", "y11d"}], "-",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ",
RowBox[{"(",
RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}]}], ")"}], "2"]], "-",
RowBox[{"4", " ", "y11", " ",
SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
RowBox[{
RowBox[{"-",
FractionBox["y11",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}]}]]}], "-",
FractionBox[
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "y11", " ",
RowBox[{"(",
RowBox[{"z111", "-", "z11d1"}], ")"}]}], "+",
RowBox[{"y11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "z110"}], "+", "z11d0", "+", "z11d1"}],
")"}]}]}], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}]}], ")"}], "2"]], "+",
RowBox[{"4", " ", "y11", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"4", " ", "q11d", " ", "\[Lambda]", " ",
SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
RowBox[{
FractionBox["1",
RowBox[{
RowBox[{"-", "y11"}], "+", "y11d"}]], "+",
FractionBox["1",
RowBox[{"y11d", "+", "y22"}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"y11", "-", "y11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"y11", " ", "y11d"}], "-",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "q11d", " ",
RowBox[{"(",
RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}]}], ")"}], "2"]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"y11d", "+", "y22"}], ")"}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"y11d", " ", "y22"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]}]], "+",
RowBox[{"2", " ", "y11d", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"2", " ", "y11d", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+", "\[Omega]1", "-", "\[Omega]2"}],
",",
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"y11", "-", "y11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["y11", "2"]}], "-",
RowBox[{"3", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"4", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
RowBox[{"2", " ", "q11d", " ", "z11d0"}]}], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11", "2"], "-",
RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
SuperscriptBox["y11d", "2"], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}]}], ")"}], "2"]], "-",
FractionBox[
RowBox[{"y11d", "+",
RowBox[{"2", " ", "y22"}]}],
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "+",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"y11d", " ",
RowBox[{"(",
RowBox[{"z11d0", "+", "z11d1", "+",
RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
RowBox[{"2", " ", "y22", " ",
RowBox[{"(",
RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}],
")"}]}], "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"y11d", "+",
RowBox[{"2", " ", "q11d", " ", "\[Lambda]"}]}], ")"}], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"y11d", "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}],
")"}], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]1", "+", "\[Omega]2"}],
",",
RowBox[{
FractionBox["1",
RowBox[{"y11d", "+", "y22"}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"y11d", "+", "y22"}], ")"}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"y11d", " ", "y22"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]], "-",
RowBox[{"4", " ", "y22", " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-", "y22"}], " ",
RowBox[{"(",
RowBox[{
FractionBox["1",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "-",
RowBox[{"4", " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"y11d", " ",
RowBox[{"(",
RowBox[{"z11d0", "+", "z11d1", "+",
RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
RowBox[{"2", " ", "y22", " ",
RowBox[{"(",
RowBox[{"z11d1", "+", "z221"}], ")"}]}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d", "2"], "+",
RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
SuperscriptBox["y22", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], "+",
RowBox[{"4", " ", "\[Lambda]", " ",
SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}]}], "}"}]], "Output",
CellChangeTimes->{{3.9061878924875402`*^9, 3.906187907449717*^9},
3.906188395619846*^9, 3.9061892307700033`*^9, 3.906190699743403*^9,
3.906445765588705*^9, 3.906526409231572*^9, 3.907146549327018*^9,
3.9073284290518627`*^9, 3.9085278141653852`*^9, 3.908535231005335*^9,
3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9,
3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9,
3.915532519605406*^9, 3.9157715941794653`*^9, 3.91638002605516*^9,
3.9272671185759277`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"e6", "=",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"e3", "[",
RowBox[{"[", "1", "]"}], "]"}], "//.", "rules"}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//",
"Simplify"}]}]], "Input",
CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"],
Cell[BoxData[
RowBox[{
RowBox[{"2", " ", "q11d", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "y11"}], "+",
RowBox[{"2", " ", "y11d"}], "+",
RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"y11d", "+", "y22"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}],
" ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"q11d", " ",
RowBox[{"(",
RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
"\[Omega]2"}]], "Output",
CellChangeTimes->{3.906187918228827*^9, 3.906188395740288*^9,
3.906189231662617*^9, 3.906190699863659*^9, 3.906445765679088*^9,
3.9065264093386173`*^9, 3.907146549432131*^9, 3.907328429169303*^9,
3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9,
3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9,
3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9,
3.916380026125768*^9, 3.927267118653653*^9},
CellLabel->"Out[20]=",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"s6", "=",
RowBox[{"Simplify", "[",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"0", "==",
RowBox[{"Join", "[",
RowBox[{"e4", ",", "e5", ",",
RowBox[{"{", "e6", "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{
"\[Lambda]", ",", "y11", ",", "y11d", ",", "y22", ",", "q11d", ",",
"z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
"z221"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.906187633925405*^9, 3.9061876626932497`*^9}, {
3.906187731847047*^9, 3.906187753167115*^9}, {3.90618781156046*^9,
3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, {
3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9,
3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"],
Cell[BoxData[
TemplateBox[{
"Solve", "svars",
"\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2,
21, 1, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9,
3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9,
3.9065264390893784`*^9, 3.9071465797681427`*^9, 3.907328458968724*^9,
3.908527846938418*^9, 3.90853526395877*^9, 3.908603390307139*^9,
3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9,
3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9,
3.915532550417849*^9, 3.915771624173337*^9, 3.916380057276285*^9,
3.927267148342062*^9},
CellLabel->
"During evaluation of \
In[21]:=",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"testparams", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Sigma]1", "->", "1"}], ",",
RowBox[{"\[Sigma]2", "->", "1"}], ",",
RowBox[{"\[Omega]1", "->",
RowBox[{"3", "+",
RowBox[{"1", "/", "10"}]}]}], ",",
RowBox[{"\[Omega]2", "->",
RowBox[{"200005", "/", "100000"}]}], ",",
RowBox[{"\[Epsilon]", "->",
RowBox[{"1", "/", "100"}]}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, {
3.908611448200711*^9, 3.908611448896093*^9}, {3.908614445394108*^9,
3.908614446153916*^9}, {3.908615875779113*^9, 3.908615877987123*^9}, {
3.908616482086334*^9, 3.908616482206256*^9}, 3.908616534687642*^9, {
3.908616963967916*^9, 3.908616965983852*^9}, 3.908617191179674*^9,
3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9,
3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9,
3.908963292187259*^9}, {3.916386845349831*^9, 3.916386846349766*^9}},
CellLabel->"In[22]:=",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"],
Cell[BoxData[
RowBox[{
RowBox[{"rules2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"q110", "->",
RowBox[{"q11d", "-",
RowBox[{"y110", "/", "\[Beta]"}], "-",
RowBox[{"z110", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q111", "->",
RowBox[{"q11d", "-",
RowBox[{"y111", "/", "\[Beta]"}], "-",
RowBox[{"z111", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q11d0", "->",
RowBox[{"q11d", "-", " ",
RowBox[{"y11d0", "/", "\[Beta]"}], "-",
RowBox[{"z11d0", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q11d1", "->",
RowBox[{"q11d", "-",
RowBox[{"y11d1", "/", "\[Beta]"}], "-",
RowBox[{"z11d1", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q220", "->",
RowBox[{"q22d", "-",
RowBox[{"y220", "/", "\[Beta]"}], "-",
RowBox[{"z220", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q221", "->",
RowBox[{"q22d", "-",
RowBox[{"y221", "/", "\[Beta]"}], "-",
RowBox[{"z221", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q12d1", "->",
RowBox[{"q12", "-",
RowBox[{"y12d1", "/", "\[Beta]"}], "-",
RowBox[{"z12d1", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q12d0", "->",
RowBox[{"q12", "-",
RowBox[{"y12d0", "/", "\[Beta]"}], "-",
RowBox[{"z12d0", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q121", "->",
RowBox[{"q12", "-",
RowBox[{"y121", "/", "\[Beta]"}], "-",
RowBox[{"z121", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q120", "->",
RowBox[{"q12", "-",
RowBox[{"y120", "/", "\[Beta]"}], "-",
RowBox[{"z120", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
RowBox[{"q22d", "->",
RowBox[{"1", "-", "q11d"}]}], ",",
RowBox[{"\[Lambda]", "->",
RowBox[{"\[Lambda]0", "-",
RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-",
RowBox[{"\[Lambda]2", "/",
SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9,
3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, {
3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9,
3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, {
3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9,
3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9},
CellLabel->"In[23]:=",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"stest2", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"0", "==",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"2", " ", "y120"}], "-",
RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",",
RowBox[{
RowBox[{"2", " ", "y110"}], "-",
RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",",
RowBox[{"y11d0", "-", "y11d1", "+",
RowBox[{"2", " ", "y220"}], "-",
RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, {
3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9,
3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, {
3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9,
3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, {
3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9,
3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, {
3.90724443620947*^9, 3.907244488412445*^9}},
CellLabel->"In[24]:=",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"y110", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}],
",",
RowBox[{"y120", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}],
",",
RowBox[{"y220", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "y11d0"}], "+", "y11d1", "+",
RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, {
3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9,
3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9,
3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9},
3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, {
3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9,
3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, {
3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9,
3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9,
3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9,
3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9,
3.915532553880711*^9, 3.915771627638197*^9, 3.916380060899454*^9,
3.916386848539817*^9, 3.9272671515009537`*^9},
CellLabel->"Out[24]=",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"e9", "=",
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"e1", "/.",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"Log", "[", "x_", "]"}]}], "+",
RowBox[{"Log", "[", "y_", "]"}]}], ":>",
RowBox[{"Log", "[",
RowBox[{"y", " ",
SuperscriptBox["x",
RowBox[{"-", "2"}]]}], "]"}]}]}], "//.", "rules2"}], "/.",
RowBox[{"stest2", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{"TimeConstraint", "->", "600"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.906460267036875*^9, 3.906460376670369*^9}, {
3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9,
3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9},
3.908533636339531*^9},
CellLabel->"In[25]:=",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"],
Cell[BoxData[
RowBox[{
RowBox[{"e10", "=",
RowBox[{"Simplify", "[",
RowBox[{"Limit", "[",
RowBox[{"e9", ",",
RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"],
Cell[CellGroupData[{
Cell[BoxData["e10"], "Input",
CellChangeTimes->{{3.927282513001899*^9, 3.927282513297226*^9}},
CellLabel->
"In[235]:=",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"],
Cell[BoxData[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ", "y12d0", " ", "\[Epsilon]"}], "+",
RowBox[{"4", " ", "y12d1", " ", "\[Epsilon]"}], "+",
RowBox[{"4", " ", "q12", " ", "\[Epsilon]", " ", "\[Lambda]0"}], "+",
RowBox[{"4", " ", "y111", " ", "y11d0", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{
SuperscriptBox["y11d0", "2"], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"4", " ", "y111", " ", "y11d1", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"2", " ", "y11d0", " ", "y11d1", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y11d1", "2"], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"8", " ", "q11d", " ", "z110", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"8", " ", "q11d", " ", "z111", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{"8", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]1", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ",
SuperscriptBox["\[Lambda]0", "2"], " ",
SuperscriptBox["\[Sigma]1", "2"]}], "-",
RowBox[{
SuperscriptBox["y11d0", "2"], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"2", " ", "y11d0", " ", "y11d1", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["y11d1", "2"], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"4", " ", "y11d0", " ", "y221", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"4", " ", "y11d1", " ", "y221", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"4", " ", "z11d0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"4", " ", "z11d1", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"8", " ", "z220", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"8", " ", "q11d", " ", "z220", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"8", " ", "z221", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"8", " ", "q11d", " ", "z221", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Lambda]0", "2"], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"4", " ", "q11d", " ",
SuperscriptBox["\[Lambda]0", "2"], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ",
SuperscriptBox["\[Lambda]0", "2"], " ",
SuperscriptBox["\[Sigma]2", "2"]}], "-",
RowBox[{"2", " ", "y11d0", " ", "\[Omega]1"}], "+",
RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+",
RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "+",
RowBox[{"2", " ", "y11d0", " ", "\[Omega]2"}], "-",
RowBox[{"2", " ", "y11d1", " ", "\[Omega]2"}], "+",
RowBox[{"2", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-",
RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]2"}], "+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"(",
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d1", "4"], "+",
SuperscriptBox["y121", "4"], "-",
RowBox[{"4", " ",
SuperscriptBox["y121", "3"], " ", "y12d1"}], "+",
RowBox[{"6", " ",
SuperscriptBox["y121", "2"], " ",
SuperscriptBox["y12d1", "2"]}], "-",
RowBox[{"4", " ", "y121", " ",
SuperscriptBox["y12d1", "3"]}], "+",
SuperscriptBox["y12d1", "4"], "+",
RowBox[{"2", " ",
SuperscriptBox["y11d1", "3"], " ", "y221"}], "+",
RowBox[{"2", " ",
SuperscriptBox["y121", "2"], " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z110"}], "-",
RowBox[{"4", " ", "y121", " ", "y12d1", " ", "z110"}], "+",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z110"}],
"+",
RowBox[{"2", " ",
SuperscriptBox["y12d1", "2"], " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z110"}], "-",
RowBox[{"4", " ", "q12", " ", "y121", " ", "y221", " ", "z110"}],
"+",
RowBox[{"4", " ", "q12", " ", "y12d1", " ", "y221", " ", "z110"}],
"+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y221", "2"], " ", "z110"}], "-",
RowBox[{"2", " ",
SuperscriptBox["y121", "2"], " ", "z111"}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z111"}], "+",
RowBox[{"4", " ", "y121", " ", "y12d1", " ", "z111"}], "-",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z111"}],
"-",
RowBox[{"2", " ",
SuperscriptBox["y12d1", "2"], " ", "z111"}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z111"}], "+",
RowBox[{"4", " ", "q12", " ", "y121", " ", "y221", " ", "z111"}],
"-",
RowBox[{"4", " ", "q12", " ", "y12d1", " ", "y221", " ", "z111"}],
"-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y221", "2"], " ", "z111"}], "-",
RowBox[{
SuperscriptBox["y121", "2"], " ", "z11d0"}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z11d0"}], "+",
RowBox[{"2", " ", "y121", " ", "y12d1", " ", "z11d0"}], "-",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z11d0"}],
"-",
RowBox[{
SuperscriptBox["y12d1", "2"], " ", "z11d0"}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z11d0"}], "+",
RowBox[{"2", " ", "q12", " ", "y121", " ", "y221", " ", "z11d0"}],
"-",
RowBox[{"2", " ", "q12", " ", "y12d1", " ", "y221", " ", "z11d0"}],
"-",
RowBox[{"q11d", " ",
SuperscriptBox["y221", "2"], " ", "z11d0"}], "+",
RowBox[{"2", " ", "q11d", " ", "z110", " ", "z11d0"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z110", " ", "z11d0"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111", " ", "z11d0"}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z111", " ", "z11d0"}], "-",
RowBox[{"q11d", " ",
SuperscriptBox["z11d0", "2"]}], "+",
RowBox[{
SuperscriptBox["q11d", "2"], " ",
SuperscriptBox["z11d0", "2"]}], "+",
RowBox[{
SuperscriptBox["y121", "2"], " ", "z11d1"}], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z11d1"}], "-",
RowBox[{"2", " ", "y121", " ", "y12d1", " ", "z11d1"}], "+",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z11d1"}],
"+",
RowBox[{
SuperscriptBox["y12d1", "2"], " ", "z11d1"}], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z11d1"}], "-",
RowBox[{"2", " ", "q12", " ", "y121", " ", "y221", " ", "z11d1"}],
"+",
RowBox[{"2", " ", "q12", " ", "y12d1", " ", "y221", " ", "z11d1"}],
"+",
RowBox[{"q11d", " ",
SuperscriptBox["y221", "2"], " ", "z11d1"}], "-",
RowBox[{"2", " ", "q11d", " ", "z110", " ", "z11d1"}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z110", " ", "z11d1"}], "+",
RowBox[{"2", " ", "q11d", " ", "z111", " ", "z11d1"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z111", " ", "z11d1"}], "+",
RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z11d1"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z11d1"}], "-",
RowBox[{"q11d", " ",
SuperscriptBox["z11d1", "2"]}], "+",
RowBox[{
SuperscriptBox["q11d", "2"], " ",
SuperscriptBox["z11d1", "2"]}], "+",
RowBox[{"4", " ", "q12", " ",
SuperscriptBox["y121", "2"], " ", "z120"}], "-",
RowBox[{"8", " ", "q12", " ", "y121", " ", "y12d1", " ", "z120"}],
"+",
RowBox[{"4", " ", "q12", " ",
SuperscriptBox["y12d1", "2"], " ", "z120"}], "-",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y221", " ", "z120"}],
"+",
RowBox[{"4", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z120"}],
"-",
RowBox[{"4", " ", "q12", " ", "z110", " ", "z120"}], "+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z110", " ", "z120"}],
"+",
RowBox[{"4", " ", "q12", " ", "z111", " ", "z120"}], "-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z111", " ", "z120"}],
"+",
RowBox[{"2", " ", "q12", " ", "z11d0", " ", "z120"}], "-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z120"}],
"-",
RowBox[{"2", " ", "q12", " ", "z11d1", " ", "z120"}], "+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z120"}],
"+",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ",
SuperscriptBox["z120", "2"]}], "-",
RowBox[{"4", " ", "q12", " ",
SuperscriptBox["y121", "2"], " ", "z121"}], "+",
RowBox[{"8", " ", "q12", " ", "y121", " ", "y12d1", " ", "z121"}],
"-",
RowBox[{"4", " ", "q12", " ",
SuperscriptBox["y12d1", "2"], " ", "z121"}], "+",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y221", " ", "z121"}],
"-",
RowBox[{"4", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z121"}],
"+",
RowBox[{"4", " ", "q12", " ", "z110", " ", "z121"}], "-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z110", " ", "z121"}],
"-",
RowBox[{"4", " ", "q12", " ", "z111", " ", "z121"}], "+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z111", " ", "z121"}],
"-",
RowBox[{"2", " ", "q12", " ", "z11d0", " ", "z121"}], "+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z121"}],
"+",
RowBox[{"2", " ", "q12", " ", "z11d1", " ", "z121"}], "-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z121"}],
"-",
RowBox[{"8", " ",
SuperscriptBox["q12", "2"], " ", "z120", " ", "z121"}], "+",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ",
SuperscriptBox["z121", "2"]}], "-",
RowBox[{"2", " ", "q12", " ",
SuperscriptBox["y121", "2"], " ", "z12d0"}], "+",
RowBox[{"4", " ", "q12", " ", "y121", " ", "y12d1", " ", "z12d0"}],
"-",
RowBox[{"2", " ", "q12", " ",
SuperscriptBox["y12d1", "2"], " ", "z12d0"}], "+",
RowBox[{"2", " ", "q11d", " ", "y121", " ", "y221", " ", "z12d0"}],
"-",
RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z12d0"}],
"+",
RowBox[{"2", " ", "q12", " ", "z110", " ", "z12d0"}], "-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z110", " ", "z12d0"}],
"-",
RowBox[{"2", " ", "q12", " ", "z111", " ", "z12d0"}], "+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z111", " ", "z12d0"}],
"-",
RowBox[{"q12", " ", "z11d0", " ", "z12d0"}], "+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z12d0"}],
"+",
RowBox[{"q12", " ", "z11d1", " ", "z12d0"}], "-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z12d0"}],
"-",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ", "z120", " ", "z12d0"}], "+",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ", "z121", " ", "z12d0"}], "+",
RowBox[{
SuperscriptBox["q12", "2"], " ",
SuperscriptBox["z12d0", "2"]}], "+",
RowBox[{"2", " ", "q12", " ",
SuperscriptBox["y121", "2"], " ", "z12d1"}], "-",
RowBox[{"4", " ", "q12", " ", "y121", " ", "y12d1", " ", "z12d1"}],
"+",
RowBox[{"2", " ", "q12", " ",
SuperscriptBox["y12d1", "2"], " ", "z12d1"}], "-",
RowBox[{"2", " ", "q11d", " ", "y121", " ", "y221", " ", "z12d1"}],
"+",
RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "y221", " ", "z12d1"}],
"-",
RowBox[{"2", " ", "q12", " ", "z110", " ", "z12d1"}], "+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z110", " ", "z12d1"}],
"+",
RowBox[{"2", " ", "q12", " ", "z111", " ", "z12d1"}], "-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z111", " ", "z12d1"}],
"+",
RowBox[{"q12", " ", "z11d0", " ", "z12d1"}], "-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d0", " ", "z12d1"}],
"-",
RowBox[{"q12", " ", "z11d1", " ", "z12d1"}], "+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z11d1", " ", "z12d1"}],
"+",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ", "z120", " ", "z12d1"}], "-",
RowBox[{"4", " ",
SuperscriptBox["q12", "2"], " ", "z121", " ", "z12d1"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q12", "2"], " ", "z12d0", " ", "z12d1"}], "+",
RowBox[{
SuperscriptBox["q12", "2"], " ",
SuperscriptBox["z12d1", "2"]}], "+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z220"}], "-",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z220"}],
"+",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z220"}], "+",
RowBox[{"4", " ", "q11d", " ", "z110", " ", "z220"}], "-",
RowBox[{"4", " ",
SuperscriptBox["q11d", "2"], " ", "z110", " ", "z220"}], "-",
RowBox[{"4", " ", "q11d", " ", "z111", " ", "z220"}], "+",
RowBox[{"4", " ",
SuperscriptBox["q11d", "2"], " ", "z111", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z220"}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z220"}], "+",
RowBox[{"2", " ", "q11d", " ", "z11d1", " ", "z220"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z11d1", " ", "z220"}], "-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z120", " ", "z220"}],
"+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z121", " ", "z220"}],
"+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d0", " ", "z220"}],
"-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d1", " ", "z220"}],
"+",
RowBox[{
SuperscriptBox["y111", "2"], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d1", "2"], "+",
RowBox[{"2", " ", "y11d1", " ", "y221"}], "+",
SuperscriptBox["y221", "2"], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], "-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y121", "2"], " ", "z221"}], "+",
RowBox[{"4", " ", "q11d", " ", "y121", " ", "y12d1", " ", "z221"}],
"-",
RowBox[{"2", " ", "q11d", " ",
SuperscriptBox["y12d1", "2"], " ", "z221"}], "-",
RowBox[{"4", " ", "q11d", " ", "z110", " ", "z221"}], "+",
RowBox[{"4", " ",
SuperscriptBox["q11d", "2"], " ", "z110", " ", "z221"}], "+",
RowBox[{"4", " ", "q11d", " ", "z111", " ", "z221"}], "-",
RowBox[{"4", " ",
SuperscriptBox["q11d", "2"], " ", "z111", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z11d0", " ", "z221"}], "-",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z11d0", " ", "z221"}], "-",
RowBox[{"2", " ", "q11d", " ", "z11d1", " ", "z221"}], "+",
RowBox[{"2", " ",
SuperscriptBox["q11d", "2"], " ", "z11d1", " ", "z221"}], "+",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z120", " ", "z221"}],
"-",
RowBox[{"4", " ", "q11d", " ", "q12", " ", "z121", " ", "z221"}],
"-",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d0", " ", "z221"}],
"+",
RowBox[{"2", " ", "q11d", " ", "q12", " ", "z12d1", " ", "z221"}],
"+",
RowBox[{
SuperscriptBox["y11d1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["y121", "2"]}], "-",
RowBox[{"4", " ", "y121", " ", "y12d1"}], "+",
RowBox[{"2", " ",
SuperscriptBox["y12d1", "2"]}], "+",
SuperscriptBox["y221", "2"], "+",
RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
RowBox[{"2", " ", "q11d", " ", "z111"}], "+", "z11d0", "-",
RowBox[{"2", " ", "q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"2", " ", "q11d", " ", "z11d1"}], "-",
RowBox[{"4", " ", "q12", " ", "z120"}], "+",
RowBox[{"4", " ", "q12", " ", "z121"}], "+",
RowBox[{"2", " ", "q12", " ", "z12d0"}], "-",
RowBox[{"2", " ", "q12", " ", "z12d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}], "-",
RowBox[{"2", " ", "y111", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d1", "3"], "+",
RowBox[{"2", " ",
SuperscriptBox["y11d1", "2"], " ", "y221"}], "+",
RowBox[{
SuperscriptBox["y121", "2"], " ", "y221"}], "+",
RowBox[{
SuperscriptBox["y12d1", "2"], " ", "y221"}], "-",
RowBox[{"q12", " ", "y12d1", " ", "z11d0"}], "+",
RowBox[{"q12", " ", "y12d1", " ", "z11d1"}], "-",
RowBox[{"2", " ", "y12d1", " ", "z120"}], "+",
RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "z120"}], "-",
RowBox[{"2", " ", "q12", " ", "y221", " ", "z120"}], "+",
RowBox[{"2", " ", "y12d1", " ", "z121"}], "-",
RowBox[{"2", " ", "q11d", " ", "y12d1", " ", "z121"}], "+",
RowBox[{"2", " ", "q12", " ", "y221", " ", "z121"}], "+",
RowBox[{"y12d1", " ", "z12d0"}], "-",
RowBox[{"q11d", " ", "y12d1", " ", "z12d0"}], "+",
RowBox[{"q12", " ", "y221", " ", "z12d0"}], "-",
RowBox[{"y12d1", " ", "z12d1"}], "+",
RowBox[{"q11d", " ", "y12d1", " ", "z12d1"}], "-",
RowBox[{"q12", " ", "y221", " ", "z12d1"}], "-",
RowBox[{"2", " ", "q12", " ", "y12d1", " ", "z220"}], "+",
RowBox[{"y121", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "y12d1", " ", "y221"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z120"}], "-",
RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}],
")"}]}], "+",
RowBox[{"q12", " ",
RowBox[{"(",
RowBox[{"z11d0", "-", "z11d1", "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}], "+",
RowBox[{"2", " ", "q12", " ", "y12d1", " ", "z221"}], "+",
RowBox[{"y11d1", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["y121", "2"], "-",
RowBox[{"2", " ", "y121", " ", "y12d1"}], "+",
SuperscriptBox["y12d1", "2"], "+",
SuperscriptBox["y221", "2"], "+", "z11d0", "-",
RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
RowBox[{"q11d", " ", "z11d1"}], "-",
RowBox[{"2", " ", "q12", " ", "z120"}], "+",
RowBox[{"2", " ", "q12", " ", "z121"}], "+",
RowBox[{"q12", " ", "z12d0"}], "-",
RowBox[{"q12", " ", "z12d1"}], "+",
RowBox[{"2", " ", "z220"}], "-",
RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
RowBox[{"2", " ", "z221"}], "+",
RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]}], ")"}]}],
"+",
RowBox[{"2", " ", "y11d1", " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["y121", "2"], " ", "y221"}], "+",
RowBox[{
SuperscriptBox["y12d1", "2"], " ", "y221"}], "+",
RowBox[{"q11d", " ", "y221", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z110"}], "-",
RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
")"}]}], "+",
RowBox[{"q12", " ", "y221", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "z120"}], "+",
RowBox[{"2", " ", "z121"}], "+", "z12d0", "-", "z12d1"}],
")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "q11d"}]}], ")"}], " ", "y12d1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z120"}], "-",
RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}],
")"}]}], "+",
RowBox[{"2", " ", "q12", " ", "y12d1", " ",
RowBox[{"(",
RowBox[{
"z110", "-", "z111", "-", "z11d0", "+", "z11d1", "-", "z220",
"+", "z221"}], ")"}]}], "+",
RowBox[{"y121", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "y12d1", " ", "y221"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "q11d"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "z120"}], "-",
RowBox[{"2", " ", "z121"}], "-", "z12d0", "+", "z12d1"}],
")"}]}], "-",
RowBox[{"2", " ", "q12", " ",
RowBox[{"(",
RowBox[{
"z110", "-", "z111", "-", "z11d0", "+", "z11d1", "-",
"z220", "+", "z221"}], ")"}]}]}], ")"}]}]}], ")"}]}]}],
")"}]}], ")"}], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["y11d0", "2"], "+",
SuperscriptBox["y11d1", "2"], "+",
RowBox[{"4", " ",
SuperscriptBox["y121", "2"]}], "-",
RowBox[{"4", " ", "y121", " ", "y12d0"}], "+",
SuperscriptBox["y12d0", "2"], "-",
RowBox[{"4", " ", "y121", " ", "y12d1"}], "+",
RowBox[{"2", " ", "y12d0", " ", "y12d1"}], "+",
SuperscriptBox["y12d1", "2"], "+",
RowBox[{"2", " ", "y11d1", " ", "y221"}], "+",
RowBox[{"2", " ", "y11d0", " ",
RowBox[{"(",
RowBox[{"y11d1", "+", "y221"}], ")"}]}], "-",
RowBox[{"2", " ", "y111", " ",
RowBox[{"(",
RowBox[{"y11d0", "+", "y11d1", "+",
RowBox[{"2", " ", "y221"}]}], ")"}]}]}], ")"}], "2"]}], "]"}]}],
")"}]}]], "Output",
CellChangeTimes->{3.927282513513418*^9},
CellLabel->
"Out[235]=",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"e11", "=",
RowBox[{"Simplify", "[",
RowBox[{"D", "[",
RowBox[{"e10", ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{
"q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
"y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
"z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
"z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
"}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.908534070987885*^9, 3.908534106731855*^9}, {
3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9,
3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, {
3.908534838729506*^9, 3.908534842369544*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"iniTest", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
"y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
"z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
"z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
"q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
"y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110",
",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
"z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1",
",", "\[Lambda]0"}], "}"}], "/.",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Lambda]0", "->", " ", "\[Lambda]"}], ",",
RowBox[{"y110", "->", "y11"}], ",",
RowBox[{"y111", "->", "y11"}], ",",
RowBox[{"y220", "->", "y22"}], ",",
RowBox[{"y221", "->", "y22"}], ",",
RowBox[{"y11d0", "->", "y11d"}], ",",
RowBox[{"y11d1", "->", "y11d"}]}], "\[IndentingNewLine]",
"}"}]}], "/.",
RowBox[{"s6", "[",
RowBox[{"[", "3", "]"}], "]"}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"z111", "->", "0"}], ",",
RowBox[{"z110", "->", "0"}], ",",
RowBox[{"z11d0", "->", "0"}], ",",
RowBox[{"z220", "->", "0"}], ",",
RowBox[{"z221", "->", "0"}], ",",
RowBox[{"z11d1", "->", "0"}], ",",
RowBox[{"q12", "->", "0"}], ",",
RowBox[{"y12d1", "->", "0"}], ",",
RowBox[{"y121", "->", "0"}], ",",
RowBox[{"y12d0", "->", "0"}], ",",
RowBox[{"z120", "->", "0"}], ",",
RowBox[{"z121", "->", "0"}], ",",
RowBox[{"z12d0", "->", "0"}], ",",
RowBox[{"z12d1", "->", "0"}]}], "}"}]}], "/.",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Most", "[", "testparams", "]"}], ",",
RowBox[{"\[Epsilon]", "->",
SuperscriptBox["10",
RowBox[{"-", "2"}]]}]}], "]"}]}], "/.", " ",
RowBox[{"0", ":>",
RowBox[{
RowBox[{"RandomReal", "[", "]"}],
SuperscriptBox["10",
RowBox[{"-", "5"}]]}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"newsol", "=",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"e11", "/.",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Most", "[", "testparams", "]"}], ",",
RowBox[{"\[Epsilon]", "->",
SuperscriptBox["10",
RowBox[{"-", "2"}]]}]}], "]"}]}], ",", "iniTest", ",",
RowBox[{"WorkingPrecision", "->", "20"}], ",",
RowBox[{"MaxIterations", "->", "1000"}]}], "]"}]}]}], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQA2IQLdE9S/2D3FtH5vuy2iDa/tFuQxC9p1/FCETPEk1y
ANElVcaOIFqlcf0/Ufm3jkcyp/0H0aFtxzXFgbTYUh5dEP1IWO4WiHbJ2nYP
RGtxijJJAGmpRWfZQXRSG1vBfiD9I9YeTFtYn1I/AKTl2M+A6RkRci4g+tlC
BTAt9O3pNRCdUv3zNoh+tE7zI4hWLM8G041iFT9A9KTblWA6pYiP7yCQFrAV
BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd
BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe
XDNANACqiaYp
"],
CellLabel->"In[28]:=",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
"q11d", "\[Rule]", "0.00001555391729866604814657721185465622`20."}], ",",
RowBox[{"q12", "\[Rule]",
RowBox[{"-", "0.00367071456291389600788000358201604466`20."}]}], ",",
RowBox[{
"y111", "\[Rule]", "0.00043001532472795813778829515987816502`20."}], ",",
RowBox[{
"y221", "\[Rule]", "0.68061312635936392976106041214802964103`20."}], ",",
RowBox[{
"y12d1", "\[Rule]", "0.00060953624613590285739164715020414719`20."}], ",",
RowBox[{"y11d0", "\[Rule]",
RowBox[{"-", "0.18244171337789963186665388931786472424`20."}]}], ",",
RowBox[{"y11d1", "\[Rule]",
RowBox[{"-", "0.18244171296640565582691806412185542285`20."}]}], ",",
RowBox[{"y121", "\[Rule]",
RowBox[{"-", "0.00121240225446201511427879244885860051`20."}]}], ",",
RowBox[{
"y12d0", "\[Rule]", "0.00060958515967050755455375332658718435`20."}], ",",
RowBox[{
"z110", "\[Rule]", "0.00007379798284491771519910448955201698`20."}], ",",
RowBox[{"z111", "\[Rule]",
RowBox[{"-", "0.00006577963644236893472200256027804244`20."}]}], ",",
RowBox[{"z11d0", "\[Rule]",
RowBox[{"-", "0.00018987990770255628780849243214776884`20."}]}], ",",
RowBox[{
"z11d1", "\[Rule]", "0.00020099616290969734037560878725514613`20."}], ",",
RowBox[{
"z220", "\[Rule]", "0.00029790159061462273938983291721172009`20."}], ",",
RowBox[{"z221", "\[Rule]",
RowBox[{"-", "0.00081017217570553774676905822715866634`20."}]}], ",",
RowBox[{"z120", "\[Rule]", "2.12106706524579996016730294515906`20.*^-6"}],
",",
RowBox[{"z121", "\[Rule]", "4.65557374464977633134838905237807`20.*^-6"}],
",",
RowBox[{"z12d0", "\[Rule]", "4.62168757759767013333293550481073`20.*^-6"}],
",",
RowBox[{"z12d1", "\[Rule]", "3.0399524249058029638575432335168`20.*^-6"}],
",",
RowBox[{"\[Lambda]0", "\[Rule]",
RowBox[{"-", "0.00366394260012097035489395990973068968`20."}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.908534617165332*^9, 3.908534760405347*^9, 3.908534794452958*^9,
3.9085362696996202`*^9, 3.908604381422617*^9, 3.908612093101529*^9,
3.908614449703895*^9, {3.908614481344686*^9, 3.908614504811044*^9}, {
3.908616210963707*^9, 3.908616254842885*^9}, {3.908616312237392*^9,
3.9086163170447197`*^9}, 3.908616970303256*^9, 3.908621789726719*^9, {
3.90862195734993*^9, 3.908621968286858*^9}, 3.908959467170705*^9, {
3.908960499329819*^9, 3.908960526670731*^9}, {3.908960574847391*^9,
3.9089606038254843`*^9}, {3.908960782913903*^9, 3.908960813745655*^9}, {
3.908961757784819*^9, 3.908961770114484*^9}, 3.90896180984956*^9, {
3.908961981727275*^9, 3.908962027694907*^9}, {3.908962188993072*^9,
3.908962209399077*^9}, {3.908962244124213*^9, 3.908962284221075*^9},
3.908962342678248*^9, {3.9089624171398773`*^9, 3.908962455324469*^9}, {
3.9089625398547907`*^9, 3.9089626737739773`*^9}, {3.908962847416065*^9,
3.908962888610635*^9}, {3.908962952419513*^9, 3.90896296095532*^9}, {
3.9089630322598047`*^9, 3.908963121645569*^9}, {3.9089631813370247`*^9,
3.908963207296228*^9}, {3.908963248759201*^9, 3.90896338669203*^9}, {
3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9,
3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9,
3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9,
3.916380285011002*^9, 3.916387076462816*^9, 3.927267370127882*^9},
CellLabel->"Out[29]=",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"e12", "=",
RowBox[{"FoldList", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Delete", "[",
RowBox[{"testparams", ",",
RowBox[{"{", "4", "}"}]}], "]"}], ",",
RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"e11", "/.",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Delete", "[",
RowBox[{"testparams", ",",
RowBox[{"{", "4", "}"}]}], "]"}], ",",
RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
RowBox[{
RowBox[{"Drop", "[",
RowBox[{"sol", ",", "5"}], "]"}], "/.",
RowBox[{"Rule", "->", "List"}]}], ",",
RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]}], "]"}]}],
"]"}], ",",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Most", "[", "testparams", "]"}], ",",
RowBox[{"\[Epsilon]", "->",
SuperscriptBox["10",
RowBox[{"-", "2"}]]}]}], "]"}], ",", "newsol"}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"200005", "/", "100000"}], ",",
RowBox[{"200003", "/", "100000"}], ",",
RowBox[{"-",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}]}], "]"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.908612319761338*^9, 3.908612417546509*^9}, {
3.9086124874051113`*^9, 3.90861254511722*^9}, {3.908612745906377*^9,
3.908612793106409*^9}, {3.908612832420323*^9, 3.908612861411959*^9}, {
3.908613309205525*^9, 3.908613364644801*^9}, {3.90861342802299*^9,
3.908613519839675*^9}, 3.9086135669615602`*^9, {3.90861449347665*^9,
3.908614589381097*^9}, {3.908614669654983*^9, 3.908614697639248*^9}, {
3.9086147913854*^9, 3.908614791473036*^9}, {3.908614898533624*^9,
3.908614898571179*^9}, {3.908616326011752*^9, 3.908616327083562*^9}, {
3.908616469198354*^9, 3.908616512344514*^9}, {3.908616543200011*^9,
3.9086165541439466`*^9}, {3.908616606713204*^9, 3.908616607505047*^9}, {
3.908616705004503*^9, 3.908616705122736*^9}, {3.9086168341272717`*^9,
3.908616895070513*^9}, {3.908617028003454*^9, 3.908617065841843*^9}, {
3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9,
3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, {
3.909042471277335*^9, 3.909042532246409*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 30, 2, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9,
3.927267371956482*^9},
CellLabel->
"During evaluation of \
In[30]:=",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 30, 3, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9,
3.927267372093017*^9},
CellLabel->
"During evaluation of \
In[30]:=",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 30, 4, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9,
3.927267372402162*^9},
CellLabel->
"During evaluation of \
In[30]:=",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
\\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 30, 5, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9,
3.9272673724071836`*^9},
CellLabel->
"During evaluation of \
In[30]:=",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"testzero", "=",
RowBox[{"SelectFirst", "[",
RowBox[{"e12", ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "\[Lambda]0", "]"}], "<",
SuperscriptBox["10",
RowBox[{"-", "2"}]]}], "/.", "#"}], "&"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"solzero", "=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]0", "->", "0"}], "}"}], ",",
RowBox[{"Delete", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"testzero", ",", "5"}], "]"}], ",",
RowBox[{"{", "4", "}"}]}], "]"}], ",",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{"e11", "/.",
RowBox[{"Delete", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"testzero", ",", "5"}], "]"}], ",",
RowBox[{"{", "4", "}"}]}], "]"}]}], "/.",
RowBox[{"\[Lambda]0", "->", "0"}]}], ",",
RowBox[{
RowBox[{"Prepend", "[",
RowBox[{
RowBox[{"Delete", "[",
RowBox[{
RowBox[{"Drop", "[",
RowBox[{"testzero", ",", "5"}], "]"}], ",",
RowBox[{"{",
RowBox[{"-", "1"}], "}"}]}], "]"}], ",",
RowBox[{"\[Omega]2", "->",
RowBox[{"(",
RowBox[{"\[Omega]2", "/.", "testzero"}], ")"}]}]}], "]"}], "/.",
RowBox[{"Rule", "->", "List"}]}], ",",
RowBox[{"WorkingPrecision", "->", "30"}]}], "]"}]}], "]"}]}]}], "Input",\
CellChangeTimes->{{3.908622224176259*^9, 3.908622421996703*^9}, {
3.908961708782144*^9, 3.908961740141968*^9}, {3.908965836484462*^9,
3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, {
3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9,
3.909042904805442*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]0", "\[Rule]", "0"}], ",",
RowBox[{"\[Sigma]1", "\[Rule]", "1"}], ",",
RowBox[{"\[Sigma]2", "\[Rule]", "1"}], ",",
RowBox[{"\[Omega]1", "\[Rule]",
FractionBox["31", "10"]}], ",",
RowBox[{"\[Epsilon]", "\[Rule]",
FractionBox["1", "100"]}], ",",
RowBox[{
"\[Omega]2", "\[Rule]",
"2.000036573013715313595240425517688742694065898076334924359`30."}], ",",
RowBox[{
"q11d", "\[Rule]",
"0.0000154411885960749806570359963625850074975847724158849463`30."}], ",",
RowBox[{"q12", "\[Rule]",
RowBox[{
"-", "0.0036572655523585039857887359364182652063509000624865228001`30."}]}\
], ",",
RowBox[{
"y111", "\[Rule]",
"0.0004300435368226789586587325946317437685622268102945908043`30."}], ",",
RowBox[{
"y221", "\[Rule]",
"0.682441712914770090075006121861825119141409833649854799789`30."}], ",",
RowBox[{
"y12d1", "\[Rule]",
"0.0006095851596705075545537533265871843468637544143437718708`30."}], ",",
RowBox[{"y11d0", "\[Rule]",
RowBox[{
"-", "0.1824417129664056558269180641218554228541496257222446133275`30."}]}\
], ",",
RowBox[{"y11d1", "\[Rule]",
RowBox[{
"-", "0.18244171296640565582691806412185542285442352294921875`30."}]}],
",",
RowBox[{"y121", "\[Rule]",
RowBox[{
"-", "0.0012190655259063248487769272119051643340668676297687580859`30."}]}\
], ",",
RowBox[{
"y12d0", "\[Rule]",
"0.0006095851596705075545537533265871843468630686402320861816`30."}], ",",
RowBox[{"z110", "\[Rule]",
RowBox[{
"-", "0.0011738534027625294208808937046484288656098213192243519839`30."}]}\
], ",",
RowBox[{"z111", "\[Rule]",
RowBox[{
"-", "0.0000657796364423689347220025602780424378579482436180114746`30."}]}\
], ",",
RowBox[{"z11d0", "\[Rule]",
RowBox[{
"-", "0.0020151513697306236319421735014856267295445618391953833783`30."}]}\
], ",",
RowBox[{
"z11d1", "\[Rule]",
"0.0002009961629096973403756087872551461259718053042888641357`30."}], ",",
RowBox[{
"z220", "\[Rule]",
"0.0002979015906146227393898329172117200869251973927021026611`30."}], ",",
RowBox[{"z221", "\[Rule]",
RowBox[{
"-", "0.0008101721757055377467690582271586663409834727644920349121`30."}]}\
], ",",
RowBox[{
"z120", "\[Rule]",
"5.4464413209957099160860851880250343981961998581229084`30.*^-6"}], ",",
RowBox[{
"z121", "\[Rule]",
"4.6555737446497763313483890523780672765497001819312572`30.*^-6"}], ",",
RowBox[{
"z12d0", "\[Rule]",
"4.621687577597670133332935504810734528291504830121994`30.*^-6"}], ",",
RowBox[{
"z12d1", "\[Rule]",
"3.0399524249058029638575432335168002850878110621124506`30.*^-6"}]}],
"}"}]], "Output",
CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, {
3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9,
3.9089619597735023`*^9, 3.90896216556334*^9, 3.908965839807811*^9,
3.909041910725379*^9, 3.909041952412874*^9, 3.909042132178347*^9, {
3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9,
3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9},
3.915771852468653*^9, 3.916380290705749*^9, 3.916387091153274*^9,
3.927267373141869*^9},
CellLabel->"Out[32]=",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"solzeros", "=",
RowBox[{"FoldList", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"sol", ",", "\[Epsilon]\[Epsilon]"}], "}"}], ",",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"sol", ",", "4"}], "]"}], ",",
RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}], ",",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"e11", "/.",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"sol", ",", "4"}], "]"}], ",",
RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}]}],
",",
RowBox[{
RowBox[{"Drop", "[",
RowBox[{"sol", ",", "5"}], "]"}], "/.",
RowBox[{"Rule", "->", "List"}]}], ",",
RowBox[{"WorkingPrecision", "->", "20"}], ",",
RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}],
",", "solzero", ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"1", "/", "100"}], ",", "1.6", ",",
SuperscriptBox["10",
RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, {
3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9,
3.909046460128731*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}],
"]"}]], "Input",
CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"],
Cell[BoxData[
GraphicsBox[{{},
InterpretationBox[{
TagBox[
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.0055000000000000005`], AbsoluteThickness[2],
PointBox[CompressedData["
1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
+eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
+IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
+tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
+3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
+I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
+zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
+iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{
Annotation[{
Directive[
PointSize[0.0055000000000000005`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Point[CompressedData["
1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
+eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
+IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
+tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
+3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
+I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
+zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
+iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
"]]}, "Charting`Private`Tag#1"]}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{0, 1.6}, {1.934115470166513,
3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 1.934115470166513},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
PointSize[0.0055000000000000005`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{0, 1.6}, {1.934115470166513,
3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 1.934115470166513},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
PointSize[0.0055000000000000005`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
ListPlot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{
Annotation[{
Directive[
PointSize[0.0055000000000000005`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Point[CompressedData["
1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
+eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
+IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
+tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
+3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
+I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
+zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
+iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
"]]}, "Charting`Private`Tag#1"]}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{0, 1.6}, {1.934115470166513, 3.1866164242634345`}},
"Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 1.934115470166513},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
PointSize[0.0055000000000000005`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
ListPlot, "GroupHighlight" -> False|>|>,
"DynamicHighlight"]], {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.934115470166513},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "DefaultPlotStyle" -> {
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Directive[
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Directive[
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[2]],
Directive[
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]],
Directive[
RGBColor[0.772079, 0.431554, 0.102387],
AbsoluteThickness[2]],
Directive[
RGBColor[0.363898, 0.618501, 0.782349],
AbsoluteThickness[2]],
Directive[
RGBColor[1, 0.75, 0],
AbsoluteThickness[2]],
Directive[
RGBColor[0.647624, 0.37816, 0.614037],
AbsoluteThickness[2]],
Directive[
RGBColor[0.571589, 0.586483, 0.],
AbsoluteThickness[2]],
Directive[
RGBColor[0.915, 0.3325, 0.2125],
AbsoluteThickness[2]],
Directive[
RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
AbsoluteThickness[2]],
Directive[
RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
AbsoluteThickness[2]],
Directive[
RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
AbsoluteThickness[2]],
Directive[
RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
"PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05],
"OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint",
"HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 1.6}, {1.934115470166513, 3.1866164242634345`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9,
3.915533054748672*^9, 3.915772001814284*^9, 3.916380445982705*^9,
3.916387250792478*^9, 3.927267525287052*^9},
CellLabel->"Out[34]=",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
+Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
+v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
+TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
+MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
rxNvS3I8DW3/D8t6RRQ=
"]]}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.9267741928025102`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Input",
CellChangeTimes->{{3.915771872450286*^9, 3.915771873801431*^9}},
CellLabel->"In[35]:=",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
+Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
+v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
+TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
+MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
rxNvS3I8DW3/D8t6RRQ=
"]]}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.9267741928025102`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.927267525451137*^9},
CellLabel->"Out[35]=",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"e13", "=",
RowBox[{
RowBox[{"(",
RowBox[{"inisol", "\[Function]",
RowBox[{"FoldWhileList", "[",
RowBox[{
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{",
RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"sol", ",", "4"}], "]"}], ",",
RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{"e11", "/.",
RowBox[{"Append", "[",
RowBox[{
RowBox[{"Take", "[",
RowBox[{"sol", ",", "4"}], "]"}], ",",
RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
RowBox[{
RowBox[{"Drop", "[",
RowBox[{"sol", ",", "5"}], "]"}], "/.",
RowBox[{"Rule", "->", "List"}]}], ",",
RowBox[{"WorkingPrecision", "->", "20"}], ",",
RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}],
"]"}], ",",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"inisol", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"1", ",", "2", ",", "3", ",", "5", ",", "6", ",", "4"}],
"}"}], "]"}], "]"}], ",",
RowBox[{"inisol", "[",
RowBox[{"[",
RowBox[{"7", ";;"}], "]"}], "]"}]}], "]"}], ",",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"Rationalize", "[",
RowBox[{
RowBox[{"\[Omega]2", "/.", "inisol"}], ",",
SuperscriptBox["10",
RowBox[{"-", "6"}]]}], "]"}], ",",
RowBox[{"3", "+",
RowBox[{"1", "/", "10"}]}], ",",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[Omega]2", "<", "\[Omega]1"}], "/.", "#"}], "&"}]}],
"]"}]}], ")"}], "/@",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"\[Epsilon]\[Epsilon]", "\[Function]",
RowBox[{"SelectFirst", "[",
RowBox[{"solzeros", ",",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]", "==", "\[Epsilon]\[Epsilon]"}], "/.", "#"}],
"&"}]}], "]"}]}], ")"}], "/@",
RowBox[{"Range", "[",
RowBox[{"0.2", ",", "1.6", ",", "0.2"}], "]"}]}], ")"}]}]}],
";"}]], "Input",
CellChangeTimes->{{3.908965845707684*^9, 3.908965933284802*^9}, {
3.908966061855267*^9, 3.90896634830872*^9}, {3.908966417734704*^9,
3.908966417829668*^9}, {3.909041956908346*^9, 3.909041957027675*^9}, {
3.90904201242258*^9, 3.909042012604719*^9}, {3.909042831164308*^9,
3.909042875324937*^9}, {3.909042936502192*^9, 3.909042990614989*^9}, {
3.909043033303988*^9, 3.9090430858649387`*^9}, {3.909043120074722*^9,
3.9090431489458647`*^9}, {3.90904317971463*^9, 3.9090432258672523`*^9}, {
3.909043264180773*^9, 3.909043270956205*^9}, {3.909044224006723*^9,
3.909044276911423*^9}, {3.90904459896806*^9, 3.909044606013604*^9},
3.9090448090817537`*^9, {3.909045133487328*^9, 3.909045149072093*^9}, {
3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9,
3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9},
3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}, {
3.916385716465579*^9, 3.9163857237454777`*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 36, 6, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9,
3.927268332320952*^9},
CellLabel->
"During evaluation of \
In[36]:=",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 36, 7, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9,
3.9272684390247297`*^9},
CellLabel->
"During evaluation of \
In[36]:=",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
tolerances.\"", 2, 36, 8, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9,
3.927268439156069*^9},
CellLabel->
"During evaluation of \
In[36]:=",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
\\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 36, 9, 23876000146772358520, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9,
3.927268439160679*^9},
CellLabel->
"During evaluation of \
In[36]:=",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"test\[Omega]0", "=",
RowBox[{"Rationalize", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
RowBox[{"e13", "[",
RowBox[{"[",
RowBox[{"2", ",", "94"}], "]"}], "]"}]}], ",",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], "]"}]}], ")"}], "//", "N"}]], "Input",
CellChangeTimes->{{3.9272693573185596`*^9, 3.927269395519362*^9}},
CellLabel->
"In[132]:=",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"2.799706578640259`", ",", "2.068260402684564`"}], "}"}]], "Output",\
CellChangeTimes->{{3.927269366160224*^9, 3.927269395737912*^9}},
CellLabel->
"Out[132]=",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"test\[Omega]", "=",
RowBox[{"Rationalize", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
RowBox[{"e13", "[",
RowBox[{"[",
RowBox[{"4", ",", "448"}], "]"}], "]"}]}], ",",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], "]"}]}], ")"}], "//", "N"}]], "Input",
CellChangeTimes->{{3.927268564799363*^9, 3.927268736106742*^9}, {
3.9272691307157307`*^9, 3.927269155354519*^9}, {3.927269190451548*^9,
3.927269192707428*^9}},
CellLabel->
"In[116]:=",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"2.7997645646754687`", ",", "2.2882412315930387`"}],
"}"}]], "Output",
CellChangeTimes->{{3.9272685658396063`*^9, 3.927268581798867*^9}, {
3.927268629337381*^9, 3.927268736340684*^9}, {3.9272691333021603`*^9,
3.927269155522903*^9}, 3.927269193165361*^9, 3.927269278596757*^9},
CellLabel->
"Out[116]=",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"test\[Omega]2", "=",
RowBox[{"Rationalize", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
RowBox[{"e13", "[",
RowBox[{"[",
RowBox[{"6", ",", "1659"}], "]"}], "]"}]}], ",",
SuperscriptBox["10",
RowBox[{"-", "9"}]]}], "]"}]}], ")"}], "//", "N"}]], "Input",
CellChangeTimes->{{3.927269142818646*^9, 3.927269234028159*^9}},
CellLabel->
"In[117]:=",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"2.7998505034516117`", ",", "2.750887887632251`"}], "}"}]], "Output",\
CellChangeTimes->{{3.92726914353675*^9, 3.927269234258607*^9}, {
3.927269272679023*^9, 3.9272692788839903`*^9}},
CellLabel->
"Out[117]=",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mlegend", "=",
RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "/@",
RowBox[{"Range", "[", "8", "]"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"NumberForm", "[",
RowBox[{"#", ",",
RowBox[{"{",
RowBox[{"\[Infinity]", ",", "1"}], "}"}]}], "]"}], "&"}], "/@",
RowBox[{"Range", "[",
RowBox[{"0", ",", "1.4", ",", "0.2"}], "]"}]}], ",",
RowBox[{"LegendLabel", "->", "\[Epsilon]"}], ",", "labelStyle", ",",
RowBox[{"LegendLayout", "->", "\"\<Row\>\""}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.927270101965452*^9, 3.927270252847728*^9}},
CellLabel->
"In[180]:=",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"],
Cell[BoxData[
TemplateBox[{
TagBox[
InterpretationBox[
StyleBox["\"0.0\"", ShowStringCharacters -> False], 0., AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"0.2\"", ShowStringCharacters -> False], 0.2, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"0.4\"", ShowStringCharacters -> False], 0.4, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"0.6\"", ShowStringCharacters -> False], 0.6000000000000001,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"0.8\"", ShowStringCharacters -> False], 0.8, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"1.0\"", ShowStringCharacters -> False], 1., AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"1.2\"", ShowStringCharacters -> False], 1.2000000000000002`,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 1}]& ],
TagBox[
InterpretationBox[
StyleBox["\"1.4\"", ShowStringCharacters -> False], 1.4, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ]},
"LineLegend",
DisplayFunction->(StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
StyleBox[
TagBox[
FormBox["\[Epsilon]", TraditionalForm], TraditionalForm, Editable ->
True], {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, Background -> Automatic,
StripOnInput -> False]}, {
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.368417, 0.506779, 0.709798]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.368417, 0.506779, 0.709798]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.880722, 0.611041, 0.142051]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.880722, 0.611041, 0.142051]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #2,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.560181, 0.691569, 0.194885]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.560181, 0.691569, 0.194885]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #3,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.922526, 0.385626, 0.209179]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.922526, 0.385626, 0.209179]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.8, 0.5}}}], "Grid"]}, {
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.528488, 0.470624, 0.701351]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.528488, 0.470624, 0.701351]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #5,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.772079, 0.431554, 0.102387]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.772079, 0.431554, 0.102387]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #6,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.363898, 0.618501, 0.782349]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.363898, 0.618501, 0.782349]], {}}},
AspectRatio -> Full, ImageSize -> {20, 12.5},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #7,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0.75, 0]], {
LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1, 0.75, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 12.5}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.14800000000000002`] ->
Baseline)], #8}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.8, 0.5}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxDividers -> {"Columns" -> {{None}}, "Rows" -> {{None}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0}}, "Rows" -> {{1}}}],
"Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"],
LineIndent -> 0, StripOnInput -> False], {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, Background -> Automatic, StripOnInput ->
False]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
TemplateBox[<|"color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.528488, 0.470624, 0.701351]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.772079, 0.431554, 0.102387]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[0.363898, 0.618501, 0.782349]|>,
"RGBColorSwatchTemplate"], ",",
TemplateBox[<|"color" -> RGBColor[1, 0.75, 0]|>,
"RGBColorSwatchTemplate"]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5, ",", #6, ",", #7,
",", #8}], "}"}], ",",
RowBox[{"LegendLabel", "\[Rule]", "\[Epsilon]"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], ",",
TemplateBox[<|"color" -> GrayLevel[0]|>,
"GrayLevelColorSwatchTemplate"], ",",
RowBox[{"FontSize", "\[Rule]", "11"}]}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}]}], "]"}]& )]], "Output",\
CellChangeTimes->{{3.927270103820716*^9, 3.927270213695313*^9},
3.927270253204455*^9},
CellLabel->
"Out[180]=",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mplot1", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Prepend", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Join", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
RowBox[{"Most", "[", "#", "]"}]}], ",",
RowBox[{
RowBox[{"{",
RowBox[{"\[Omega]2", ",", "\[Omega]1"}], "}"}], "/.",
RowBox[{"Reverse", "[",
RowBox[{"Most", "[", "#", "]"}], "]"}]}]}], "]"}], "&"}], "/@",
"e13"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"3.1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",", "3.1"}], "}"}]}], "}"}]}], "]"}], "]"}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1.9", ",", "3.1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.9", ",", "3.1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "->", "1"}], ",",
RowBox[{"Joined", "->", "True"}], ",",
RowBox[{"FrameLabel", "->",
RowBox[{"{",
RowBox[{
SubscriptBox["\[Omega]", "1"], ",",
SubscriptBox["\[Omega]", "2"]}], "}"}]}], ",",
RowBox[{"ImageSize", "->", "165"}], ",", "labelStyle", ",",
RowBox[{"Epilog", "->",
RowBox[{"{",
RowBox[{
RowBox[{"EdgeForm", "[", "Black", "]"}], ",",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "/@",
RowBox[{"{",
RowBox[{"1", ",", "3", ",", "5", ",", "7"}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"Disk", "[",
RowBox[{"#", ",", "0.016"}], "]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"2.8", ",", "2"}], "}"}], ",", "test\[Omega]0", ",",
"test\[Omega]", ",", "test\[Omega]2"}], "}"}]}]}], "}"}],
"]"}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.909042514190548*^9, 3.909042520941848*^9}, {
3.909043279228549*^9, 3.909043290980391*^9}, {3.909044758712824*^9,
3.909044817697377*^9}, {3.909045206161439*^9, 3.909045253529738*^9}, {
3.909045341508081*^9, 3.909045343371456*^9}, {3.909045626801211*^9,
3.909045676689952*^9}, {3.909046978946875*^9, 3.909047057939874*^9}, {
3.909047460827964*^9, 3.909047525484823*^9}, {3.909047561565816*^9,
3.909047563765341*^9}, {3.915533019222624*^9, 3.915533021933949*^9},
3.915536859762843*^9, {3.916385726520988*^9, 3.916385734889188*^9}, {
3.927267635645629*^9, 3.927267640645814*^9}, {3.927268509183035*^9,
3.927268543303323*^9}, {3.927269503682035*^9, 3.927269573634857*^9}, {
3.927269608723671*^9, 3.927269610171708*^9}, {3.9272699535387793`*^9,
3.927269963066483*^9}, {3.927270022076383*^9, 3.927270022411675*^9}, {
3.92727006533313*^9, 3.927270100285515*^9}, {3.92727026179222*^9,
3.92727026216817*^9}, {3.927270296449134*^9, 3.927270297536882*^9}, {
3.927270369203806*^9, 3.9272704072271852`*^9}, {3.927270464988804*^9,
3.927270529941201*^9}},
CellLabel->
"In[217]:=",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[{{3.1, 2.}, {2., 2.}, {2., 3.1}}]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJxNmXk4lfn7x5/nnMPRV0ULLYhRhDZJi4SbTE20aJNMkSVRQjtalC1Fi9JG
aSeyZGlTKRpthDS2limpqSakVELqd3dd857r1z9dr67KOc/z+dz3e/nF3X/W
YokgCI9EQfj5+/2Sn7+UKPZ42Sz5AIEm3RgyO5N5QODzLT+5Ic1+jmaaEs2b
nvTenLm8p1mrcowS7RrkuzCAWexWkrjeV4nutI8sPsWcf/v4de9pSiQ8aB1X
y+y5KfJZ+XAlMku+ltRNWyC566u4LFUlWrExrLcN85PulpFKLXJKnT0ldC2z
7c6jPg8r5fTCUKU5lTnR0kCmellOGkLlwmfMfcu2G149LKfZVfHFvXQEelBz
4ErlZjnFpC0y+4150efiFOfFcvojVD95A3OA1ovm3+zk1OnU0DuLOVd7aXzi
CDmNHpEd+oq5ROJxdb6anPwUApv7/SLQe/3awMAORUp6bOEynXny962dX+sU
6VmWtCSU+ZNpSFjtHUXqE3XX7CJz5MDi6X3PKZKDy67kd8zR3joZOQcUaZvp
XDUdXYHWb93enhKiSAX/0wibw/zGV+tA2xJFan/+vDmKecHllOZjDopkcjHJ
5RpzwflVGxPNFGnZDt+SD8wbKxuuNusq0kkPk/H6AwUqOus/dn9XRXpi9jXZ
mfnv8d837viiQL1V89V2Mc+NkBhVPlegaX+Hhd1kDp/S4+myYgWKuDrlQ+tP
rsgghwsKlL9HxXXoIIGW31FT3HJcgb54V5YsYt7W8OPVtxgFGmGVMH4fszwj
4FhhoAItUXM7c5e5NXzLt3JPBTr2Tl/9O7OSxPiO/kwFqiloCDPRE8g8dFhN
oYUC9TiY/cGLOWXtOfkpIwWa4hfomsD8t/HkcXf7KFCoreX9MuZ1emkzRyoo
UF5/mblMn//9/gTrxx9l1NJ898w4Zr8DqR1Fz2U09PYu9eXMC921g5pLZeR5
ZG74ceZ1b+9dmn9NRkdWaXysZP5+vD5fSJNR5ZQ61/8NFujjurq4l/Ey6q6T
fN+SeU2d8xTZdhlN+uJrvop5jLz+vUuQjEJKTFKSmZta3xxr8ZbRxRNf1Z8w
ez09EFTgJKPmwPxwVQOBHhleSrj9m4wMZoR/tGWuy40dpmAmIzc9u0VBzCHX
S+cHGcroUIdKaTqzcbXrjIH9ZVTxoNL8BbPJ7kXWEmUZ/e9MQoq6oUC7VTq9
1L5JaeImtz72zIULnTp+b5TS+jmDI0KY24NXWVT+JaVco8aPOcwRw9UCNpdL
qUHIWfSGuXJ7du2CQinpVQeWahoJNFDH6Q+fXCm5pFtOmMl8vXrvxqQkKe0P
k6VGMHuudHXseUhKZfPv9clj1j2lfDItWkpy490RTcyJd4ZcWb1JSqTo2KI7
RKATRqFtPiukFPhEw20es9ajhivRnlLKyq4rjWZuUZ7tUTtPSm+jkifcYFb5
sWf2LHsp6bouT/3EvNo9oOWzpZScR4/qazhUoF7jwtJumkhpr3JbxELmAOPB
7/L0pVRcl98Sy2ywftmAx/2lJLsU7naLOUdJemmgipQm7LQra//JZqOHxkml
tMZT1WLEMIFWfC39MOSrhNLHV6V6MPc16x36T4OE/lY93Pcg876nWU5ldRIa
8NotsoS5ri2zpbZKQvOuDf4kDBfozzWeD7uUSGjX3ka30cwRXbyCXQokdMcn
p8yHeVNsyPLqCxISKcgikbnXpZOjVqdJyEzd6mwFs+mH53NNT0hoZYOsn3yE
QA635rr2OSih1MJ7kebMt/z1nmrulFD9wd2f/JmTLvu62IZLSMPf0f0Us8/I
sat3BEtozq+a5TXMYfGrs1oDJBSj8cKim7FAWclNqaFLJFT0IfmsNXPLF8vW
YS4S6ry9vN9aZpvpRcPb5khoTOKoranM/fokvqu3l5Df6rZPfzFL+hy622gj
oWS76+69Rgo03cPYS328hJ7pRJRPZnbeGbJo4UgJ9W21s9zAfLSr+fxCAwk5
3FdNO8fctTz5o62OhLadrOr3ilnou7f8ZR8JFQQd3trPhJ/ParuDx1Uk1D7D
/fM05h4de5uD5RIapW/gEcqsnJa0JeCHSMu+NZZfYD6vOPDzllaRTlXkWL5j
1i5W/pLxXqQnZ4LStEcJNOdNvnHra5HUQqz6z2FO39c0y/m5SNPmKkRFMXff
H69cUyNS5JDiz1eZm092UQ54IFK+GOvxgVlF4aZE955IrdWOD/RMBTptG3W6
sVCkERmaVs7MQ3rNSK64IpJ3+Iu0nczxdubXynNFOuZ8pv9N5kHqh468Thep
1tgvqpU5ZEL1D/VkkXrITb8MGS3Qvegth12OiWT3tM1jEfMgL/Nh+YdECs25
/iCOWdsvz3f0XpGubIuwustsNKtA/Y8YkVpc7dM7f/KF/m98IkUaOqaHhskY
nr/j4xL1N4vk2bU6yot5zNG2r21BIh15cfhLPLOeTPVi/SqRqi65e5Yx59rE
HqpfLlL3XQYV0rEC6XgMdm9bItLkxU1W45i7DfF+OMhdpBDz3HRfZpOi8nOL
F4h0qUewxnFm3y0F+VccRWp+bbWtkvloWlCh/kyRDPMVWruMEygvpFdokr1I
bnHFnpbMdnqb/xg/SaT4pbEVK5n7VobNrOfbUEHzKJl5sEL2h6PmIin30cp4
zHwi08cvYIxIExtfaKia8XlMfxA7Z6RIG26e2WbLfFy3Un/qUJFyD/m1BjJP
kuq0OQ4WqdHfdHE6s+MpjcrVuiLpTWqvqGPu5vlu62ktkVw0b5D6eL5v7j7P
3vQVaf/HiAw75sF2A1Mte4tUdsdeM4T587B5F5NURFI62mN7DnOXlc1VOsoi
0Zrq1tfMKnfDa9MU+TbbH1msaS7QAauZu+0kImX94vHQgVl33tj7bZ0C/dNq
YB3BbGCc557Xxn9e2pRxmTm/sGNgzGeBfj+Vq9nEHKKX99Lvg0B7g4O3607g
/ftiapB7I+sKB/rqyFzqdOKC11uBZIMVvaKZTw6zWLn+lUAWncUPrzP3vD0y
9Fgd76WHsdaffv79yoHXKp8KlJEyL9PAgu/PPxPb+z/ivRmipbWQOaz3tB4B
VXzOHOu3xzJ/2hP66M8KgeYNTflaxNy0NX34lDLeKxJ/r3bmmGv9X5cUC3Sn
xvTP4ZYCVaw8+NT1Duu2zHZrD2b3UasbxCKBzCJuZB5gtrkc2JRdINDK3yO1
Spjn1rzLX5kv0NmRU6MFK4Fmr4oxs74iUL28Z5spc13Q7vEDLgmk+Ve1lw9z
9PsTiV3O8z3OPfLnEebJHXU20myBdmz3sKlgNv/xRKacyTpmkSGrJoECL+0p
1EnjvT3mvZY581wvf2fbFL4H3c5H+zNrtNmdXZMkkH99cNtJ5pzJS+JyTwqU
fJmW1DD/Y+/3WTgu0PNdipVdrQXqvTggwzmRz6lXiY0189ZjL44WJAg0c8Ke
c2uY0+RHUkcfYp3T02lAKrNeS03mhf28d99oxfzFfNp9RKxtHO/d/Pq2njb8
uZwOGD+LFWjUvpQlk5lfmHsGRO4SaNky/8r1zPfH2I4av0OgU9ajJ55jDjlm
uaB9O+vaPh3nXjK7umeX3ooSSK3pxoB+E3meus3xOxrJc/iPyJhpzI6vhmmH
h7OOjJ/avoU5W5ZQtDqU93ZAT+8LzKZKUyat2My6a1JN5T/Mb8tNI4M2sa7Q
Spyobcvfa1zK0h0bBPJu8ciazRyxzKI2LZjv2V1D7SjmJVYPL1YHClR79H3M
VeYf6/c1dFvH527t+fZm5ruaXxbOWMP3fOp6b71f+T2FpX1MWMXnTNe6aj5z
QXxObMsKga58VbTdyTzo5WRdxwA+d6UlWYXMsf6vom/6CTT09B7tVmaf879e
MF8u0OL1TjuGTOL7P2PhtvxlAh2ZOaDDlZm2zm+0XypQ1eCX3nHMNy4fuVfv
zXP9e0rVHebQ4BtdIpfwufnT37aT+eu6qL0mXgJtTh2dPXIyv9eubx3eegp0
aXOHthdz2bLvRqkeAn1wLNgRz5zg1kV5jbtAhsO2dpQyn1i/9NEUNz7n0mk+
0t/4XO8+HGqwiOd+bc/qscyda4c3qroK9DCzxtaXueutK1KpC9+7yMTsY8w9
Fr/M/L6AfckCT51K5upUm8dS5g0mRju7TBHo9XlX/56/815Tau6wYH4Sd3qu
kbNAjX+d91nJvPzy9HX28wXSP7++Oom5pNusa2ucBHKJtv71MfOpKjvVlHk8
h9zkOSp2Ao2Y9bvTK0f+XmPv69gyX8hT2mjErNR9785A5vRP3RcHzuXn+NLp
WxrzrjzDL6VzBArKG7C0jrk8srz3cOas3S+r1ez5PJXWndw3m++JV+qvdsyd
C8zCFZgHWgTkbGKeUDU0buMsnme9xvySwxxc8yajc6ZAcW87dr5mVtdJORvB
XHK94JvGVObZtxeoMSvs37rUgXlTztGdaQ48z3yn1YQz3z8zS9Geea1Nr0mX
md0ur9vcPIPnWd/anEbm71bvMg8zv25K/EV3Gs+xW20TZjBrF3nucmQ2LrMu
kjM7JRh1bmfetiXpSdF0nmcrmpdeZ34dH6Wyjfnu5As1Lcy+CUP+dmAWB2yY
ZPD/fsef4+/h3+H/wf+Ln4Ofi8+Bz4XPic+N74Hvhe+J743ngOeC54Tn9t9z
/Pe54jnjueM94L3gPeG94T3iveI9473jHOBc4Jzg3OAc4VzhnOHc4RziXOKc
4tziHONc45zj3OMe4F7gnuDe4B7hXuGe4d7hHuJe4p7i3uIe417jnuPeYw5g
LmBOYG5gjmCuYM5g7mAOYS5hTmFuYY5hrmHOYe5hDmIuYk5ibmKOYq5izmLu
Yg5jLmNOY25jjmOuY85j7mMPYC9gT2BvYI9gr2DPYO9gD2EvYU9hb2GPYa9h
z2HvYQ9iL2JPYm9ij2KvYs9i72IPYy9jT2NvY49jr2PPY+9DB0AXQCdAN0BH
QFdAZ0B3QIdAl0CnQLdAx0DXQOdA90AHQRdBJ0E3QUdBV0FnQXdBh0GXQadB
t0HHQddB50H3QQdCF0InQjdCR0JXQmdCd0KHQpdCp0K3QsdC10LnQvdCB0MX
QydDN0NHQ1dDZ0N3Q4dDl0OnQ7dDx0PXQ+dD98MHwBfAJ8A3wEfAV8BnwHfA
h8CXwKfAt8DHwNfA58D3wAfBF8EnwTfBR8FXwWfBd8GHwZfBp8G3wcfB18Hn
wffBB8IXwifCN8JHwlfCZ8J3wofCl8Knwrf+52P/9bXwufC98MHwxfDJ8M3w
0fDV8Nnw3fDh8OXw6fDt8PHw9fD58P3IAZALICdAboAcAbkCcgbkDsghkEsg
p0BugRwDuQZyDuQeyEGQiyAnQW6CHAW5CnIW5C7IYZDLIKdBboMcB7kOch7k
PsiBkAshJ0JuhBwJuRJyJuROyKGQSyGnQm6FHAu5FnIu5F7IwZCLISdDboYc
DbkacjbkbsjhkMshp0NuhxwPuR5yPuR+yAGRCyInRG74X474b66InBG5I3JI
5JLIKZFbIsdEromcE7knclDkoshJkZsiR0WuipwVuStyWOSyyGmR2yLHRa6L
nBe5L3Jg5MLIiZEbI0dGroycGbkzcmjk0sipkVsjx0aujZwbuTdycOTiyMmR
myNHR66OnB25O3J45PLI6ZHbI8dHro+cH7k/egD0AugJ0BugR0CvgJ4BvQN6
CPQS6CnQW6DHQK+BngO9B3oQ9CLoSdCboEdBr4KeBb0Lehj0Muhp0Nv81+P8
2+ug50Hvgx4IvRB6IvRG6JHQK6FnQu+EHgq9FHoq9FbosdBroedC74UeDL0Y
ejL0ZujR0KuhZ0Pvhh4OvRx6OvR26PHQ66HnQ++HHhC9IHpC9IboEdEromdE
74geEr0kekr0lugx0Wui50TviR4UvSh6UvSm6FHRq6JnRe+KHha97P8BE3ed
ig==
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJxNnXlcjW33t/d17akkUaQQMiSERBHSMiUNigoZM1QohCgkQ1HGyhxpREUD
lXnOUClDyFiZMhaZQkLvunfP9/d5n398jsd9u1N7r+s81/quYxvOWDDWU5RI
JIYKieS/X28W/fc/NZLd//b8e6CEbvwqG1XCHGTUNPU/7jT57JOXV9Xo+J8S
3a7LJGTUaf+uX+fU6OPdfaFTmCdsVC7WPa5GRqnTv0YxPyqJ9ByUrkZTV3Xx
uM4c2vfFzLkH1Wi328ebv5mjd2TNjN+vRne6Zw/stVxCh4PvTCzfqUZq4rLU
mcy11S2tO21VoyGPBrfcw2xhHqBYtF6NlmXI1hUxR1/7eCgvWI2yQm98layQ
0OS2m3U7B6jRh4mRHubMUbGL7TcuUKOOvcfdmsPsOvPBwJ/eajRJ2WZQLLN7
p59lPh5qtKPsRepd5ntNuxq/m6BGRdnJLZVBEspJu93Ud4wayTfOWzeQ2TZj
6tafo9TIyqPPtwXMBqXuuzcOVaOlFrUeB5idK107dB6oRhmNL956xNx+6rfO
eX3U6O3L0EGaKyX0bMa7PX4matTutN3hIcy9s38sNOysRhMimuotZY5d/Dn5
sYEaRXo+WHeYeanOyd7RumpUMDDmWzmzosdAhYeWGonaM6brBEtIzyuoTU81
NRrwrsvtkcxXnTf4SAU1Wnzh46Ag5kiHVR+e1SrpyI7sw0eZn3pvjLzyVUkV
c5fpvWbePuS1a0alktoMsV6vv0pC5pWPesZXKMmtpfy7I7NB4bkW0WVK2vLx
xvS1zM1X/ZBEP1DS9SuRt08w97lY+zbutpL+RY+zqmSWD7HNTc9XUj+/Nkfa
rZbQ570Lw3IvK2mBzUs9V+YPXXR6lZ9RUkqblPXhzAsqHx6V5Cjp+dd5388x
n1oSKOuWriT9gj4zvjBb558xnHhISWPiam93XiOhZQMWSaLilLRxyUWricwv
p67ac2uPknLt1x3Zyjzg3e0X2tuUVGdor3+FWSti6v0pm5TU51fTsJ/Ma3+a
zc4MVZLvrQffu6+VkP3u6TuVwUo6eCBmhgfzn30arl4BSipbPuPODua1xVNj
Cv2UpDvGeHAB89vwnV795ippdJdPR/4yj1z143DqTCWF/c3WNwuRkOa1+9M7
TFHSxXvLwryYPQ5GhCSMU9KvVOuavcz3tmxT6+KsJNPV8pm3mR1+uL7PGqWk
OeMK70hD+fUyamLbEcOUlGASNbg/86LC3vFlg5T0RByf5st8Yd1S7yALJWk/
btMqgfmAyW1fQ1Ml2We+DCthfqv+KaWoq5JC1qXUqK/j338d2Ty4o5LOTZo/
czDz6erVKeYGSvreu2/xIua5qdumfNNVUg+134OTmfvcPmhysqmSPMsvpj1l
vjf0YJM1jZQUm7OuVdP1EgqrWf/HWaakhxvtw4czB961rzb6pyCt6c1+BDJ7
pNY/E38pyLbfw5npzJP1T+dVfFHQas39xS+YP6+IjiuqVNDpVzOsdcMkNPhO
kceZ1wr6cto43Y55zqENsoxnCuoW+anVKuZeGs1Ckx8raIZXTng28+HFGY8O
3VPQvkHLf7xltkk9WXfkpoLuadOsNuH8eji++c2JPAU1fi+/68zc9s7ubXmX
FTT8YqH1OuanIx1ry84qaOXOqPTTzBWLujf/fVxBx33Gt/7EfDn6TGnrowr6
NMRgQ4cNEjpbsdlh2GEFGem9+jGOWXPU4Cl+BxQ07VPKrE3MFkv91ZJiFbT7
6vy7F5lXXSkf+XSPgu7s7UvfmQ8bWLTQ364gtYW/04038vvz+6C5k7coaMjI
S62nMBt3u0gHwxS03GD9hijm1H9R276tUVDWN/uf15jLJTvcRwYpqLKgmedv
5vi6tIj4pQrqGP/wbs9NEkqpuNmz3k9Bk5fup5nMEwo/m870UdAOh5kZu5mT
8/QiizwVdLND1zZFzP3fj7EZ6KEgee2nDZLNEtpldMwxc6KCBt/O+dmXOcLB
Nd7YTUFLDy73nMN86eP0/slOCspcQff2Mw8Yq960u52C3o5RDLnL7Oq91jBn
uILaGxdlKLZIKCZT03uotYIm/ItqM5D5o9n3JyWWCoq6P37jAua0+WEB8/sq
qOCwwa8k5vY2hv0a91KQuOaV5yPmmq8dm2d2VdCA8an3Gm+VUFlNrdr4Tgpa
3GPBkCHMY5W6TWXtFHREap65hHmF2reOJ/QVVPH4d5vDzBbfdaznNVeQwdFL
G8uZB92RTu6qpSC39et/aUdIyDvWbckHdQVtnezgNZK5w+gD647KFHTdTPv+
CuY36dvCVtTLqV7t0ZCjzB8nFy6x/y2nfs/2Z1Ywfz4nsW9fIye/4zMN9CMl
1KyiSvhdLaeUTV03OTK/2Dpm56MPcnoxvfrXGubV2r/qz76Wk37/414n/vv9
0ccGHXgup7FNVtz/wNwpwc0m6qmcNlbQ0HZREmr14GrLkAdyunJGcdSF+XGb
N0eWFcupLrLIIJx5UW3yX/8iOfX13rbpHPONfhK1JXly8rWaUPuZeW155bVl
uXI6qNPWu/M2Cal3WGAWcl5OZe9f3XdnvjR+p23UKTnpXkodupV50Hs/6YFs
OTntWnA0lzllZOupZzPkFOZr3vYn88BnOS4PU+V0aWjdpu7bJVTUyPPZzwNy
+qV3uXYac4hy4p828XLqXb3eewfz/nf5B232yWnONYeSfGaXTR8f+O+SU+I+
7WF/mUs2NtqUHCWnJwsfHe29g+tD3znnyzfLScc2tq0Xs8cK9zmtwuVk33bW
5r3Mjz723jgxRE6h37v+vsWckOLUOi5YTuduVHtLd0rom72u3rtlcqqJP17S
j/l7dfUK8yVy6hGwYpgvs4e+49AwPzl5OQ45Fs88OuOAV5mPnGI7KtuVMIuV
iyv6ecvpYW3RZvVdXA/GDT65a4actO5s+23FvPb0lie1U+Rke2jC7EXMWVpf
R013l9PqoLYPDjFfWS0IN13ldHpsxbCnzDdcJtQNcpbTV+PDx7R28/Pw9Z6+
x+zl1K1+QbvhzM77fFK6jpTTzBLzLYHMx8qCxx4aKqd9R+p+pzGL6mE9uwyW
0/01l2e/YI7zHNw/zVJOjSeEPWixR0JWBp4+5uZyGtHTcbgdc57p5Su5pnJa
KdPJCmYeP7+tlauJnE48edQum3mY9+h777vI6dPR2C1vmQd6Ga8N6SinLmGz
6lpHS2iN54YRhu3kNG1KtznOzD3lrvpXWslpT5/PD0KZt6/xq52tK6c76ieG
n2Y+lFr0QltbTurPV2R9ZF5XMunWJU05DTkxpH2HvRLSKdM9u0hdTss3K7eO
Y45u8ifJWC6nrBk36zYyb+mste6lRE6V/bfPucg8eYj7xPg/Muqk5f7wG7ND
6bt2M37JaPLrtiOM9/H5J7e4uMt3Ge08W5E1mblArYfvl2oZ3Yw63D6KuZNM
v/JCpYwUs/22XmNeR6ftIt/KaPBgiz+1zEMCLcI8X8kooPmfOT1jJOS26ULM
4Gcyyvxw+eEM5ryloWGtn8ro3aWwEbuZ9RwuDfvzQEbtdztmFzLnGmfefH5X
Ru7zdAwl+/l52GO7YcEtGUUNe7y1L/OGgOyBx2/I6IZ+3J/ZzFotJusdvC4j
8fOsufuZB0nKs/fkymjg9W6Pipnnt4hoFHlBRotjPo9QxErIR+OG3qYzMkpb
dCJ7APMUn09PNpyQUYVtkOEC5vvhHo6bs2Rk0G5oRBLz02UbfLdlyMitRvn3
IXNHrYd9Yw7LaGvhzbmN4/j5XXQ2MfWQjPIStj8i5rRnGVlnEmVUH+Bus4Q5
sbXJ9NuxMuo/ul1OKvPPj9mH3+6VkV+n14blzCUTCjdJd8so9ffhCO14Pt9X
1kk6bpfRizt+f22Yu5++p7CJkFGrZAufFcw6bq+jfTfJaOzKP48ymQ/n5Z3Y
FSajTS65NhXMzTfoTrwaIqMrXcNz9BL4ebNs4eqaVTL6U+/YwZHZ+0mQUbcg
GfV9oBO5hjnW5oXtjEAZzUt7/Pc4s36afcV+fxkdXBvn84E5fPi8mlI/GZVP
8HzcNpHr4da6wHbzZKTbq/tIF2YXm6M+nnNk5CT/khPGfG3aqBsZnjIKe3qi
wznmnH/hUXXTZXTpWFDkZ+YEP/ML9lNlVBs29F+nJAl97azvGDdRRr2nqvm6
M9sfEQf+GCejuX1vPd7C/Cfxaqizi4wSG+0Ymcu86IJ5lwwnGT197n78B/PZ
k6bttBxkpHOyXcfuBySka79jzmJbGTlseR05jXmT6TDp0+EyCp155N925m0t
Or0fMURG5y0X+uYz39hlqJdjJaMarX5P/jBnWXbb0nmAjHq++TOy90E+b3mZ
jthrISOvc7nHPZlvT+9mpd1HRnHbwjvuZS620V60pZeMHs4eHXWL+YPkzXMN
Exk1tW5eLx7iejoief0WYxnZtnji2485JWKSh3ZnGa2pjHviw1yo29hnr6GM
Tl/2tI1n7lV0LalzWxl93d39xH1mL5doZU4rGXWb/6WjejL/eX/2bh/RUkYz
h5+MsmKuu/hy+BMdGcW0Wlm/kDnWfLPeoqYyuv956LxDzAO3ndDQ1JSRZp7a
0yfMTvGhrY+oy2jE/lu2Win8fjvTZoSDQkbBi3ecGMY8OS9l3WdRRidGTewU
yDyg97gnu+ulVN2u/bY0ZvdXbjT0j5S6/Hhd/5y5w7DSnOpfUvIoOjKvRaqE
lN0NzeNrpLQnceHTUcydX0+74PJVSsWB/UYFM3/u/NCxUbWU1J3+nshirlYU
PL9SKaWhna90esu8XFjhv/qdlJbXhW9rfVhC69+bK+i1lLKLR0ucmQPfjdgu
vpRSZXLz+aHMisDfevnlUuoU/OTpKebWUw7tiHwqpcmu8aM+MhcmxkknP5LS
zm5eJw2P8Otrp/XMbiVSuikx6TyO+fu5l0friqWkePhl20Zm58fv3t++JSXr
9JOSi8y9SnM0kgulFBCycv435ryKNJ01+VI66j6stEuahB4OGFA/5ZqU3vVS
t5vM/GRUQaFVrpQMFbdPRjIPiSlY2v6ilNxLd3S+xpz5IP2v/JyUtmVN3F7L
PCq7csqnU1K6Ed5e6JkuIdnfuh2Pj0tJOu3N/BnMkk0T4/OypDTQPK10F/Pn
getXnsqUkr/GIrtC5uAvkm5paVJKe9HvVD3z9U1OSYmpUnp98m/nvhn896+o
fbPvkJQMtl7ZPptZUrTx6+4kKY2btUHYz3xPiLyyK15KWwc4LShmtu6zd/ye
/VLKa9qiTJ7J94OaQWkxe6VU/+aJ3QDm4ZebXEzaLaX+5+NPzWceVJ2yJX2H
lBZu9zJKYv6QldziTJSUUueY7HjIfFP3sGvBVim9tP4qND4qoca/xtg+3SSl
VrqnFhDzMHH4p+pwKblUrSzzZx5zpMtw5XopbcodZp/K3KdX8kjDECld3aN+
uoz55aYFP6xWS+nP/NtG2sf49b3SdPSUlVIyH7Fzhw3z58AYh1XLpTSv9SRx
BfOyw7OrkwKkdOhLe79MZu1qh76F/lIqz3tT9or5SrFUv2ahlFrGptnrZfH7
Lcxun+ECKTn5LzrtwHzqw/NTzr5SCrfr32UNc2DghgVr50jpUvt/O44zr7RX
P3/CS0q1P66IH5jf6BnHfZwppd43N/i1zeb7lslRnS7TpTQ3yal8LHPOzPl6
M6dKKXFZC4cw5nEmZkcSJknpqdPT02eZnYJvFrycIKXmRgldPjObPG6+yGic
lBz+eO3slCOh3vQswddFSuvumkjdmQ9aKMYfd5bS+ZSvfluYe53zjJCMltKP
4FPll5ktR5XajraXUk+3YIcfzC6FdmtibaXk3X34mW7HuR4n7LD4MkJKcUIj
42nMo6PjvGyGSenRw9s7tzMrP7hoxZKUmmbslOYzLzWL6fnLSkqjQict/MN8
098z13WglNZMNHxmeoJfzzpx+dn9pXTG9K2DJ/ONogHWLSyk9FWRfiaaefZp
k07L+kipe9ki41vMmiN9ljwzldLM7P67xJN8HrCoNrXtKaWYDf+k/ZjVd2W7
ZneX0v1pVxf6MHfNPV7evquUNC02Potjtp5aUxRpJCWbxs6O95lHu/gbSDtJ
Kfhli7Nqp/jrKbK4FWAopZOnnhpbMb80G1b2qS3Xs60JuxYy25kk2s5uIyVj
T2/ZIWbFrqlNKvS5ng3ssegJ86W160xmtJRSdLNvz5qcllC7fkYJL5tzPXt7
ynEY8xGjsXM9taXU6ELw2QDm1M9t1n/Q4nq2Y3jXNGaNKTFfF2pKacXcRruf
M09yf5de14jrGd2RtTgjofSaVifC1KRUpbtr0Sjm6OnO6roKrmcfJz1fyWz5
/tDBQ1IpTbliODqLuevXwRssBa5n0W/PvmGO+DUg69Y/kW4tSO/a+izfbzdf
bOv1RySFzeLdTszujt+K6mtFsm5jKQ9lHvbh35l9P0UK+Ppv0SnmZ60131rW
iHQ0/+rzKuY2SXZOT76K9D5242jDc/z9sHnzJeizSIZLnM+5MX8oanrT8JNI
E+11u21kDq//U55fKdI2w9LdF5iHJj7rvOi9SIU/E+TfmF0XV8cZvBVJest7
cZfz/P439rQvrBBp0IEeLyYxa81dYbTipUj+y7+NjmTec39+rx7PRUp3Pn3u
KvPlLytnvSgT6bXRqm61zPf6vb+y+6lIbf8O39PjgoR2KL7ZOz8Wady9RooZ
zLEHnv1u9FCkiNQ7i3cxnxxUcyvvvkh5q3a9uMHc++mK6+vviiQZN9mpntne
5/yzkXdE6m/S4XyfixLanSPX17gl0kLxXbfZzJ4TEv3uFIqU+ih9T8zF//o1
Lyt2F4j0MmOxopi5rZee//Q8kVqts/SXX5LQhEG72vS4JpLLpPoXlsyH6Fjp
71yRNve+5jSf+UnPS1k3Lol0VbnpfCLzpC2t98dcEOlvmXP3h8zJhw32+p0T
yTxHN1rjMr9e93ZIsTkj0vyNpQpi9jAPv9b2lEiHPBL9/ZkHaGd8/nVcpGcW
s1+mML8Kq+lSki1SS82ezmXMV1Muz8k+JpLzq2/nm+Xy+ZYCcrZnihR++nR3
G+ah94IUS9NFuhyxKno5s9aeAVMnHhGp1nOEMpM5d1mrM5QqktkgjSWvmDV1
wvW6Jos0V7v4ZcsrXP/SPgfoHBQp6d0uZwdm0wFXHtQnivT0wuQLq5m3uPv1
+RQvUvOdHUyOM9eOnru5PFYkB5930e+ZY6Sdn9+JEWndkAxl26v8+pPq9ri2
V6QLLf2XjGX2Xpaz8OwekX58tHy1nnmp6bK07F0i9bpa73yWud3W8qfpO0Ty
3nvtQjVzWZTHv9RtIsX7bTLpdI3fj3eDtFMiRXpkM2bvBOaCoCzdlK0iNTNo
qbaFOdNprfrhzSKN+la65DJz8b7579M3irS2IPFVDfMGqsvJDhfpTNzsMd2u
89efmj737HqRvi3peXEqc/WtxurXQkXq7vDdZDvzrZ4JW++sFWlWhzN785iD
bn+vLVstUsyvVWp/mB0Hbh/1MVikklsjlprmSehXsHrQvyCRNA9qVMxi3tLl
TUSzFSLZrCgeE808h06HGC0TKXjM7os3mS3GNB9nFSDSyS5Teoj5fH+etFE+
bolI1X877LNgzniSGem3WCTj++/UfJgNLrT6sXmhSNMPZyyNY9b0mdH3yAKR
olf7V9xjPnmqnV3hPJHujhswVq2A32+fqsw/+ojUqIfk0iBm2yueP5rOFWmY
9HqPhcw/J3TZaDFbpBWPN+07yNzS6k71FC+RcjLHqD9hPuIpMQqbJVLVupYB
TW5wfejl3j1rhkidJ5dVDGVeNHnlv3IPkaaYJY0NYB7UrFms5jSRdqnNuXSE
uereabXBU7ielffs+Zy5fENbK79JIimPf9/XvJB/f8lbywPuXM82nVEfxbzb
4sLfx+NFCpy+OmAlc/+rjmHNxnE962fz+hhz1wVDS+xcuZ5pNnZ5w/yvbNSb
dWO5nlUUX2pVxOd9DZ3Tuc5cz87s7unEXDFitIPgJNL2yCkxIcyNu6fHDnHk
eubVsdEp5tMpLzNC7EWSWb0PqGK+VZu4Im8U1zOdzNftb/L77UCSVNNWpCXv
/V3cmN8v2zfC1Ybr2cUBlzcwH4kaSvuHi/Rmp6TXBeandmO/vh3K9cz3esxX
5p+26yb2HSLS+KGbG3W5xeeXRbsD1lpzPdMbGziJuVP1CNu7ViLlf2r5JoJ5
rJFTYcdBXM+ulblcZXY4v6h+6QCRLPclXf7FHL1z4avC/lzPFs7p1eO2hCYW
ai7t0E+kwyN77Z/OnJTd6MRyc65nBjWNdjHffWKSeL+PSK2/nwm8wfxNHGBp
asb17MbqN/+Y9TrULttiyvUs3sa1zx3++3qYzazqyfVsaeNcb2ZbvcxvDj24
njnc7RXD3LXYsltmd5EsOu7Zf4d585BYuU43rme1UzTkxRLab58aGmgsUvLt
jsssmevqjA89M+J6dvD9m3nMRuFVs207i6QXlOmayFztcLUwqyPXs7FLch8U
//c8WnOzbQeRNhgPNNW4y8+zjJ++m9tzPfsnibVmHnGuNqWurUi/71/X8Gc+
+mzyal8DrmdHNi9LYXbt+PNLeWuRfNaMfVvKvDwz7s/YVlzPxuu5NbvHr5f8
nnH5eiKV9ijPHcFcdHvlI+uWXM9kB0yXM8+08k4+1UIkxydzYjOY3ZKuN+rT
nOvZ0V6NX/33z6cGCpnaXM/W1yxreZ9fT00mbTRpxvVs8tm39sz/4h0OHNHi
etZnjdtq5hMjeow2aSLSbPWRV3L++/3qsvUZjbmePWvc+z3zi0RyNNMQ6fHx
u7EGJVz/F/SPP6nO9WzznsZjmYctSg0erCaS3Yypy9czd7gf+Pa6gutZ/07v
zjCvur75sbNcpLNNPrhVM7cMKXIplXI9q8i80vEB1ye79m5zRJFMzi7pPYE5
f/rC0p8SrmdRA+M2M0t1Dr8Lqxdov7egeZm5MvV4oP4/gUqs8pbXMAcsXr0p
7Y9ATZpvedf1oYRGnvvZbkidQDYfxo6byjzktrr5w1qBVl3Su7qN2eT7wYL5
vwQ6uau8dx6z2/xzpcqfAn32PRBXx9xzxeB5iTUCGQ+bq2n6iM/3zm2XD/4u
0HR90xWzmMnASSz9KlB0dc27Pcwl0muyFV8Eunvt7LibzG0Mlqxu/VkgjZg1
V4XH/Hz0d/M//0ng79NIMwvmv2pTnnl8FCjIVjN+LvPnvJBL8iqBctre04xj
jo3I1U37INDH73tW3GP+2l3nhct7gToXTn2vfCKhTW5+bf++FWhqQqfxg5jn
HS25mfxGoF0BH676MWfesP7k8lqg245HzQ4yd2+dFixUCKTstDT+MXMviX7w
0ZcC0e+BTZo8lZDZhXWVHi8ECrwjBA1lXh389Zr2c4GOHcp7v5T5l6NH4+vl
Ar0P2jL+CPPJ1sXnl5cJ1MHF5doz5ocnRz42LRVoYlf9Ps1L+e9/N2/KuycC
ba8vj7dlPvHLzS7hsUCFJQearGSu3vVz/6RHAsnS5gYdY676ljW+5UOBBq01
/fCaeUbviKX3SwRaMuHH+FZlfH+w21G77b5AGT3PXRvNfL1Z4bOx9wR6I1vb
J4Q5vLeVcfO7ArV7OjLhJHOFcU3xgzsCjT+mqVXFPMP+39O9twWKDLsX1L5c
QqEXZ43wuCVQ/pToD67/8UpzzS43BRL6TpuwgbnF6GCz6kKBLBt1vn6e2bDA
MefUDYEWPf/Q5yvzOtfsqJACgQ6fOJpg9ExCjztcLHDKF+jV5qVak5i7mq2d
ZJAnUOuZg1ZGMJ+3a2JTdU0gV0ux8gpzyd8l4eeuCrRZK3/CL2afA0WGW68I
dO31lusmzyX0e4pRs+m5Av0969J3OvMgrT1u5pcFstimn7iT+ZNHv0+NLgk0
f/YzrRvMURdaPXlxQaDkwQdX/mPu7eaud+a8QM+b+1SaveB6pq2Rsv2cQHqV
pu7ezCUJtuHzzwo05vKP6/uYA+d3P2V3RqANu8/1vcNcFnvTwvi0QLnz1ibK
XvLrpYWdVHlKoN/DbJtaMmfNO9fm7QmB+rRqEjyPeetfWpt/XCCfz/cqE/7j
4u9mR3IEOnA92v0B86u0mh4R2QKVxkzLa/SK66dyxiL/LIFaLO5sbs1c1cS9
fuIxgRxHVSYuZn4d//ve0KMCrW93rGkKs/Vo7+rumQJdqFkaXMocO/6Ss26G
QD8LB1U1reDze1qXn0K6QL0SxYkjmIM/XHzx6YhAswPz85Yx609K0yo7LFD8
6K3mGczzvjVdXZQq0ONOrkkvmZeM1TY7nyJQszr9Zi1f89d3saRTZrJAdsXP
gu2Za7utGZ94SKCQ5INVq5jVuw4s2HVQoLMrfSbmMC/53m3Z5gMCfXfpnf+O
eZRPoFdIkkAm3X6aG7yRkKSJQ+SKRIE8JeeTxjBb/btV45/A9ezB2mbrmTf8
7bZrQbxAD9JsV51hVvfd6OcTx/UspMnHT8yWI/VCZ8cKNNL9/sSOb/n+bSy5
47Wf61mvvfnjmfcPn+/iFSPQKbmHxWbmqtkRmt77uJ497XzgEvOWusi/s/cK
1DWrslkN86Ta+A6+0VzPwo+t6vpOQoXfP67w2yPQ3qkBH6cwb2+erLZ0N9ez
vlaTtjF7aP/JC9rF9UxDWnCdea2lwenQnVzPXuRb1DFHew58umUH17OTWw/0
es8/LyG8x57tAh3f4qo9i/mYzDwzaRvXs5mtVu9hXv7df9rRKIGMBjz/WMTc
4vlyqwuRXM+aHpokfOD7lcdy25sRAu1+41Ngzjxkd/Kqsq1cz8717jeX2dqk
38tPWwRS2/7zQCyzsePUBQIzzTmvfY857chYoxabBVpmHbJaWSmhLkF2im6b
uJ61GPVpIPMg/6AmtFGgD5VNJvsxzy1oN3j8Bq5nufcLDjAn9fLdsSBcoEl7
9vZ7zFzyMLrphjCuZ/M9DmpWSShk/otjSesFKhpupDOU2bZVUMDFdVzPWlet
Xso8e3mSR2moQFZfjn06zOx8MMr3dwjXs7yAyc+Y23VZs1efOWO/1Q2dj/z+
lKS/t1zL9WyxtL8ts2eSs/ukNVzP7AoOBjHLapLfrVwt0IT2ETrHmO/ZVu9K
WMX17IfrmtfM2R4zZ14PFqigqFW1/icJ6fgMcaxayfUs6fnk0cyuQp6LDvOA
ZYdurGUeaGS2dGAQ1zMn3/4nmV2GX86etUKgI53NDlX+xybZGhHLuZ7V/dRp
X833CZ2RK88sE7iun1/jyvw16pzybSDXs5SQ6nBm/QSXw82ZtwSPmnKeuSLa
YdawAK5nrlqFX5g79XnXd/FSgf51K+lv9Jm/n6u8Wx9YwvVM2HdoIvOMjxot
H/gLtOChR/MI5jdDWnZRZ05ON1p7hXne3kI7q8Vcz0Kqqn8yG8/xWbNoEdez
iVlTTL5IKHGx5Y2UhVzPTAMLPZir7gR2eu7H9Uwx2HIn8423vhF6zLml0uQC
5ru+7o3GLhCoLqug+T/mCI+1OzbP53q2IWKt2Vd+/Wma9MifJ5DvNLfPXsw7
FfvuyZgPmLeeuo95QafmYUN9BSrTeFF4m9kstNRmjQ/Xs5eHLGXf+HmxzlL7
8lyBRp/yTe7PnH7d753AvH6rWYt5zHOM8vOHzRHo4qxfaxOYf59fl7V+Ntez
ARc+l/zHz6sP3PAWyLRZ6NRG3/m83soxTot59ttRRYOZL5tUxLt5CZRwXmvA
YmYXjT8pMZ5cz7aXJCczh5Q+PVExSyDtuftalDKPq7lR0IPZjqaHNK2RUNzD
pi8CZnI90+3yZThzZq+autwZXM+qqqYuY5bfvaivxfw9N6sonbn61CnLydMF
6hEdOOAlc1fReNJhD65nCwan6P7g51eV28raaQLFjpDp2jP/ur8xbhTzg9Y3
QlYxG5hrXd47VSCtrxFfsplT47q/qJrC9Szfbdo75qkXjOutmVfHtr7Z5qeE
Jjg5tdoxmeuZ/4sBY5g9O7zr/X6SQF/sklPWMU/WHTTCmrmr4TzdM8yzdHe4
7Joo0IyfZqGfmM1aWk7+5M717OavLx1+cb1o7j91JPO9pAvTxjN/abzVPWEC
17PloTc3MZ8V7jj8GS/QcGe7gZeYTb+s7TeBWZWHY9YsqdY7Pk5oyMPVcj2O
m/ZZm1mVh2POsWh9fqGb0JCHYw7x9wkudhUa8nDM4e2j+5gxq/JwzGM+VT3d
7iI05OF+831zWebSH2OFhjwc8/jhXaUTmVV5OOYTRxNXXxgjNOThmL0lsz51
ZFbl4eokdN/puP1GZ6EhD8dcva189xcnoSEPx5wc1eWuO7MqD8fsXPGwNne0
0JCHY66vtmjSg1mVh/vDz/+Xm5rscRQa8nDMM48a/JYyq/JwzFs0+9zxcxAa
8nDM0nnakeX2QkMejrlHnWDpyKzKw/3l+8LekTfO2QkNeTjmtuXGw3owq/Jw
f//Ld1Qmxo4SGvJwzKtk9941ZVbl4ZhzZnRuHmorNOTh/knogqtRp18jhYY8
HHOTVH29ecyqPBzz+utDq1/aCA15OGb1lIoUd2ZVHo5Z8WjI8OIRQkMerp6f
9z4xl0Yxq/JwzFvrzQ2uDBca8nDMm446uVsxq/JwzBv0u/mfGiY05OGYgxzl
8/oyq/JwEoHu320/7NhQoSEPx7w/9mxNT2ZVHo45Sqt5aPoQoSEPx9zpvfdH
E2ZVHo45YPR303QSGvJwgkAjztc49mRW5eGY89VShh21FhrycMzrXW2a9WFW
5eGYW2tpnDgxWGjIwzH/qOrVeyCzKg8nCtTo1cc1l6yEhjwc81LDlck2zKo8
HHPHJi0Sbg4SGvJwzG7WVfPcmFV5OGarpf01ywcKDXk4Kb9PonsGezOr8nDM
8ZnipS8DhIY8HHPM47fFQcyqPByztWPTbDVmVR5OxnXDKX3GTkuhIQ/HHN6r
+lkHZlUejvm9tbzbsf5CQx6OedBdAyJmVR6O+Yupl+GdfkJDHk7O/150o5se
zKo8HHNCf4uhXy2Ehjwcs6WhzupQZlUejnmS3Y11LZlVeThmjfCQsUfMhYY8
nILrzHrP19bMqjwcs+LKTquSvkJDHo5Ze2P/iT7Mqjwcc8QnvwEisyoPxzzp
ukdZdB+hIQ+nFKj4gPFQM2ZVHo75VMlb70IzoSEPx+wy4ZyjJ7MqD8cc+iT3
a31voSEPx9wiR3fcPmZVHk6NXzcvi5f2Y1bl4ZgDRE3X+6ZCQx6OebvTs6qF
zKo8HLNxzFRqyqzKwzHbOMU5ZvYSGvJw6gKt8cjRcWJW5eGYXV0zo6p7Cg15
OObj/eOvRzKr8nDMrxN2HjNjVuXhmBclx4wp6SE05OEa8evzxaWDgcyqPBzz
HK/G6W2YVXk4Ztf8MK/LJkJDHo45VGdAsRezKg/HHF9kXNWYWZWH0xDIu3r8
iezuQkMejvncx4Kek5hVeTjmPxmrXKXMqjwc88mIQKO0bkJDHq4xn0umZyW5
MavycMwnfbsW1ncVGvJwzNnzH+07zKzKwzHn7D/VfByzKg/HbJZ6ua/IrMrD
afLr+dz73xnGQkMejrnx6s5ek5lVeTjmD21nL2nErMrDMZ8emdTldBehIQ/H
/KR33orZzKo8XBP+9xJy/fSYVXk45qqqtfICI6EhD8dsLHzvv5xZlYdj3jlb
0siEWZWHY5aMiQoo7yw05OG0BIrbtnV1FLMqD8e8+mR5xxHMqjwc8zqpt0dt
J6EhD8dcFqRhnsGsysMxa9RkxM9kVuXhmgo0T7tPoj6zKg/H7DwxsP+djkJD
Ho45dODUGWHMqjwc8yL9K22tmVV5OObT40N9f3YQGvJwzfhc4hVsd5RZlYdj
ltzafHIOsyoPx3zSamNWR2ZVHo754W7nAeWGQkMejnm85LRjNLMqD6fNP5/K
fZWuzKo8HPOo7sXazZhVeTjmNME092Z7oSEPx2zXI+LXRmZVHo753++rObbM
qjycDp/L3JJrFMyqPByz/yONM9faCQ15OObbpXmSdcyqPBxz4daj+cOZVXk4
5u5/9zaVM6vycM0FCu4++eG1tkJDHo65Q6eC1mHMqjwc8/xGJ0ttmVV5OGb1
HnV6GsyqPFwLgdz1fG7fNBAa8nDM6qml/yKZVXk45oS2RodcmVV5OObOPdte
1WNW5eGYU5vHjC9rIzTk4XT5fZ8aMC2RWZWHY365aMMTb2ZVHo5ZI+dwXg9m
VR6OuSTkeOfvrYWGPBzzudLQb2eYVXm4lgINzfzeay2zKg/X8r/39YvHo5hV
eTjmjLPdPjdjVuXhmP2GZSx80kpoyMMxF4qOU5KYVXk4PT7Xnn93zJdZlYdj
Hrdz1nwLZlUejnmf7sEoCbMqD8c8wj6yVaG+0JCHY56br6m2i1mVh+Nffc8r
3Kfzr6o83P/3K/5//HP49/Dn4M/Ffwf/XXwd+LrwdeLrxt8Dfy/8PfH3xvcB
3xd8n/B9w/cR31d8n/F9x88BPxf8nPBzw88RP1f8nPFzx+sArwu8TvC6wesI
ryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x/sA7wu8T/C+wfsI7yu8z/C+w/sQ
70u8T/G+xfsY72u8z/G+Rx1AXUCdQN1AHUFdQZ1B3UEdQl1CnULdQh1DXUOd
Q91DHURdRJ1E3UQdRV1FnUXdRR1GXUadRt1GHUddR51H3cdzAM8FPCfw3MBz
BM8VPGfw3MFzCM8lPKfw3MJzDM81POfw3MNzEM9FPCfx3MRzFM9VPGfx3MVz
GM9lPKfx3MZzHM91POfx3Mc5AOcCnBNwbsA5AucKnDNw7sA5BOcSnFNwbsE5
BucanHNw7sE5COcinJNwbsI5CucqnLNw7sI5DOcynNNwbsM5Duc6nPNw7sM5
EOdCnBNxbsQ5EudKnDNx7sQ5FOdSnFNxbsU5FudanHNx7sU5GOdinJNxbsY5
GudqnLNx7sY5HOdynNNxbsc5Hud6nPNx7sc9APcC3BNwb8A9AvcK3DNw78A9
BPcS3FNwb8E9Bvca3HNw78E9CPci3JNwb8I9Cvcq3LNw78I9DPcy3NNwb8M9
Dvc63PNw78M9EPdC3BNxb8Q9EvdK3DNx78Q9FPdS3FNxb8U9Fvda3HNx78U9
GPdi3JNxb8Y9Gvdq3LNx78Y9HPdy3NNxb8c9Hvd63PNx70cfAH0B9AnQN0Af
AX0F9BnQd0AfAn0J9CnQt0AfA30N9DnQ90AfBH0R9EnQN0EfBX0V9FnQd0Ef
Bn0Z9GnQt0EfB30d9HnQ90EfCH0h9InQN0IfCX0l9JnQd0IfCn0p9KnQt0If
C30t9LnQ90IfDH0x9MnQN0MfDX019NnQd0MfDn059OnQt0MfD3099PnQ90Mf
EH1B9AnRN0QfEX1F9BnRd0QfEn1J9CnRt0QfE31N9DnR90QfFH1R9EnRN0Uf
FX1V9FnRd0UfFn1Z9GnRt0UfF31d9HnR90UfGH1h9InRN0YfGX1l9JnRd0Yf
Gn1p9KnRt0YfG33t/+tz/6/vjT44+uLok6Nvjj46+uros6Pvjj48+vLo06Nv
jz4++vro86PvjzkA5gKYE2BugDkC5gqYM2DugDkE5hKYU2BugTkG5hqYc2Du
gTkI5iKYk2BugjkK5iqYs2DugjkM5jKY02BugzkO5jr/N+f539wHcyDMhTAn
wtwIcyTMlTBnwtwJcyjMpTCnwtwKcyzMtTDnwtwLczDMxTAnw9wMczTM1TBn
w9wNczjM5TCnw9wOczzM9TDnw9wPc0DMBTEnxNwQc0TMFTFnxNwRc0jMJTGn
xNwSc0zMNTHnxNwTc1DMRTEnxdwUc1TMVTFnxdwVc1jMZTGnxdwWc1zMdTHn
xdwXc2DMhTEnxtwYc2TMlTFnxtwZc2jMpTGnxtwac2zMtTHnxtwbc3DMxTEn
x9wcc3TM1TFnx9wdc3jM5TGnx9wec3zM9THnx9wfOQDkApATQG4AOQLkCpAz
QO4AOQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKv4vZ/G/3AVyGMhl
IKeB3AZyHMh1IOeB3AdyIMiFICeC3AhyJMiVIGeC3AlyKMilIKeC3ApyLMi1
IOeC3AtyMMjFICeD3AxyNMjVIGeD3A1yOMjlIKeD3A5yPMj1IOeD3M//5YD+
lwtCTgi5IeSIkCtCzgi5I+SQkEtCTgm5JeSYkGtCzgm5J+SgkItCTgq5KeSo
kKtCzgq5K+SwkMtCTgu5LeS4kOtCzgu5L+TAkAtDTgy5MeTIkCtDzgy5M+TQ
kEtDTg25NeTYkGtDzg25N+TgkItDTg65OeTokKtDzg65O+TwkMtDTg+5PeT4
kOtDzg+5P+QAkQtEThC5QeQIkStEzhC5Q+QQkUtEThG5ReQYkWtEzhG5R+Qg
kYtEThK5SeQokatEzhK5S+QwkctEThO5TeQ4ketEzhO5T+RAkQtFThS5UeRI
kStFzhS5U+RQkUtFThW5VeRYkWtFzhW5V+RgkYtFTha5WeRokatFzha5W+Rw
kctFThe5XeR4ketFzhe5X+SAkQtGThi5YeSIkStGzhi5Y+SQkUtGThm5ZeSY
kWtGzhm5Z+SgkYtGThq5aeSokatGzhq5a+SwkctGThu5beS4ketGzhu5b+TA
kQtHThy5ceTIkStHzhy5c+TQkUtHTh25deTYkWtHzh25d+TgkYtHTh65eeTo
katHzh65e+TwkctHTh+5feT4ketHzh+5f+wBYC8AewLYG8AeAfYKsGeAvQPs
IWAvAXsK2FvAHgP2GrDngL0H7EFgLwJ7EtibwB4F9iqwZ4G9C+xhYC8DexrY
28AeB/Y6sOeBvQ/sgWAvBHsi2BvBHgn2SrBngr0T7KFgLwV7KthbwR4L9lqw
54K9F+zBYC8GezLYm8EeDfZqsGeDvRvs4WAvB3s62NvBHg/2erDng70f7AFh
Lwh7Qtgbwh4R9oqwZ4S9I+whYS8Je0rYW8IeE/aasOeEvSfsQWEvCntS2JvC
HhX2qrBnhb0r7GFhLwt7Wtjbwh4X9rqw54W9L+yBYS8Me2LYG8MeGfbKsGeG
vTPsoWEvDXtq2FvDHhv22rDnhr037MFhLw57ctibwx4d9uqwZ4e9O+zhYS8P
e3rY28MeH/b6sOeHvT/sAWIvEHuC2BvEHiH2CrFniL1D7CFiLxF7ithbxB4j
9hqx54i9R+xBYi8Se5LYm8QeJfYqsWeJvUvsYWIvE3ua2NvEHif2OrHnib1P
7IFiLxR7otgbxR4p9kqxZ4q9U+yhYi8Ve6rYW8UeK/ZaseeKvVfswWIvFnuy
2JvFHi32arFni71b7OFiLxd7utjbxR4v9nqx54u9X+wBYy8Ye8LYG8YeMfaK
sWeMvWPsIWMvGXvK2FvGHjP2mrHnjL1n7EFjLxp70tibxh419qqxZ429a+xh
Yy8be9rY28YeN/a6seeNvW/sgWMvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb
xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn
j71/eADgBYAnAN4AeATgFYBnAN4BeAjgJYCnAN4CeAzgNYDnAN4DeBDgRYAn
Ad4EeBTgVYBnAd4FeBjgZYCnAd4GeBzgdYDnAd4HeCDghYAnAt4IeCTglYBn
At4JeCjgpYCnAt4KeCzgtYDnAt4LeDDgxYAnA94MeDTg1YBnA94NeDjg5YCn
A94OeDzg9YDnA94PeEDgBYEnBN4QeETgFYFnBN4ReEjgJYGnBN4SeEzgNYHn
BN4TeFDgRYEnBd4UeFTgVYFnBd4VeFjgZYGnBd4WeFzgdYHnBd4XeGDghYEn
Bt4YeGTglYFnBt4ZeGjgpYGnBt4aeGzgtYHnBt4beHDgxYEnB94ceHTg1YFn
B94deHjg5YGnB94eeHzg9YHnB94feIDgBYInCN4geITgFYJnCN4heIjgJYKn
CN4ieIzgNYLnCN4jeJDgRYInCd4keJTgVYJnCd4leJjgZYKnCd4meJzgdYLn
Cd4neKDghYInCt4oeKTglYJnCt4peKjgpYKnCt4qeKzgtYLnCt4reLDgxYIn
C94seLTg1YJnC94teLjg5YKnC94ueLzg9YLnC94veMDgBYMnDN4weMTgFYNn
DN4xeMjgJYOnDN4yeMzgNYPnDN4zeNDgRYMnDd40eNTgVYNnDd41eNjgZYOn
Dd42eNzgdYPnDd43eODghYMnDt44eOTglYNnDt45eOjgpYOnDt46eOzgtYPn
Dt47ePDgxYMnD948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQn
EN5AeAThFYRnEN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRn
Ed5FeBjhZYSnEd5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSn
Et5KeCzhtYTnEt5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTn
E95PeEDhBYUnFN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUn
Fd5UeFThVYVnFd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVn
Ft5ZeGjhpYWnFt5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWn
F95eeHzh9YXnF95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbn
GN5jeJDhRYYnGd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYn
Gt5oeKThlYZnGt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZn
G95teLjh5YanG95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYen
HN5yeMzhNYfnHN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfn
Hd53eODhhYcnHt54eOThlYdnHt55eOjhpYenHt56eOzhtYfnHt57ePDhxYcn
H958ePTh1YdnH959ePjh5YenH95+ePzh9YfnH95/fA4APhcAnxOAzw3A5wjg
cwXwOQP43AF8DgE+lwCfU4DPLcDnGOBzDfA5B/jcA3wOAj4XAZ+TgM9NwOco
4HMV8DkL+NwFfA4DPpcBn9OAz23A5zjgcx0urW/64r/PecDnQPw/PvMxTQ==
"]]},
Annotation[#, "Charting`Private`Tag#3"]& ],
TagBox[
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJxEnAlYTl3bhnv2fqYUGaIkisg8FRWhRQiRQpJE5iQUmSJChpI50SBCCmWe
QqKQEkmGEqISKipzpv7r3cv9/f/xHcd3nN//vtTz7H2vte513lfraQvGzBQ0
NDTy6mlo/Pff97L/+z81myD7ELemiYzdXSrm5YGt1jSx+o8Lhnx2889UM1+X
grjzYEUbx2VtbqvZ0a77m5SDU8ZZtc9OU7NiceaaVroyFpGbNXtpqpoZPOtU
NQZ80qJ9n7ZX1WzsqepJG8E/7s6LfHhJzTZvuJB1BXx8bWrI2vNqdnPSSqtq
8MEv/TV7nVGz32aDjrRtKmNnp2s1fXtCzXprqnVdwXrJI5KijqvZvKJ7a7aA
s4KMcp0S1OzI+V1VN8BVv5NWa8ap2cvNru7fwN3+GFxKi1UzvWlGdzs1kzFj
ZejygBg1G231xmoKOKlf+/Q+UWq2qcHxI7vAfnOahH3fo2bXS31074DNfiyt
uBCmZrWXLdb+Bpt+X3ln6Q41M9vxu6qHnoytaGbfqe9WNfOaneY+E5wUr9Xw
b4iaHeq/6W4E+Hv0u2XpG9WssIlDn/vg85u0Z4QEqZlueZN4QV/GHkcffDBm
jZqNvF6gawm2PvYkxXCVmq0P3792LriX8eNO7/zVLMV7ZvV+8HOtu83OL1Wz
b4M6T34E3qxXFrjOT826Na+5q24uY3Yh4zzH+qrZ7KoLffqDO9sNyW47X832
31oZ7wt+kf32+HcvNcuPGtT0CPhrL29l9mw1a7hQve4ZeIm5WBg7Q82GD7tf
3cBAxiybveywfKqarWkVNtkW7HyzW5XTZDW7/MU1eyn4WEr7rl3c1OxTllHf
RHAfg9+vVRPUrHPsm/hX4CPBRdpvxqnZ9KXHmzZtIWOHxiiT0p3ULHqU77rh
4Hlj4m4cclCzxyaWNQHgPr9rhq+3V7P6P39PPgNOnNBmiOcwNRv6IC27DDxW
Me/MyCFqturIpr4tDPE89NLcYTZIzS6udEgYDT53rNur5jZqhoevWRDYPK3p
fqGfmnXo+GzdJfCUWd+zK63UzKNuf00l2LZp/Tn5vdUs4vHMKa1bylj0y+0L
b5mpWe7xzvecwROnp7w7213N6q2t6RsC1n98L+tQFzUbNOFiwjXw7q9/9HZ3
VLMV3QKafQb3bhaSs9FUzc7KbYPat8LnqXeyeoWJmlU+U39yAy/2PObva6xm
bU/fn7IdPEt52duzpZq5bwy7dxPceKXhbQ8DNdvtPtG6FjzxdcMNE/XU7L65
8dGuRjJ2+tmT4866aqaqV9ZsGjhm7wmLMY3UzObV8aBwcP+n+e0cG6jZsgu+
+EpkLPVF+LLRWmp2KtTSow5cEdCpm6Nazd5P+3PP3FjG9jV5MmSMQs1a90m3
9gQ7BT2/5iyo2USd4KPR4OgBa/ZOrFOxnW8c9HLB5/uoH3r8VrG7V3TXK1rj
+f5y3suzVsXEnc8+9QF7Ls2Z6vtNxfp5HvCYD7YeHXlhxWcV8xsw6/5BsPOO
SZ4bq1UsSbdLv6fggvxJS8I+qNib8pqjWm1kLH5ocdHBchVrdeOiHgO/C+x1
+MxbFRu/J2C9H3jnmai09FIV2zbP9nMC+GuIR98nr1Usw1Zz6guwTf/seuUv
VUzDIOd+IxMZUwV2MK8rVDGr6rB+Q8H5oalnmhaomO/ticf8wZeMnm/q+kTF
jkUb658En1uSeW5onooVLyxbXwKe55TXe+oDFWsxPPGzXlsZi60eohVwT8XG
Gi2cOhJ8oen8XpFZKhb61TInEDxKiDh1KUPFbt790+88OGOp7ur8myr2Jzb9
2Hvw0wvd9tfeULHey4L1W7WTsYarLRoapqrYfIfRG8aAfRusyLW5qmIofl82
gH8YjyyekaxiRT+fTb0C7lJdO3DzBRXTyz2QUwU+a/a46sxZFXOMn9W/rSne
7xbdKwpPqdimgC7HJ4At3VzNlSdU7MbYT/pbwEaGRzJ6Hlex2o6XNtwAOyk8
4ycnqJiZxqovX8ErrD7lhsapmNcT22md2svYQ6e9Q68eVLFDiZoPJoNjZ5+Q
f9ivYs/X5vTfBX6lGaxltE/FdF13H88AZwwMmDgmUsVGdXdr/hs8dcer6g17
VAwPy8YeHWTM5LP6/tUwFbtWWPZlBnhNwciazztU7NvpxGkR4LXdxIldtqlY
900LH9wDTxi7TjUrVMVmT7YaIHTE82bUrvZAsIod6PX3uAX4WDHr9mKDiuXX
u9l8LjhxSvcjBkEq1uh18Mb94LQHwz1c16jY8Iujv+aBc0rfu0WsUrG1W5pO
V3eSsfmpc/Y+W6Fil6cXPugH3v7DpGnL5Sr2uU/sAF9wg+hFuR5LVKxzw9mJ
ceARHc9lxy1SsRllXbDEyditnQOVlT4qFn3108YGnWXsav9lAebzVezxzktf
B4FvyM73XDlXxerPWTV9Kdi9g3Ob254qNtRmMEoM1jvvCw6NZqnY6qb1bF6B
H/60uOA+XcUuVuQk6nbB872g94TjHipWfWO3wXDw8oKGvX66q1iHvW74imXs
/rkOw0e4qdjU+a2/nQZrVj0Pj5qgYhGD304vA68s3WL40VnFHhok5Rp0lTFX
j+iCgWNVrF7NQpvRYKfoOffCHVXMNsMqaR3YjLl8rxylYiv2/TW4BN48NWP8
YHsVO7fo5qZKsN06w4roYSpWOTzkm3E31OPdyWe/DVGxdsaOM5zB1l9kp5xs
VQyL78NgcI6na1ESU7Hw7EKba+Db7dsO1BqgYvcPxiZ9Ak/Mvf1ojrWKqZbP
btG+u4x99jkSkWmlYvjhgt3At1Z22NbJQsWWtfv8bRvY7/GZc6HmKnbq16UZ
N8FXbh3XrO6hYu9zVz38Aa4v+G8Z103F2iQMZl17yFi/hCCby51VbOKqeiem
glvYmBu17qhiu8Y9aBEObn/hQ+dgU9SzTuHBWeAuMw1nfjJRMbls0ve/4Hda
HbImtUY9e9p6pnlP1Ivc5RPvtFKxxUlvH84G9x6yomlvQ9SzdUksGvzWLfzn
weYqVua66MQDcLFvb83GeqhnPfoYKsywHgxPZ2t1VcxFWRfcB5xb7/iBz41Q
z57f/D4PnGg7ocMsHRW7cyZk5kHwlzKLpwXaqGfBjnlPwPNHnk10qKdifaY0
G6hljnrbo2/CTRXqWe/nJ2zA7metMq0VqGdaBw39wIddDXXOCahnr2eHJID1
tMYu76qBenap64/n4LTG9qqEP0o2buvnmY16yVhwq0WXTH4pWeiM5Lwh4PwB
fUMP/FCyW31XD/QHO5TprG31Tcn+NBxy8gTY6/30iH2flczibb2WJWCLVUdy
W9Yo2fyUByF6vWXsm/WwTvs/Kln8rvAf9uBcg8sHW1cqWdGcSbMCwRsXzesb
917J9FmbR+fAenV51R3fKpljs3cD34N9n0y5dbJUyYIrk062tJCxtgvXXbQo
VrIbaYtajgE3OHb69rUiJfu5t8/mDWDN8+6f7F4omdmCuh+XwTEdfvV5+EzJ
5g65NasKfPrHn2j3fCU71GLzIxNL/LxLnxmUP1ay5zWOgyaAC8cqzi7NUzJs
/rBkYv2M+jxDmatko2Ket7wBNkk26BF+X8nW+x3c/BXcdFF1k/bZSnZthGdt
RysZ6/ShXCc5U8m+G3dDyQLHB5qMzFCy7t8/P9oJzljZweHVTSXzvJc8KANs
H+e6bXGakh04tPrUL/Dos5vLtK4rWcHyIXhkZGxBmMXYQylK1shRK3QG+Pv2
h4+sryjZCNPc2r3g/fb5Xo8vKdna3+Gz74H73riu63NBya48nPRY1hfPyzDF
Q61zSobF0tYCPHOH0cGE00rWZfW7U17g9XHBQUNPKtkM5xOt9oPbvU1Z9iZR
yfZ19gvNAw9qZLlq/TElwx/2U2WN593SJ8w0Qcka5NfN7gf2ull6+U6ckg09
ceuxD1h3ZcOauYeUbHXQZts48PtlCywaxirZxYlOpwvAj7qsCjkfo2TVPfSM
GvSTsRMeyZVu0UrWUfUidBD4h3nMJDFSyaa+OPhzCXib4bGC43uULPKsp+dx
8OyyidOddysZisuTIvDgs91q63YqmZbHF1vd/vi8fh6KPL5dyWwtLp8eBl60
qY/dhK1KtlI70CgA/HTV/L+KUCU7Vzxky2lw7ti01HPBSvbhktavN2D1w3Mh
MzYqWbttuZ4GA1Dv9W9PbrpeySbP3PPEATwkYol1xlolC7d2H7wObNfCztg/
UMlyGpmcuQj+dPGSdrdVSqZ6986oEvy3cKRGyQolY9dObDG2wflk6Pqfe5cr
2bIwv1/jwI/qlf4cvVTJTnv1nRMMFkIrNNSLlew903iaAs4NbKV9Y6GStdG7
PfgTeHxNXYsVPko28cPmM6YM74Nlkx4W85VsV7qTsRtY/qfQ7tNcJcuO0Nu6
DXxxwMtpJ+comdznxa908KlhMYHzZitZ/6GH5vwAP7p44ECXmUq22HDO0y4D
ZcxquVda5TQlO/Gp25Cp4OeZgW+SPJSs7M6XM7vBPhZzNH0mK5nR/svGWWCt
qKNdzScpmcviwK1/wdVt7jh9d1Wy7fZDcYSTsZHD7BdfdVGyO621vWaDP+Ul
71nrrGSyH7lPo8DGLyIvDR+rZH3u7xnyANwvc/HTRk5KtvCwO7bQMhZm//Dz
Mwclw2atdR+w8Uyr+nEjlazE8f3WeeCBM3qY+IxQshbtT/6OBW8oHdS73zDU
sz9+2MJgf33/xyDNoahneX3z6w1GfXAptH9qi3p2VANLMD4vDb/RRwYq2d/V
t88uAhvvGTlqiQ3q2fjQ1glgPYuqwXb9lWxBlzHbnoNdB5X1bm6NeiboowTK
2APvq0aVVkr2Kv+F1xBw7OnfsusWqGcnD+UvB39wMXse1kvJnNbPGXoCHFnz
LsnLDPXMrTseQRlr5Ja4ZGAPJUvr+bW13lD8PFfUFs27oZ6prmyzB/daG1JR
01nJzF8G/lkN7jH3Wvjdjqhn54biP9jP+fe0PNJeyQ6HaBe8A6/97ZO9ph3q
mcfDoS3tUC821Rs/2UTJmlruPecEFus251m3Rj2rP7nNBvDDDesGGxgp2YYS
k+2XwbIdqxNqDVHPkt//+Qie+qRBXYEB6tm2k3NNhsnYNZfrdlf0Uc9mLS5w
AR9yN1m7rxnqWT9ru1Bwu2UZSYG6ShbbWHb+OvjIqn5ZMxqjnr273eYrOHpb
46fDGypZ49TQ7R2HY/1v+CyvewPUs91j/rqDHyWaXG+mrWTr5up77wTPdQmM
+quJejbwZcFt8Mlha2a+VSnZF73Ddr/A3eoutsxVoJ59nHO++wh8XjYX0q+I
SjbzZneTGeDIxg1c4mWoZ5Fft+8Fh9xxerqrTsGe+Fz5mw22/9pk8Jo/CtbA
bo23zB7v/8K30Qt+KZhdS7tnvcGRk6a8nlyrYKs/aw/zAjvo6TQa/V3BLmU+
PB8DPjcspDP7qmDV+/ea5IFnFc7oYfZZwToumbxDNRLv7x8zo3Y1CobDQp01
WKNN8Hf9KgWLbFPu7QOe9efXpfofFOzhj5PPDoOPbjKeLlYomFbO4mEF4Hl1
m7/WvlOwwXHWF+qPkrGWr/IW1JQp2MoVsraDwJcrtuS+L1Ww804ZO5aA97dz
NCgpVrAP7bfUHQOPzzs1/MUrBTP9O2ZeEdht5dAp+S8VbPIj/cImDqhH7+Mn
PnquYHuOvRw2DPzS1Ns695mC5QQevrAS7LC6kywnX8HULl5tT4NDA/2P33ui
YNhc4UiI/cGPz33uPVKw5eK3uuajZazn926J9x4q2OmCK/McwCZ302U5DxSs
/OSawrXgXXL7vrn3FQwPH7bkMrZlkbvzo2wFc5tU/2IFWLdD2Jj8LAXbZZbX
1tgR64fvpp4v7ihYtjpi5zjw1Fd5NcW3FUxeNBlbIhnrOqjhrvc3Faz/+bbz
U8Cd4p7q1qQp2JLN5YU1YPPxN5fUXlewE1NPDTd1wn7ulc8lIVXB3louwZKE
eqGzrEA7RcGwGLXbBk4s9yvQu6JgE0plKKn495OFSybJCrb9cobGD3Bt3VW/
HhcVLHP7lvldxqCerrHRGXBewWSzxz73+I8HmG4ceVbB+vZvjkca+1e/+s/d
TivYwiZFFzPBf2N21Pc+qWDH3x9u9xe8dvHoFgFJClaS6rXLbCzqy4cS+bbj
CmaIzels8BCryszYowo2zvvb/Cjw5psKr/PxCrZl0NXnOeA7/e6XZsYp2C39
tSPk47Cf21jSp+iQgv39aHfJCmx5p8Tza6yCWdyqbzoPfGrSPF/tAwq2ICpv
Vyx4TFGrsW1jFCzeN0L2BHym3Z76/aMV7JXdlAX1nGXsAFt8YHykgjVv1e7F
ALB85QQt370K5vSlfMQi8KHJr0aFhitYSNapS/HguqOJsxPCFCztwBLT52DD
ie4Tbu1UsF9L+oU1HC9jHnE7jUq2K5j5KEEYAnb9XXlVtk3BvE3uLFgOjtKs
36P1FgU7XLvlRRI49PSuZQM3K9iLnLH2xeC+jduETwtWsKZHmic3c8H3v851
U9BGBXNYWWRqD+6/u9Ahfr2CbRgTF7YaPLPxiPdZ6xQstcNc4Rw47M9Ql6o1
CobNvc878Iadfnt1AxWsx+NvLwwn4P8/ZHFi31UK5nn8qr0TOCS9YufUlQoW
u2Zt8nrwyhp/+2B/BUPxa38ZHFV56/HpZQrWuFuD3R/B6no+PQuXKJi9/JFg
4orz6RPDyYrFCrbuWYSPC1iu5+PWY5GCXT015eVmsGZG/Y6TfBUMh/2R18Gf
mkfe3rRAwbq6VyR/Aev6J5tfmKdgM81Pt+848b/+YUOf0rkKFqO5dLc7+HXL
wSuaeKGeFfUTd4Jth9WOs/VUMJ0Lgu9tcO3Ix78XzUI9C73z8ifYKz5gYdwM
BQuctnVkdzfUE829559OQz2zGnd5OniHa9atelMVrKaBAY6YMtbwwuWDA6ag
nr0p2p0N3uKrM3KRu4JNuxInyiZhf6674EaCG+rZjrm+vcErJwUKRa4Klje7
J7b4Mra7X3mDZhNQzwZ8HxkDPvJ8bNmo8ahnuimXH4IXRszYtGEc6ln52g4q
dxnzlt/8kjoG9ez6MGyxcB4vad75p6OCfQxvIPcB9+3ZoHPv0ahn8x75HgbL
DId/8RmlYFNsI4vywZuVizYk2aOeNffAEofz0cZer8uHK9iDqnZXBoIrPC3k
HYehnt2u6LAEXJfQumr2UAUbGH06/BhYtXx/bPxg1LOFS1FisN70d23xbpCC
nRnWf2GTKTJ2d+sPt44DUc9aiXhFZKyzZfvpc20UzOTrnVErwSt7betxoj/q
2d2tV06B9S8+S6+xVrCw2HEd34Dftj5naNEX9WypAX5EnD/q3e67wkrBFA6v
5A7g7ZZXWt6wQD1re2ThWnDUoQG3VL1Rz37OfXUBXLX8V4/R5qhnD3o6VIA/
6e3z2NMT9ezI9ytGU3G+0c4Z+6q7ghkHpHQcB07R71+vUzfFf32UPZvAQrdd
6/y6KNiOjsMVKeD4BQGpqZ1Qz+oaLKoBl/RMSNHqqGDCk0ev2k3D/q82NWBC
e9SzxEiHieC1Ab51ce0UbNFaj6tbwZ6H5gz6YoJ6NsG0Uzr44FrnobZtFKy0
W+We7+B904rr7TJGPVOcUXSZjs/7csq2klYK5ly4dJEHeI357ke9WqKene7/
OgycdahZwYYWCnZ7ozg6E2zfpDq6oDnqmXvm1T9gw+Qco676CmbZa1snsxky
VvBr+tQ1zVDP6jnvnQVe6es29YmugiW8MlBGgQcUzTDq0gT17MKrRTlg7z7d
o9Y2Qj3bcuS1OFPGRh2a86hAB/VsuvdoK/C3+elZPRugnvUxS/EGd29ZGRCi
rWDpOj86xYKHu+/6UFIP9exNyt7HYFn9Oc0HaCpYr6vrlPVmoZ5ZtZRFqFDP
dg73GwBe1tzj8BeFgsV56hQvBG/QLxac5KhnAx6PjgdvuTvW8ISgYM2aRqUU
gsd8m1mtJUM9q/Do3HA29jMhmau86uRs4w3TiMHgBke6Z2T+kbPUPZXK5eBG
4cMzO/6Wsx/zzvglgQ/n3QkK+SlnPQYvw5FfxphiSm3FDzmbYzDAsZkn/vy/
KaYO3+UstlrEkVXGmqfu0T79Vc6e3c7svBoc6BdzTPeLnDXety3iLFi+LEhj
+Sc5s1/krHoH3jL6d/2X1XK2bngLHBlkzDHp0kPbKjm7avS62BF8YoG3w7EP
cvbl6xHH9eBGsVmBjSrlrGu297VkcM7SDXOWl8vZrINm2LLhzx8/Vl38Ts5i
lv2IaOMlY8szSyfZv5Wzpw7XVC7ggM0fZ51/I2c67YIWbwbfCWxralwqZ8N+
DceSif1jct/IzcVyFpir4/QF7ObzJu37KzlLjn98rcNcGfulVbB/RpGc1QRE
dXEHj2uZ1ePhCznrNG4qShbWV495i9lzOZvWqb36NtjtytJ5J5/JWZTGh8U/
wQk2MfpGBXKW9+RMSTdv1PMO4Uu2PZUz7aRleGTw/j/X3ajxRM5wGEzdA25V
njN84SM5C3CV41eWsSDtgGulD+XsfPesSI15eJ7bPyx1yZWzj4rt6t7g7sPW
X72bI2dYLJfMAcccGTmE3ZezKWdalO4Dhx16uep8tpzt3fTa6SF4TWaNZ+e7
cvZgcnyqcr6MdcjuJx7MlDPN3vO6WoPXbVoyqvkdORuoZR61AHxQPt5ux205
83/9Q30YvGXBzmrNW3J25uK1Jfn//futS4atS5ezii1BpdoLsN5E1o3+c0PO
sHkeMxC8fd1+xbLrcjapb8Pri8HuJ/3nfL4mZ2ENn3Q9Bt6nN3zFghQ5u1cW
FfUSfOVlWt/KK3KG4qLZxAfn49EH4udclrMBu9ovtQM/L4y48faSnC2Z86F0
BVhu5Llp1kU5O2lzdswpsH5h+q835+XsbdPl10vBJj9ntph1Ts6MKwd0a+4r
Y7e3qN6WnZGzCWny6FFgw5ypkz1Py9mOvVmaa8ERrbqtKT8pZ5nzty+9AP4s
mo6ed0LOsNl4Uw7W6CbeqU6UM+sWhmONFuI8snB1hd9xOVtU8/r6WPDW++OS
a4/KWWJGfLdN4Nkz+/dcnSBn+DKir4K91nweo4iXs5Z+5vVqwN67erYKjZMz
5xG1S9stQr01O7OzyWE522qc+sYVrGjZ41TUQTm7/S1o7FZwN4tZS9rGylld
9ogbaeAhm3TeJO2XM8tDDbt/B3vYvv1lGSNnPsufRHf2k7HVKQmX06LlLGF0
dD0PsN9CndYOUXL2ut20ZWHgDPFpt2cRctb8d/uyO+A9VldKZu2VszEPP4z9
A173Z6nNl3A5C0k4e6PnYqyPMzIHrt0tZ+mrluMIh/3B4bnlDcPk7Nc4m32R
YNaiRZ8DO+WsV2cFjiBYr4aFde2xQ87mye4uE5fgPPZoV8b1bXIW93R7mSXY
JPiJcsxWOXuZNH6cN7iDS/OKklA5axZkiC0g9p9jm/st2SxnoycWd38Mjrqw
K1YzBPWsR8I+zaWoZ0VDFu3bJGfXlfO1BoAPOHx413Mj6tlzcyzB+H6O2wkZ
6+Ws59nasiNg3+uNUycFoZ4Fp44rBO9coW30ea2cHZyyPk1nmYxNq/rUOmQN
6llve5RAGWs6JiijdaCcNdFuFLMMHPFnlc7lVahnxU+0ksD+C2JrxwTIWdCl
6OWvwZnDjq2vXIF6tnUaHkE8nw4Tzm7wl7OvMzo4jwDXzvJa23o56pn1x7RV
4JMx+z9dXYp61uhcj7PgkSYXRdclqGdvl+M/+OeH+Jz/6od6lmKjbegvY9n+
Iapdi+SsYZjC3xF8csKt2h4LUc+87r4NAttGvNqc4yNna9gO52Rwpn50yvwF
qGfNXNI/gDWfXNzaYL6cfao07NlmhYxZf/r894Q36ll6ccx4cPmphg0c58rZ
9IgE7c3gF0vvX6mZg3q2YL5/Krju/gdVmKecPRrS691nsJ1H908Ws1HPDH86
d1iJ7+f7WP9nM+VsyKfU9EnglLWGB1bNQD27s77nDnD3RiOmm0yXswsx9vtv
gVs82pd+ZyrqmV+j+j/B/VsVXJ/vIWft7Z/6dwtAvZ6eMrHpFNSz1vveTQM7
9NXecdUd9ez7tPF7wEcnbJw+YxLq2b0ON++CS8Orc7XdUM8Of+ypsUrGjD9q
Pj/vinrmf25/L/CqZbvXTJmAeuboX38OWO3rnKbpImdnTdmKfeBwc+2Yc86o
Z78V73PBl/ut1PUYJ2dt8+6OV67G/rOjZzvtsahnR3fc7Atudmnng0tOcrZ7
tYvZArDl7WtNZzminjm3PHAIvH3MyS9NRsuZsktJ/Xxw5Yr289JGoZ4JR1do
B8rYwDXlq3xHytnS/PnvGXjvjSsdW9ujnp3o5bIY/OvK5Hm5w+XsXdDPm0fB
zjp7hq8dhnrmdt3sJXiGf4dr5nZy5tpzw4HGa1BPC59kvRmCeqYa2cAOrNdz
1oK9g+Us60WjlSvAvnsjj9vbop6de/r+JPi6g9XquoGoZyH7XErBS06J5WcZ
6pnHdBwJZWxEnxsVnjaoZxYdzUeB2wb1Dmo1QM7eaFcdWAOW27c7+6gf6lnJ
uQYXwFWznJdttpaz8cn+2JLLWF5OSN6gvqhn27DlXYf1OTrk5k8rOcuYqcSW
EucrwcD+rCXqmXX2rY3gO85/Z3lbyJlV453mV8GzNP/omfZGPXvnElsNXn2i
0P2VuZwdvdYSSzqery9TrKLMUM/CSla6gg2OjY4f31PODOYeLd8Czr7sc6xx
D9SzgQsmpIF79AwemNNNzjbr9UZJxX639xTv0K6oZx9+mndeL2MXGyR3GtFF
zn6nX4+dAt5i7L5S3Rn1LHKDThh49IdGUzM6op75jMQjLWO5ujH5Gzqgng1t
XPH7v39+3J3ioe1RzwzzJ/TcgHq50WW1yhT17PO+2zPBo440PnGnLepZ5nT8
kXi+bl+fH2IiZ5v2dzx4H6w07HhjZBvUs8VVOuJGGYv91jhOp7Wc1dqfD7AE
G98cYpBnhHrWZkXFXHB7nWDjPa3kzOsHcz0Adl59+KJbS9Sz+8qMR+DuBVOK
jA3lrPBwdi/NTTKm/XftnjID1LMVOw/2B/+teFyU2FzORjpNaLgQnJpifGmR
PupZ+1arjoCjj3U2ttaTs5Q/JRXPwB7KVD2xGepZ3lFXnWAZsxl4KOaurpx1
O7YgwxZ86+2Bc2FNUM8Ce/deBr5yMNB1cmM52z/+18FEsJ6l1pYOjVDPutxo
+Br8fr3m6M86qGfixlVNQ2RsUOjg/dcaoJ4VjKwcDjaZvj4gpD7q2cnGE1eB
59jsfj9eW84ur8/POAO+6Nu/xEQL9cwtpvdb8PRZdl41mnLW2WzGoRabZWxq
3MpVqWrUM3WnRo5gs4dHjLaq5Cz6ZdWqIHD28W2j3JWoZ+fOV14Cb9SWqbsq
5Kz+5hUTP4Drl990+COink0deKd1KN5X57jW9wU5W2WpshgP7u7vHbhfhnpW
/96hEPC3/aVevhpyVlWys1Eq+EKH/Fe2dSLDYX/1Z/CKHY2Km/0Vmcf2Vh/a
b8H+b6Hb/PLfIts7q3TiJPDCgMD1136JLLffsTvbwUmB9u13/RQZNkMWt8AF
0zeO9awV2aD3vQ/XggM61mkO+CEy/9Rfjbptxff1MWCE7neRnd19Y/U0cGT5
fd2KryLDw/IhHNx9QYpn2heRtR00CkdMGRv7Tndo5GeRues3yawDmz4/kLjw
k8h2f8y36LVNxt6Ud4m2rxHZ/Zsxhz3BOfeDdNtViwyHI2zxsf+f5Ne07qPI
bHw7BeaCHwdmxBR8ENlSu+oPiu0yVjZ4xKlzlSI71fKCW19waead4dsrRIbF
A1ssGWtirzPXu1xkrbMGWh4CD29Z3mT4exEPswpbBBl7daLdYNN3Itu55F5j
7R3Yj27c+kt8K7KskbsCGfjssJo+xW9EJpq4fvQDr080qLteKjLr2lYo0Xie
NzwdcaBEZH45pZkvwD1vfjEMLBZZYtwxy8Y78f552Sz2eC2yNyt84oaCB0QE
jR34SmQtx1jgFcF+buOOi22KRDa+w+/Ak+DxG8xj5S9Ftu3vjY8l4Pp1lg3f
PhcZXrZJ+rvw+y3ylmcVikzj+Cj8iDJ2anVMQNIzkftw4ILHUSt2FIjchwOP
GGT2d3G+yH048JSj3RVuT0Xuw4Xh81ZN286eiNyHAx9YuGe/6WOR+3BgHb0Y
s/qPRO7Dgdf3HTz8y0OR+3DgVX0nlBTmityH243nJTRB4+YDkftw4O8pYmxi
jsh9OLCtn9XN3fdF7sOBN3k39Vp9T+Q+HPj4ijk752SL3IcLx+e1Vew/7q7I
fTjw/IQzc2yyRO7DgWveDNHvnClyHw78Y3noML07IvfhwM1POv8UM0Tuw+3B
/vGtT9eaWyL34cD7opJev7wpch8OvHtSYbN76SL34cAncjOzr6SJ3Ifbi98v
eZh4/IbIfThw5Pv2lyOvi9yHAwc7WNaEpIrchwOfqBiasOKayH04sEWhaZF3
ish9uAjsLx3id0++KnIfDpy5ee9dxysi9+HAez9lBdpeFrkPF/Ff/7rBeYtk
kftw4Ftte3t2uiRyHy4S+yvDBpGtLorchwNv2eM1oskFkftw4JJpLZarz4vc
hwOPnV7T7u9Zkftw4Dm7Uhy/nBG5DxeF84zoVFt+WuQ+HLh+4Uqj4lMi9+HA
j5wbpxecFLkPB951u7gk94TIfTjw7t2pa7KSRO7DRePvZ/7R6Yki9+HAfSaV
mqccF7kPB/66Pcfu4jGR+3BgWUz9/NNHRe7DgbNcfEoTE0Tuw+1DfUvI9E6I
F7kPB568tcLn8BGR+3Dgj60Sqg/EidyHAx9cl1ux77DIfTiw768+06IOidyH
i0F9fHZ2bMRBkftw4DvBja7viRW5DwfevbFdfPgBkftw4MpZaerw/SL34cCX
cy6X7o4RuQ+3H/Vh1eu+4ftE7sOBlwzR1NoTLXIfDqxVT+G8N0rkPhzYLiNe
PzJS5D4ceF3oTefoCJH7cAdwfgropr1/r8h9OPDdh5esD+4RuQ8HvpVvURoX
LnIfDhxQvUJxbLfIfbhYGeu4zW3/iTCR+3DgHgOOnj67S+Q+HLhllFW/5J0i
9+HAm1xeDEjdIXIfDly/z9zkW9tF7sMdxP6++YXj2dtE7sOB177Z0fTRVpH7
cGDT/Q+/FW4RuQ8H7uY2cnRpqMh9OLDLoLxWHzaL3Ic79N/9nvXMbyEi9+HA
Jntc22iAJR8ObH1JNr5esMh9OHDfuWqNpptE7sOBA/oOMjbeKHIf7jDW7/R1
FzpvELkPB35zMTbNcr3IfThwv0KfwYODRO7DgY0Ut62d1onchwOrjZckTF4r
ch8uDr9fx/Eh3mtE7sOBm5hZv/YPFLkPB+7m/jMxeLXIfTiw6WvPD3tXidyH
AxurJh1MCBC5D3cE+6NOR+9eWilyHw484Uq7OZkrRO7DgWf1ifd/5i9yHw78
zUrUqFwuch8O7OahU/tnmch9uHgZm+QZO7MhWPLhwB0Ntw0xWSpyHw480vXE
XoslIvfhwOE6jyePWCxyHw6sO7Bgz2Q/kftwCTKmIeywXbRI5D4c+OSyh1M3
LRS5Dwde/2LRp32+IvfhwO/97b+e9RG5D3cU+4Gk7l5ZC0Tuw4G3F39zfD1f
5D4cWC9q6dEf80Tuw4F3e25a1BAs+XDgnR/rTnTwFrkPdwznt+JzbgPnityH
A0+pt2r5RC+R+3DgETZmar85IvfhwDleCaqtniL34cCdN11cmjBb5D7ccZx/
D1lMSJ8lch8O3OH574SXM0Xuw4HLprye83OGyH04cPiCK5HNwJIPB74xaZq1
+XSR+3CJMqYISbJ3nCZyHw6sPdfv7rypIvfhwEuCtl7e7CFyHw78cG6e/rEp
IvfhwJszDMruTBa5D5ckY88c+rV55y5yHw6ckqlzTwWWfDhwUcN5Ze0nidyH
A4fV7zJ/mJvIfThwenLbGXMmityHOyFjz4263wlxFbkPB86caBKZOEHkPhz4
5e6CgvsuIvfhwPe1O22sGS9yHw4cofUhVhcs+XAnZSzw48+OVs4i9+HAta27
GE0aJ3IfDryvjeuawLEi9+HABgETHePGiNyHA3e4rw7NchK5D3dKxvzT+vWq
dhS5DwdOapYzrBlY8uHAA/bszew3WuQ+HHiZ8cIL0x1E7sOB58b00tk8SuQ+
3GkZy9dOzjszUuQ+HLjD0nyx0F7kPhzY7cfc/SJY8uHAvy6PPNJlhMh9uDPY
/9SO1R8/XOQ+HFj798Svq4eJ3IcD3zS07n/MTuQ+HHhq+r2qR0NF7sOBR86u
1NYASz7cWZyntvmEdR4ich8OfPWB+QaXwSL34cDVD3SK19mK3IcDn7V9GX9q
kMh9OPD3imVPXwwUuQ93DvvxqGQfLbDkw4Fnm/sv6sNE7sOBqw+GFc22EbkP
B458V3wufIDIfTjw6kY2n2/1F7kPdx7n5T7rIr/2E7kPBz4dEnysHVjy4cCu
A7qYjLcWuQ8HzosaIt/YV+Q+HFi79uSoS31E7sNdwH728pC691Yi9+HAU8a8
1jcESz4cuNUg90gHS5H7cBf+6yeFrVtjIXIfDnxzkcejc71F7sNdxH7ob3To
u14i9+HAxQvbJhqCJR8ObLs318zJXOQ+HNh18GrjDWYi9+HAxyaqF1/pKXIf
7hKez2y7HjU9RO7DgWdH6I9pD5Z8OLDGfedn7t1F7sOBddc/uxPWTeQ+HPh7
2ZqW2V1F7sMloz50bJ8vgiUfDjxne9wP6y4i9+HAs73zV/l1FrkPB/7RIsor
qZPIfbjL2N/Xy7xS1lHkPhx45Jn+C43Bkg8HDt/7aMvEDiL34cDTnOY02N1e
5D4cOCDg6eccU5H7cFdkLDfrZ38tsOTDgd2/nKgc2k7kPhy4VVpO3dq2Ivfh
wFqafZammojchwNrHL895ncbkftwV7Geho/b2Qcs+XDg8xnXei9tLXIfDtx/
6Ot+541F7sOBh7bfG//ZSOQ+HNgrNHWxGVjy4VJQ3w6Zx/u2ErkPB3ZMeGB9
uqXIfTiw8HqheY2hyH048I7Yb1t6giUfDiwbYWW/sIXIfbhrMnZ0qO7cswYi
9+HArRvO/vCluch9OHD/zvUfWoAlHw78o0OJ/nJ9kftw4LlHbt24oidyHy5V
xq6M3JH9t5nIfThwo9w2fQaBJR8OvPHLeNWGpiL34cBGQfUss3RF7sOBT08w
uNMALPlw1/G8jp9+eWwTkftw4MYL0upHNBa5Dwces0837WUjkftw//F7i6dt
wZIPB3abpRw1t6HIfbgbMmZl7mFyRkfkPhy4h3/ribUNRO7D3fjPV25fw8CS
DwfeOWH0u031Re7DgecGLLHJ1Ra5D5eGn9/S/1tzsOTDgTe+s6w/XUvkPhx4
f13ousR6IvfhwIFfx7t+0xS5D5eO59Vh0VYGlnw4cPuI1Dab1SL34cAmPs2b
PVGJ3IcDWy6b7NkaLPlw4C5TvZvPU4rch7uJ/e4b447JCpH7cOBbWa57FGDJ
hwOfevVl+hi5yH04cJXswdb9osh9OHBSk0y9D4LIfbhb+PMU1/72BUs+HPhB
bqhtsEzkPhy4eGWTsqcaIvfhwGea9igzBUs+HHjh+eu2S+oE7sPdxnln9aG/
t/4K3IcDX4i90KwZWPLhwAfH5m+e9UfgPhy4x9My94u/Be7DgQcvux6qBks+
XAbOD6G2+hN/CdyHA0/2c9BI/ClwHw78ZG/q4L+1AvfhwNHzFr9xBEs+HLhy
gUPxoR8C9+HuyFiyaUfr798F7sOBI9uUVo0ASz4c+NYfd4393wTuw4G/uS32
/vxV4D4c2Ltc3WsYWPLhMnHem/J9/L4vAvfhwP1XGj3+9FngPlzmf/XD48Qw
sOTDgcvz9xTHfBK4DwdOyYjz/VojcB8uC/uVy55uI8GSDweO2J+6/1C1wH04
sOb84AG/qgTuw4FbmcZZjgVLPtxdGauXWxNy/KPAfTjwq0AHKzlY8uHAWxwj
bdw/CNyHu/tfv//cgQuVAvfhwLK3K9wagiUfLhv7b50HC7wqBO7DgTcbbH9x
s1zgPhy43CHqsBFY8uHAI349uOn/XuA+HPjzkoYDnrwTuA93D/W6dZ+GZmDJ
hwMPmN7JeutbgftwYJaYfq28TOA+HLjH4tJIO7Dkw4EfDPDOOfxG4D7cfRnO
bX0nCWDJhwNfr+s20KNU4D4cWGjdcdW1EoH7cOCUcHWTlmDJhwPf1UyqW1Es
cB8uB897p2+2ha8F7sOBg86kF/UFSz4cuMbj68PIVwL34cAGf71a/ioSuA+X
85+PI091A0s+3AMZWzEi9uLVlwL34cBBJ1urWoElHw58b/7MpNUvBO7DgYsX
jzz2+rnAfThwQvKFP7ZgyYfLRf2zCIo/UihwHw48uiosXhMs+XBgm6o7f7yf
CdyHA5fYaRx7UCBwHw6s07hFYi+w5MM9/O99qRUj8gXuw4Fd16w4/eepwH04
8B//NeemgSUfDmywrUL7zhOB+3BgzdqIy13Bkg+Xh/PkT++UXY8F7sOB/V4M
bvrzkcB9OHDLalmaB1jy4cBPNwWlZ+QJ3Id7hOdZntS8O1jy4cDFN91uhj8U
uA8HXtrLN/1vrsB9OHBI2r1ms8GSDwdu/MbpWs4Dgftwj/F86b9MtgJLPhx4
zssxmgdzBO7DgRtc356oBZZ8OPA5+2WHFt8XuA8HLm5a/qHonsB9uCdY75Jv
bx4Blnw4cMzjjyvPZwvchwNfamR7wxgs+XBg5+aHJ4TeFbgPB24T82nQjyyB
+3BPZWyRi07gDLDkw4F7C4U6uZkC9+HAJR4Wn/qDJR8O7GMttD9+R+A+HNhm
itEJfbDkw+Xj59s/f+OGDIH7cOCvDx+c+XJb4D4ceEC+aY/pYMmHA8/f4VSX
e0vgPhy4W1lP44FgyYcrkLG+6Qk7T90UuA8HHmOwZ7wxWPLhwN2LX8zdni5w
Hw68qNnkhxpgyYcDh1/8EeybJnAf7hnOU1lbdxbfELgPB7afKKscC5Z8OHCw
X8/wW9cF7sOBS7po7LAESz4cuGeUw/OjqQL34QplLLvwz1JDsOTDgQN1qqZv
uyZwHw68xE08IIAlHw7c432LLktSBO7DPZexBWXN1eVXBe7DgTuvf2k+GSz5
cOCgXyNOPrwicB8OfHId87cDSz4c+J3bgbCrlwXuw72QMc/b9n97giUfDjxK
s+3F+GSB+3Dg3fPrpbYESz4cWDX4VdOwSwL34cDtCzdcqQeWfLiXOJ8FF51c
c1HgPhz4+ZG7n35cELgPBz68vUuQD1jy4cBTj5RMf3de4D4c2NP+4Q4PsOTD
FeH7LiuoX3BO4D4cOOB14VMnsOTDgUuOJldlnRW4Dwduc2qc82Cw5MOBS2dv
VV87I3Af7pWMvbcbpmkFlnw48M/M6S5nTgvchwM/9Ur71AUs+XDgTseGFMaf
ErgPB/avl9PQBCz5cK9lrFkjtivmpMB9OLDWUP9pBmDJhwPr9pqyKvyEwH04
cLDng7LGYMmHAzstOhm1LUngPlwxzmNlL6K1wZIPBy5z6V8enChwHw6c7n5y
nQos+XDgbzuazll/XOA+HHj0dqdIESz5cCVYf74N1lt7TOA+HDh2Zm6RBljy
4cCy1fmfVx8VuA8H7v3WemxdgsB9OLD/4Bd/VoElH64Uf9+AmM9/4wXuw4GP
Bnr0Wg2WfDiw23nF9bojAvfhwGEhC8IDwZIP9+a/9WT1RRlY8uHAvx7pmayL
E7gPB3ZJal4gB0s+HHhJ5ayCDYcF7sOBD9u9NtEESz5cGfbDi70ubT4kcB8O
bNOtNLwBWPLhwDWdeqTuOChwHw5sbNqjZ1Ow5MOBvQtvVe6NFbgP9xb7BVVe
jSFY8uHAlp59WOwBgftw4I5Xnz1tB5Z8OHBd2t5Lx/YL3IcDm/d3Lu4Olny4
d6jXlTXjzscI3IcDh+1wbGgNlnw48NLqMbo39gnchwNrZT/zsANLPhy497vM
r/eiBe7DvcfnqynkjQNLPhzY5cuMH4VRAvfhwF7zH82cDpZ8OHCn/mYtKiIF
7sOB/Uw99BeBJR+uHO9ftY37rwiB+3Bg86ln368DSz4ceJhNdIo2WPLhwA2c
nufv3itwHw5cPcnZ2ggs+XAVqI8d35cm7BG4DweesnL5YzOw5MOBBxq+004J
F7gPB86632yzHVjy4cChrm9HP9wtcB+uUsZurrF2cwdLPhx4uPbXxHdhAvfh
Kv/zl74O9gNLPhx4hKuRiQZY8uE+4Px7aKxd6C6B+3BgV3e/0/pgyYcDzxgx
fWrcToH7cODFnQUXM7Dkw4Fb3TDbmbpD4D7cRxnTv/uk8Siw5MOBB6gf5D/b
LnAfDrzCQqPUEyz5cOArjYf3+r5N4D4cuGRCaOZ6sOTDVcnY1fTjh3TBkg8H
/qAdnHZoq8B9OPD7SoWpOVjy4cDFBvL7aVsE7sOBr4+ceXkMWPLhqmWsvqVW
RXGowH048IfQp1MWgSUfDtxYI1FfDpZ8OHAC82q6e7PAfTiw05/PzqZgyYer
wT9f0unZxRCB+3DgYfuqY4eDJR+u5r/9hGlSYbDAfTjwb/OTv+aBJR8OHDB5
7hYNsOTDfcLnXdtv2q5NAvfhwNrxCn9TsOTDgYtU8Y+SNwrchwMPvywsHAWW
fDhw4sSfTq83CNyH+4z1fd0Cv8VgyYcDz8i2LdAESz4c+NXdCYEx6wXuw4E3
NN0+xxws+XDgx33vht0JErgP90XGarMqZJPBkg8HvjUm79TndQL34cCHJk2P
DQZLPhw41Ccgzwgs+XDg301EuwtrBe7DfZWxt5mPf40ESz4c+FTjpzUlawTu
w4ENvN91WAGWfDiwrVPFgcZgyYf7hvW37w3XY4EC9+HA1/bZjx0Elnw4cPyH
uVuerRa4DweeFSmqF4ElHw5s2ehLmhZY8uG+4/2/2ura4VUC9+HA68WZtf3B
kg8HLhqR4Pc0QOA+HPjT58zuvmDJhwO3dz/eSQss+XA/sF697jozbqXAfThw
12dmRTZgyYcDj4iK2vtshcB9OHDDpcN3LAZLPhy429WWmQ3Bkg9Xi/X0Qq1N
or/AfTjwl8RrX+3Akg8HPvhmVHnJcoH7cOCE2E0tA8GSDwfuYuS4zRAs+XA/
Zaxq73qb5GUC9+HAdkPrdRsPlnw4cGO31ImflwrchwNfUG24tR0s+XBg3eU2
87uBJR/uF9av/Oxx2UsE7sOBH9jrLPcCSz4cuMvXt8/UYMmHA3f9bOkfv1jg
Phw40+PV+KFgyYf7LWMjndN83vgJ3IcDu5ReywgCSz4c+FHLi25twZIPB66t
H9rl5iKB+3Bg65RWfWeAJR/uj4w59nAMkoMlHw5s6inTilsocB8OXDS1yf0h
YMmHA+c0m32vzFfgPtxf1L+VL9SbwJIPB14Z5BLYESz5cOCThhfM7/oI3IcD
a3R/1mYeWPLhwAGxh0fpgCUfrg77kfHfzp5eIHAfDpzc+ZTzOLDkw4Gb/j5j
9n2+wH048IN9RSMiwZIPB/YqaRbTHyz5cBo410X16fJ6nsB9OPDG7R2+BoEl
Hw48Lvjmjw5gyYcD7xj20eKet8B9OLCwZcNJX7Dkw8lQhxrNn9YMLPlw4JTQ
9aOvzBW4Dwe+cTppiQdY8uHAc7tnPFWAJR8OfPbUmYXHvQTuwwn4nJ872jmB
JR8O3Gn8WufvcwTuw4HXXG2/bx9Y8uHAGcdatxoMlnw4cK9LjvnlngL34US8
R8t2390Blnw48I3lD75bgSUfDnx+WPGkV7MF7sOB/b2P/9wIlnw48BVP7dzu
YMmHk+N7TXlT9HSWwH048Pc3eu0DwZIPB66auO5IB7Dkw4FnbFdPzp0pcB8O
nP5t4yh/sOTDKVAnf772MwFLPhy4Qv49L3uGwH048H7/eK8lYMmHAxuk5FkZ
gyUfDvy746QBWdMF7sMpBWbWovUKP7Dkw4HryoSqVmDJh/uPi15HZE4TuA8H
7uUcs8IPLPlwKqyDO/XDjMCSDwce/bJHSdZUgftw4BmrMjyXgCUfDqx39mrb
NmDJhwNnJFc3u+8hcB9OLTCPbFsbf7Dkw4Hntw7fZwqWfDhwq8qMnnlTBO7D
ge0nJf9aDZZ8OPDGmBG/uoAlH05TYB2eu/V4NlngPhx4lPW9yI1gyYcDV71c
1bc3WPLhwG/LHHVK3AXuw4F/LzBpvgMs+XD1UAd2PXGxAUs+HHjdnBF3P0wS
uA8H3iWfsigaLPlw4MZLvoy2B0s+HLhNdrnHTzeB+3BaAmvRuM2Ro2DJhwNH
O/obuYIlHw4csSUvWw2WfDjw7Oz6Jy5NFLgPB86ur5nuCZZ8OG2BNXCM02oO
lnw4sGxb2sZMV4H7cGD9m8zSHyz5cOCFZXXNO4MlHw5cXV7U/fkEgftw9XFO
u3l92Raw5MOBy6at/TIALPlwYM/z8kPVLgL34cAsoX3QQbDkw4E1TO/uGQeW
fLgGApusl/NCCZZ8OPCw6U3GJ48XuA8H/vpxqYY3WPLhwL/2PX/eCiz5cOAp
Y1pX5DoL3IfTEdixynad14MlHw780z4r2gos+XBgQ4ePNpXjBO7DgaNzfHUP
gCUfrqHACo73MhgHlnw4cKuUZk5qsOTDgc89/37p6liB+3Dg2uKLTr5gyYcD
+8VbtDAFSz5cI3x+GuOaFo4RuA8HDr1VZbMdLPlw4KdZ7yOHgCUfDlz2prXp
LyeB+3Bgz4qlr0+BJR+uscDSTt7NngWWfDhwO9Wft4ZgyYcDx9+qMMtzFLgP
B3ZNXZoUDJZ8OPCMO4EuDCz5cE3w+50v6/F9tMB9OHD7icF9ToB5Phyem9Bh
vjPBPB8O72lreb4hmOfDgaui5j1yEP7lwwnM9l5Vz1Awz4cTWKOdRW0Hg3k+
HP68ZvZDf48S/uXDoZ6YNw4/B+b5cPh9bunqzgPzfDg8p3Fm19uBeT4cnrMz
9pEvRwr/8uHwc9+1ObgHzPPh8Dzd//jUEczz4XBOj7Gyrgfm+XD4PYz+3E23
F/7lw+F9szAMCQDzfDiBNc1avNgSzPPh8L3ffL+lZoTwLx9OYBMbT8g7Dub5
cPg+DxwYMgvM8+FQpzwOlRqDeT6cwIwGs1OFw4V/+XB4Lga5JISDeT4c3v9x
d7KdwDwfTmDL/Ra1rA/m+XBYBw5aRd4ZJvzLh8P7X/R9UBCY58Ph7++5Q4+B
eT4cnt8DpXq/7YR/+XACu9bnoe0lMM+HQ53R7hvlB+b5cPicOv9u2RPM8+EE
Fnzqx90PQ4V/+XCob+d14o6BeT4cnttJrY/OBvN8OJxTM+rntwXzfDiB5Rid
71k8RPiXDyew8F3fz+8H83w4rN/jzs9wB/N8OJzbI+73bwHm+XD4efeZDCwY
LPzLhxNYvUNh8/eAeT6cwOyqZLedwTwfDu/1fXs7XTDPhxOYy/Yxnx7aCv/y
4fDfod9u7wDzfDj8+8b6txzBPB9OYKmJeyp1wDwfDt97pHP/nEHCv3w4gb2a
YHZxK5jnw6F+Tmow0QHM8+EEtswoq10DMM+Hw+/dbqjB/YHCv3w47GO/TrPc
Cub5cPg8jGUBDmCeD4f1s5+sogGY58OhrpTZrslhwr98OHyv6UdttoN5Phze
49VNTJ3APB9OYH/uT+3VGMzz4QT23HuxV56N8C8fDvs+w+53wsA8H05g+xIW
jBoP5vlw+L5K9X7qgXk+HM6Zier7BQOEf/lwOJcUt8mMAvN8ONQnP7sKdzDP
h8N7Md6llzGY58MJ7M4G88PF/YV/+XBYj+ql9I0D83w4rMefHn2fDeb5cP+t
s5MKO4F5Phw+Z9debz70E/7lw+F7azeg6Wkwz4cT2IeqiXP9wDwfDr//97lv
LcE8H05geevHBP+yFv7lw6EuVVQ5poJ5PhzqyYZ2A9aBeT4czpEpjxztwDwf
Ds+jRtEmLTDPh8N7fLddWU5f4V8+HM5JcSGeYWCeD4f3xahKxxXM8+Hw8zzq
9bwlmOfDoR7M63+vuI/wLx8O71NEeXE8mOfDoc7pt2o5D8zz4bDvOpu8wgzM
8+EEFttv/9/vVsK/fDh8j7tPxaWAeT4cnqNjOT7rwDwfDp+378spw8E8Hw6f
d/W1hTpgng+H+m8x9uhjS+FfPhye/ykBYjSY58NhvdlttGYamOfDYf+qbdim
I5jnw+H3UjmXVVkI//Lh8B49Trx3Aczz4fA95SryA8A8Hw7v6YxBiiFgng+H
uiMf4qwN5vlwAjvTuzojr7fwLx8O799GU/coMM+Hw345Ikt3Opjnw+H3bpb6
sROY58Nhf3axrPxTL+FfPhy+56FtNa+AeT6cwLaHTxy+Dszz4cCh3sftwTwf
DnXPoH93XTDPh8N7ZHPy0XNz4V8+HD6fekei4sA8Hw7ff4Q8aD6Y58Ph79E/
scUSzPPh8N5cX39JA8zz4fB8PZ8vzzIT/uXDCSwzfaTvLjDPh8Nz8VKomwTm
+XA4dx72SzIF83w4/HmR61dW9xT+5cPh5x3f3PsymOfDoW6tbLIyCMzz4QQW
kuaS6ADm+XA4t1dm/tYH83w4/O/3Rs0r6SH8y4fDvmRExp8kMM+Hw+/nYnBi
GZjnw6Hu/+i0yhbM8+Hw8wx8Ma8BmOfDoS6NbxpQ0F34lw+H/cm8i8cPg3k+
HD7vu/G1C8A8Hw7nwNtZs6zBPB/u//+b/nf65+jfoz+H/lz6e+jvpZ+Dfi76
Oennpt+Dfi/6Pen3ps+BPhf6nOhzo8+RPlf6nOlzp++Bvhf6nuh7o++Rvlf6
nul7p+eAngt6Tui5oeeInit6zui5o+eQnkt6Tum5peeYnmt6zum5p/eA3ov/
vSf/3ht6j+i9oveM3jt6D+m9pPeU3lt6j+m9pvec3nuqA1QXqE5Q3aA6QnWF
6gzVHapDVJeoTlHdojpGdY3qHNU9qoNUF6lOUt2kOkp1leos1V2qw1SXqU5T
3aY6TnWd6jzVfVoHaF2gdYLWDVpHaF2hdYbWHVqHaF2idYrWLVrHaF2jdY7W
PVoHaV2kdZLWTVpHaV2ldZbWXVqHaV2mdZrWbVrHaV2ndZ7WfdoH0L6A9gm0
b6B9BO0raJ9B+w7ah9C+hPYptG+hfQzta2ifQ/se2gfRvoj2SbRvon0U7ato
n0X7LtqH0b6M9mm0b6N9HO3raJ9H+z7aB9K+kPaJtG+kfSTtK2mfSftO2ofS
vpT2qbRvpX0s7Wtpn0v7XtoH076Y9sm0b6Z9NO2raZ9N+27ah9O+nPbptG+n
fTzt62mfT/t+OgfQuYDOCXRuoHMEnSvonEHnDjqH0LmEzil0bqFzDJ1r6JxD
5x46B9G5iM5JdG6icxSdq+icRecuOofRuYzOaXRuo3McnevonEfnPjoH0rmQ
zol0bqRzJJ0r6ZxJ5046h9K5lM6pdG6lcyyda+mcS+deOgfTuZjOyXRupnM0
navpnE3nbjqH07mczul0bqdzPJ3r6ZxP537qA1BfgPoE1DegPgL1FajPQH2H
//Uh/vUlqE9BfQvqY1Bfg/oc1PegPgj1RahPQn0T6qNQX4X6LNR3oT4M9WWo
T0N9G+rjUF+H+jzU96E+EPWFqE9EfSPqI1FfifpM1HeiPhT1pahPRX0r6mNR
X4v6XNT3oj4Y9cWoT0Z9M+qjUV+N+mzUd6M+HPXlqE9HfTvq41Ffj/p81Pej
PiD1BalPSH1D6iNSX5H6jNR3pD4k9SWpT0l9S+pjUl+T+pzU96Q+KPVFqU9K
fVPqo1Jflfqs1HelPiz1ZalPS31b6uNSX5f6vNT3pT4w9YWpT0x9Y+ojU1+Z
+szUd6Y+NPWlqU9NfWvqY1Nfm/rc1PemPjj1xalPTn1z6qNTX5367NR3pz48
9eWpT099e+rjU1+f+vzU96d7ALoXoHsCujegewS6V6B7Brp3oHsIupf43z3F
v3sLusegew2656B7D7oHoXsRuiehexO6R6F7FbpnoXsXuoehexm6p6F7G7rH
oXsduuehex+6B6J7IbononsjukeieyW6Z6J7J7qHonspuqeieyu6x6J7Lbrn
onsvugejezG6J6N7M7pHo3s1umejeze6h6N7Obqno3s7usejez2656N7P7oH
pHtBuieke0O6R6R7RbpnpHtHuoeke0m6p6R7S7rHpHtNuueke0+6B6V7Ubon
pXtTukele1W6Z6V7V7qHpXtZuqele1u6x6V7XbrnpXtfugeme2G6J6Z7Y7pH
pntlumeme2e6h6Z7abqnpntruseme22656Z7b7oHp3txuiene3O6R6d7dbpn
p3t3uoene3m6p6d7e7rHp3t9uuene3/yAMgLIE+AvAHyCMgrIM+AvAPyEMhL
IE+BvAXyGMhrIM+BvAfyIMiLIE+CvAnyKMirIM+CvAvyMMjLIE+DvA3yOMjr
IM+DvA/yQMgLIU+EvBHySMgrIc+EvBPyUMhLIU+FvBXyWMhrIc+FvBfyYMiL
IU+GvBnyaMirIc+GvBvycMjLIU+HvB3yeMjrIc+HvB/ygMgLIk+IvCHyiMgr
Is+IvCPykMhLIk+JvCXymMhrIs+JvCfyoMiLIk+KvCnyqMirIs+KvCvysMjL
Ik+LvC3yuMjrIs+LvC/ywMgLI0+MvDHyyMgrI8+MvDPy0MhLI0+NvDXy2Mhr
I8+NvDfy4MiLI0+OvDny6MirI8+OvDvy8MjLI0+PvD3y+MjrI8+PvD/yAMkL
JE+QvEHyCMkrJM+QvEPyEMlLJE+RvEXyGMlrJM+RvEfyIMmLJE+SvEnyKMmr
JM+SvEvyMMnLJE+TvE3yOMnrJM+TvE/yQMkLJU+UvFHySMkrJc+UvFPyUMlL
JU+VvFXyWMlrJc+VvFfyYMmLJU+WvFnyaMmrJc+WvFvycMnLJU+XvF3yeMnr
Jc+XvF/ygMkLJk+YvGHyiMkrJs+YvGPykMlLJk+ZvGXymMlrJs+ZvGfyoMmL
Jk+avGnyqMmrJs+avGvysMnLJk+bvG3yuMnrJs+bvG/ywMkLJ0+cvHHyyMkr
J8+cvHPy0MlLJ0+dvHXy2MlrJ8+dvHfy4MmLJ0+evHny6MmrJ8+evHvy8MnL
J0+fvH3y+MnrJ8+fvH+aA6C5AJoToLkBmiOguQKaM6C5A5pDoLkEmlOguQWa
Y6C5BppzoLkHmoOguQiak6C5CZqjoLkKmrOguQuaw6C5DJrToLkNmuOguQ6a
86C5D5oDobkQmhOhuRGaI6G5EpozobkTmkOhuRSaU6G5FZpjobkWmnOhuRea
g6G5GJqTobkZmqOhuRqas6G5G5rDobkcmtOhuR2a46G5HprzobkfmgOiuSCa
E6K5IZojorkimjOiuSOaQ6K5JJpTorklmmOiuSaac6K5J5qDorkompOiuSma
o6K5KpqzorkrmsOiuSya06K5LZrjorkumvOiuS+aA6O5MJoTo7kxmiOjuTKa
M6O5M5pDo7k0mlOjuTWaY6O5Nppzo7k3moOjuTiak6O5OZqjo7k6mrOjuTua
w6O5PJrTo7k9muOjuT6a86O5P5oDpLlAmhOkuUGaI6S5QpozpLlDmkOkuUSa
U6S5RZpjpLlGmnOkuUeag6S5SJqTpLlJmqOkuUqas6S5S5rDpLlMmtOkuU2a
46S5TprzpLlPmgOluVCaE6W5UZojpblSmjOluVOaQ6W5VJpTpblVmmOluVaa
c6W5V5qDpblYmpOluVmao6W5WpqzpblbmsOluVya06W5XZrjpblemvOluV+a
A6a5YJoTprlhmiOmuWKaM6a5Y5pDprlkmlOmuWWaY6a5ZppzprlnmoOmuWia
k6a5aZqjprlqmrOmuWuaw6a5bJrTprltmuOmuW6a86a5b5oDp7lwmhOnuXGa
I6e5cpozp7lzmkOnuXSaU6e5dZpjp7l2mnOnuXeag6e5eJqTp7l5mqOnuXqa
s6e5e5rDp7l8mtOnuX2a46e5fprzp7l/ygGgXADKCaDcAMoRoFwByhmg3AHK
IaBcAsopoNwCyjGgXAPKOaDcA8pBoFwEykmg3ATKUaBcBcpZoNwFymGgXAbK
aaDcBspxoFwHynmg3AfKgaBcCMqJoNwIypGgXAnKmaDcCcqhoFwKyqmg3ArK
saBcC8q5oNwLysGgXAzKyaDcjP/laPzL1aCcDcrdoBwOyuWgnA7K7aAcD8r1
oJwPyv2gHBDKBaGcEMoNoRwRyhWhnBHKHaEcEsoloZwSyi2hHBPKNaGcE8o9
oRwUykWhnBTKTaEcFcpVoZwVyl2hHBbKZaGcFsptoRwXynWhnBfKfaEcGMqF
oZwYyo2hHBnKlaGcGcqdoRwayqWhnBrKraEcG8q1oZwbyr2hHBzKxaGcHMrN
oRwdytWhnB3K3aEcHsrloZweyu2hHB/K9aGcH8r9oRwgygWinCDKDaIcIcoV
opwhyh2iHCLKJaKcIsotohwjyjWinCPKPaIcJMpFopwkyk2iHCXKVaKcJcpd
ohwmymWinCbKbaIcJ8p1opwnyn2iHCjKhaKcKMqNohwpypWinCnKnaIcKsql
opwqyq2iHCvKtaKcK8q9ohwsysWinCzKzaIcLcrVopwtyt2iHC7K5aKcLsrt
ohwvyvWinC/K/aIcMMoFo5wwyg2jHDHKFaOcMcodoxwyyiWjnDLKLaMcM8o1
o5wzyj2jHDTKRaOcNMpNoxw1ylWjnDXKXaMcNsplo5w2ym2jHDfKdaOcN8p9
oxw4yoWjnDjKjaMcOcqVo5w5yp2jHDrKpaOcOsqtoxw7yrWjnDvKvaMcPMrF
o5w8ys2jHD3K1aOcPcrdoxw+yuWjnD7K7aMcP8r1o5w/yv2jHEDKBaScQMoN
pBxByhWknEHKHaQcQsolpJxCyi2kHEPKNaScQ8o9pBxEykWknETKTaQcRcpV
pJxFyl2kHEbKZaScRsptpBxHynWknEfKfaQcSMqFpJxIyo2kHEnKlaScScqd
pBxKyqWknErKraQcS8q1pJxLyr2kHEzKxaScTMrNpBxNytWknE3K3aQcTsrl
pJxOyu2kHE/K9aScT8r9pBxQygWlnFDKDaUcUcoVpZxRyh2lHFLKJaWcUsot
pRxTyjWlnFPKPaUcVMpFpZxUyk2lHFXKVaWcVcpdpRxWymWlnFbKbaUcV8p1
pZxXyn2lHFjKhaWcWMqNpRxZypWlnFnKnaUcWsqlpZxayq2lHFvKtaWcW8q9
pRxcysWlnFzKzf2/ms47rsf1/+NuXNd1JyOEgwjZI9FA1m1ElJGslnGs7JIt
VHb4GicrHfObOspWso49T0Zm9jy2LxmHHPR793tfr/Pf63HMT/fnuj93no/n
Ex5deHXh2YV3Fx5eeHnh6YW3Fx5feH3h+YX3Fx5geIHhCYY3GB5heIXhGYZ3
GB5ieInhKYa3GB5jeI3hOYb3GB5keJHhSYY3GR5leJXhWYZ3GR5meJnhaYa3
GR5neJ3heYb3GR5oeKHhiYY3Gh5peKXhmYZ3Gh5qeKnhqYa3Gh5reK3huYb3
Gh5seLHhyYY3Gx5teLXh2YZ3Gx5ueLnh6Ya3Gx5veL3h+Yb3Gx5weMHhCYc3
HB5xeMXhGYd3HB5yeMnhKYe3HB5zeM3hOYf3HB50eNHhSYc3HR51eNXhWYd3
HR52eNnhaYe3HR53eN3heYf3HR54eOHhiYc3Hh55eOXhmYd3Hh56eOnhqYe3
Hh57eO3huYf3Hh58ePHhyYc3Hx59ePXh2Yd3Hx5+ePnh6Ye3Hx5/eP3h+Yf3
Hx0AdAHQCUA3AB0BdAXQGUB3AB0CdAnQKUC3AB0DdA3QOUD3AB0EdBHQSUA3
AR0FdBXQWUB3AR0GdBnQaUC3AR0HdB3QeUD3AR0IdCHQiUA3Ah0JdCXQmUB3
Ah0KdCnQqUC3Ah0LdC3QuUD3Ah0MdDHQyUA3Ax0NdDXQ2UB3Ax0OdDnQ6UC3
Ax0PdD3Q+UD3Ax0QdEHQCUE3BB0RdEXQGUF3BB0SdEnQKUG3BB0TdE3QOUH3
BB0UdFHQSUE3BR0VdFXQWUF3BR0WdFnQaUG3BR0XdF3QeUH3BR0YdGHQiUE3
Bh0ZdGXQmUF3Bh0adGnQqUG3Bh0bdG3QuUH3Bh0cdHHQyUE3Bx0ddHXQ2UF3
Bx0edHnQ6UG3Bx0fdH3Q+UH3Bx0gdIHQCUI3CB0hdIXQGUJ3CB0idInQKUK3
CB0jdI3QOUL3CB0kdJHQSUI3CR0ldJXQWUJ3CR0mdJnQaUK3CR0ndJ3QeUL3
CR0odKHQiUI3Ch0pdKXQmUJ3Ch0qdKnQqUK3Ch0rdK3QuUL3Ch0sdLHQyUI3
Cx0tdLXQ2UJ3Cx0udLnQ6UK3Cx0vdL3Q+UL3Cx0wdMHQCUM3DB0xdMXQGUN3
DB0ydMnQKUO3DB0zdM3QOUP3DB00dNHQSUM3DR01dNXQWUN3DR02dNnQaUO3
DR03dN3QeUP3DR04dOHQiUM3Dh05dOXQmUN3Dh06dOnQqUO3Dh07dO3QuUP3
Dh08dPHQyUM3Dx09dPXQ2UN3Dx0+dPnQ6UO3Dx0/dP3Q+UP3Dx1AdAHRCUQ3
EB1BdAXRGUR3EB1CdAnRKUS3EB1DdA3ROUT3EB1EdBHRSUQ3ER1FdBXRWUR3
ER1GdBnRaUS3ER1HdB3ReUT3ER1IdCHRiUQ3Eh1JdCXRmUR3Eh1KdCnRqUS3
Eh1LdC3RuUT3Eh1MdDHRyUQ3Ex1NdDXR2UR3Ex1OdDnR6US3Ex1PdD3R+UT3
Ex1QdEHRCUU3FB1RdEXRGUV3FB1SdEnRKUW3FB1TdE3ROUX3FB1UdFHRSUU3
FR1VdFXRWUV3FR1WdFnRaUW3FR1XdF3ReUX3FR1YdGHRiUU3Fh1ZdGXRmUV3
Fh1adGnRqUW3Fh1bdG3RuUX3Fh1cdHHRyUU3Fx1ddHXR2UV3Fx1edHnR6UW3
Fx1fdH3R+UX3Fx1gdIHRCUY3GB1hdIXRGUZ3GB1idInRKUa3GB1jdI3ROUb3
GB1kdJHRSUY3GR1ldJXRWUZ3GR1mdJnRaUa3GR1ndJ3ReUb3GR1odKHRiUY3
Gh1pdKXRmUZ3Gh1qdKnRqUa3Gh1rdK3RuUb3Gh1sdLHRyUY3Gx1tdLXR2UZ3
Gx1udLnR6Ua3Gx1vdL3R+Ub3Gx1wdMHRCUc3HB1xdMXRGUd3HB1ydMnRKUe3
HB1zdM3ROUf3HB10dNHRSUc3HR11dNXRWUd3HR12dNnRaUe3HR13dN3ReUf3
HR14dOHRiUc3Hh15dOXRmUd3Hh16dOnRqUe3Hh17dO3RuUf3/v95uH6Gpaas
35jUXjAPRzsvueq7YR0E83C0X4d6FK7jLZiHox06z+3Rq06CeTjaC2XE3G0+
gnm4ELr+HDp9CusimIej7dmoeD33boJ5ONpLn5Sv9627YB6O9qjCJz8d6SGY
h6M9bs3g+XN7Cubhgunz513/Z116C+bhaK9o8ap42b6CeTjakcFRBR8ECObh
aIfbjz2WHCSYh6O9OLyEb0SIYB4uyLDs0g9satVfMA8XlM/jnD9VZKBgHo52
JZvVaTd/FczD0R6RNH1c4mDBPFwgfT7wvf49YqhgHo52O+/cnu1CBfNwtB9V
aj+t9AjBPBzttPl2YU9HCubhaNtP3e+aPlowDxdA10v5+NPzxwrm4WjbnClW
JzhcMA9Hu3C5sCCXCME8HO2tNxz6iQmCeTjaZpGwRncmCubh+tL19ebU9V2T
BfNwtCNzpvosmCqYh6Mde+L18oGRgnk42nFeE1I9Zwjm4WjPXT5+tX2UYB6u
D/3/Hx36vIsWzMPRHlKq88vzswTzcLRbrrjTNWmOYB6OdoNZAfNnzxPMw9H2
LFVt5a8LBPNwvQ1r0a7fJrdZKJiHo73WpphL1cWCeTjaAd/fHDKWCObhaA9I
XO74ZKlgHo62Q2BI31PLBfNwveh6/SN1WHKcYB6O9uZ+D7ssWimYh6NdOLKv
bfhqwTwc7Q3WhA294wXzcLR311hVrGWCYB6uJ53HDyr7V18nmIejvTN4dHjR
DYJ5ONpNzj4J/bxRMA9H+/i8J80ebBbMw9E+2+Li03OJgnk4f3p/nBQj0pIE
83C0vZq+ObfxD8E8HO2At08KL0kRzMPRjpnQreL0bYJ5uB6G9XPdsmKjdgjm
4WifGl/sbtAuwTwc7Z2tas7z3SOYh8vf0a1LtEoTzMPRzs07NN5ln2Aezs+w
XPcXzHDaL5iHo536avytcgcF83C055aYfKvoYcE8HO0XD8MyCh4RzMPl//ze
JyfmHhXMw3U3rLqJN+1zjgvm4Wg3aGv328uTgnk42gMfXs15fFowD0f7Zfj8
RvfOCubhaNvXjuuRfV4wD9eN3q8RIb2uZQrm4Wj/VtjHM+uiYB6OttNfJ4xL
lwXzcN3yv3/tnHrhimAejnb214/NLlwTzMN1pestamrKhRuCeTjaXWfWNS5l
C+bhaN+vOap51m3BPBztdy+TAq/dFczD0Q6K7NA/+75gHq6LYfW+urPTvYeC
eTja62t0r/DksWAejvaB14uzXj4VzMPRrvTw6ticZ4J5ONqj8xZ+zn0hmIfz
pefd+VUGFXotmIejPfTHvxnF3grm4WgXqLbgyy/vBPNwtLN+NHaskSOYh8v/
8XcGuzT+KJiH8zGsvd6x9azPgnk42l3LlSjZ7YtgHo52fHD/R/1yBfNwtM1x
zxPG/iuYh6Pt87l0++gfgnm4znRenPW7+VueYB6Odnyp4n2SDMk8HG231ukn
DhaSzMPRds7bVylLSObhOtH9xjt6yHMlmYejPbJP1NqfNpJ5ONrXUp2Oli0q
mYejHWh3+2rD4pJ5ONoJS0rd7GQnmYfzpvvBjBbnB5eSzMPRrjH5zLYoe8k8
HO3NIU4xv5eVzMPR/rPP0Y4Hf5HMw9EeeKN43q0Kknm4jvn/vjczOddBMg9H
+8rcWe0rOErm4WgXylt4tXlVyTwc7S/zi/Tu5ySZh6Md8z0sM7qGZB6ug2E5
Tm3UZEstyTwcbZeRf678q45kHo62W0zs65x6knk42oUPmh7lnSXzcLRLBqVO
bOMimYfzotc758W2EY0l83C03/ZpfDfOTTIPR3vjru/GUQ/JPBzty6MOOb5p
KpmHox3Q9pl7+eaSebj2hlXO4137ji0l83C0q6zy7TKxtWQejnbhAuO7bWkj
mYejbdPnjs/NdpJ5ONpDL35ta9NBMg/Xjs6Lp23dW3hL5uFotxns4hTWWTIP
R7vKkKbFEn0l83C043yufLzdVTIPR7vFuQk3S/pJ5uHa0o+/F5/RyV8yD0f7
w9X9q2J6SebhaPt6+0w41EcyD0f7fbWzfl8CJPNwbQzLdu0fDVyDJfNwtMM8
htuE9ZPMw9G+ey7q720DJPNwtJtOGXH8za+SeTja1/Zt2FB/iGQezqLz1Htd
1Ohhknk42vta3f91x3DJPBztwj/udPwwUjIPR7t6k9IuHmMk83C0e+fkVZwW
JpmHa03v36jKRY+Nk8zD0S646HUBc4JkHo72tSJPv3WbJJmHo/2uw5xvq6dI
5uFo/7zjW+DJNMk8XCt6ffZlFHWeIZmHo92xYscqU6Mk83C0vdZMbH4mRjIP
R7vzL6f7lZkjmYejbV7ZGzt4nmQeriX9+fyPH9m7QDIPR/vmjDE/xSLJPBzt
iPnNOvb9j2QejvbYb5vjU5ZK5uFot9/jnJu3XDIP18Kwhj0LHNRrhWQejvYS
h623UlZJ5uFof3VdF1woXjIPR3v7gP1vghIk83C0r9WfEZu2TjIP15zuH5PH
ethtlMzD0baPtMsZuVkyD0d7xMmnB84mSubhaLs3CYurmSyZh6PdtmSTGXO2
SubhPOn8eH548t+pknk42nMSF8zusEMyD0d7yDLHTcm7JPNwtMd4iyu2eyXz
cLQ9jx21D0uXzMM1o/uBT/aI6xmSeTjaX5Zeudb8oGQejvbYOA//zYcl83C0
u+1Z+Mz2qGQerimdv4kBSyYcl8zD0T4TWbvrw5OSeTjadZOinHzPSObh8vfb
VyX2n5PMw9EuE/G+dK1MyTxcE7pf7q/gsvKiZB6O9pG1HwfLLMk8HO07/mLP
pKuSeTjaHpNuV3h1XTIPR3vX1x8JIdmSeTgPw1pX+99mV25L5uFo26SFfOh4
TzIPR7v41l2n/3wgmYejXX3crH0ejyXzcLTDb/Q/teOpZB7Onc6jvKvv6zyX
zMPRnhcx2jPxpWQejnZWhQObqr6RzMPR/qe5d931/5PMw9H2mLElq1KOZB7O
jb7+Lwet+f2jZB6OdtdnJWIq/yOZh6Od3cpz0Yavknk42gsqR2Q4/SuZh6N9
vJSPSv4hmYdzpT+frf+UBgUU83C0/xvgUGJvQcU8HO2QPU3PNReKeTjaoS6e
ySeVYh6O9hjfPaldiyjm4Rob1qdnHjdvFVXMw9FObde39tASink42llFUjZ8
LKmYh6M9sdMJK8ZeMQ9H+3G4u02pcop5uEb0fBi08tum8op5ONruXtPKuDso
5uFoZ2RNCTxbWTEPR/uFbe3zwVUV83AuhlV/iMOQD06KeTjatdLf1ltQUzEP
R7tia1fHqnUU83C0WyTPbn2gnmIejnaxglMX93RWzMM1NKyDp1Js3rso5uFo
j7++e+8iV8U8HO1TkbWX1PVQzMM1zOeVt6w511QxD0c7MOv0teHNlfbDGdbp
WtXb2LZS2g9nWJdCAx5ss5T2wxlW80/GTr92SvvhDMt/xf49/3gp7Yej83CW
w+sEb6X9cPR5fOCZ3u19lPbDGVZjq8+XN12U9sMZll/C8Asruyvth6P754CE
W238lfbD0fPU08UO/+ultB+Orv93d1eu7au0H86wLu6t3alzkNJ+OMOacsvO
7VuI0n44w/o81r1vygCl/XD0eeObR3rIIKX9cIa1aVR615JDlfbD0fVVu1e1
06FK++EM65iR1ihypNJ+OMM61HLydNcxSvvh6PVd3ka+CVPaD0fnfZ29mYkR
Svvh6P2ZEJE1YKLSfjh6Hv/qVKbSFKX9cHS9Hhm++vY0pf1w9Ho/fRm0ZobS
fjh6f1zuNCAgWmk/HF2//RtuqTBbaT8cPZ8+tpzvzVXaD0fnn2ON3A0LlPbD
GfnfR1FDFynth6PPT86FAusvUdoPZ1jRt3xzPi5T2g9H59dH8+KhOKX9cPT5
bdnD93NXKe2Ho/OxzfTAHvFK++EM66HNAlvH35X2w9Hno2HbC79dr7Qfjl5v
v9UdDm1S2g9nWNOafshalKi0H46+/iI0qV+y0n44+jznsOVMoxSl/XD0/BcU
4Cq3K+2HM6x7FRu+vrNTaT+cYe1pfP3d7j1K++Ho/fU+t83CdKX9cHS/q+L7
ePB+pf1wdB4Wn5bV+pDSfjjDspvpYedwRGk/HN1/053X5x5T2g9Hf99J9jOz
TyrthzOsLgXX7Mw4o7QfzrDSy4xxiz+vtB+O/v7vvWynX1DaD0fPH35X3Qde
VtoPR88LE8/t7XBVaT8cnReOd+c3uKG0H47Oy0VHdpe5pbQfzrBUVG3XvDtK
++EMq3XLzCKv7ivth6PrO3aA541HSvvhDGv57rXHTzxV2g9H50+U2393P1fa
D2dYSR0eP9j0Smk/nGHdyg6eGPdWaT+cYfVaFhw6773Sfjh6v3eLT5/2UWk/
HJ23ky4NDP9HaT8cXW+f0kaE5irthzOstGbmlQHflfbD0fNEq+jVgXlK++Ho
6z377p+9CpraD2dYv5e+4dVDmNoPZ1ivp9d17m6a2g9H9897Kyd3szW1H86w
Wt7MrtG9uKn9cHR/XL3do0dJU/vh6P55+0ZKL3tT++HofHtkNzewnKn9cIZV
KtLh9IAKpvbD0edreWBUaCVT++EMa0Lo1qnhVUzth6P7Qbkd76c5mdoPR+d9
2dhL82qa2g9nWCs+/yi3oo6p/XCG9cv1C+c31ze1H45+/0GHX+xpaGo/HL0e
95eOO9XY1H44w2pXptjwbHdT++EMq//QL5lvmpraD0fP/8fLrC/YwtR+OLp+
tjo/LN/a1H44ul+62Sxr3NbUfjg6j8Xo3b5epvbD0XnRt5pXqLep/XCG1ex7
Tqc5Pqb2w9H12SPx2OaupvbD0fNcD7nthJ+p/XD0/LfgQdG/e5raD0c/v8L3
R6qvqf1wdP4crtWgfpCp/XB0/Zx0fufXz9R+OHr/lr1fe8pAU/vh6PV0LXRn
42BT++Ho+nUbJTOHmdoPR+/vzOcpX0aY2g9nWPU6emVWH2NqPxzdX2J7hvqH
m9oPR/eXcs+iZo03tR+Onjds/yqbNsnUfjh6/qtyve6Lqab2w9H1vPXGYYcZ
pvbDGdb1hE2Xe0Sb2g+X//3DooNjZ5vaD0fXd8KLySfmmdoPZ1jbkmztfsaa
2g9H51lZn7qe/zG1H86wan6JPDtpman9cHS/+zrpdXqcqf1wdH8eXjruyypT
++Ho12tR60Sztab2w9HzmFw0Zfo6U/vh6Pn+R4WM4xtN7Yej55Pv22baJJra
D2dY52c7Zvklm9oPR9fD/s7b1qaY2g9H5+Mg2zLPt5vaD0f3u08tbdx2m9oP
Z1gpMUdiY9JM7Yej8/Kv0fFXMkzthzOsHR61mlU/ZGo/nGGtyTo/bNIRU/vh
DOtwz6a1Mo+b2g9nWKJa98nVTpvaD0fni9fHoKnnTMspVW6Jpn0hM/8/0/o/
JQihhg==
"]]},
Annotation[#, "Charting`Private`Tag#4"]& ],
TagBox[
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJws3Hk4lG0fxnHmXmbaREqSNgrtiShUF4VE0mIrWmhRSUVaRZIkFFKyFBWl
RYVC2rRIqEhIJSVFJSmEtHjO577m/ec9Pm/1VMz8ZuY9vs85zGXD/JUiGRmZ
QDkZmf//+8nj//8jIWN2rJ/Z2SxLpn3+ePQJnKYdNuZ/v9Az6NmnSEK+iBfE
jmuRJRdMRv+xK5AQtWpliStcGHl4VXy+hCy+Wu0dDdfcnGP5Pk9CDh9Iqi2C
x63SPa/1QEIeL1s7T6ZVlmyfoRaw4Z6EsPoT7ujCcgOayzNzJWRqr7Yxa+Cr
Ob6n/t2WEO/aG7HH4ZM9Tn8yuyUhl677S0rhbf+mpBy6ISF1h8y38D9lieGR
wTWV1yVkyKpeHwzgWTWjD6tlS4i90fN5G2BrZupt90wJCe8Tc+c0PHP0WJes
qxJS8GnJ2Ep4xbEXvqIMCZG9MzyuZ5ssGRbTv691moQYHPkiMYaHhjwaFntZ
QjzXXdniDY95nXe2LlVCLhhv+XAO1ucaknUuSkhtf6P51fCsKEVV//MSovpN
NrdPO/68agO7F6dIyMIH+WPN4a8ObzYMOishYbFhcTvhR02T5rgnS0jexgXd
rsBjLsmcunFaQv6ZDdj6AdZcO8CjxykJ0Rv09oNyhyzJlDilLU6UkA0tSfPn
wNd2Ja27eEJCzhaszfWHq4qexv+Nl5B3CRPGZf7/42zWzLlxEqK8pS3uC3xk
1hTXkzESMs/qZrchv2RJ1EPtjpZoCQlW27N1Abzvpg9jflRC7nWYfwyCm7e0
7Y2NkpDOp70W3IR7ztvp8y1SQnSSn+d+hy9erf9sEiEh7jtjxo3olCWmKspP
og9JSNK8pfGOcI3k84jGMAl5ozmi+0FYSUm/1SRUQvr9+7L1Hiyqq9aPOSAh
1mVXPrbB00ff+t60X0L2nd+yYPRvWVJ95tJg8yAJubPb6O5SeJlW+N0TgRLS
bicaHwVfDJv2si1AQiaMfRT/CO55/+jKuXskxI052P0vPPS+96qU3RJy8uWC
bdp/ZMnLo9mvZf0k5OXlAXUrYS9bo7zFuySkz763C2LhdcOr1TJ3Sshsp+S7
T+Gd+jtb5XdISMDEdeOZv7IktOT7FPdtEnJDon1cH86ertqSv0VCWqvburvD
hrWvhgz3xvPp2s1tibCHZvfc3V4SsjJkT10ZnLsv6PmbTRJyYvmshd3+yZIr
wRMWGW6UkAp9uXtT4XsP3y+I8ZCQ3nJl4z3hXe935ra7S4j5h5jjZ+Clh14m
2K2TkN05S3u8hivCXv64tkZCssNHbO/dhefvRcfMfm4S8mNVQ90MuPShfqP3
KgkZOTVt4TY4NX/e0YoVEuKiuPXeRTjnTGCavquExH42mlADZ65JmxazXEKe
3xGd6CcjIsOGZ0z9vVRCehx91GM2PLXd7ZLzEgmZ6X5wuy8s6pMWnuskIT4m
C+vT4QFpaz6oL5aQa8oqtvVw5eBN54IcJaTx29t7A2VFRDcj+W2DvYRo5CVP
sIFzn3/cZ2MnIUvi1p3YC59u6Z1wbaGERG/S7nkdjjws0hq4QEKKzdu3N8JF
xvHD/OdJiGTwrfphIhERx94IqZ8rIcate2zt4F2m01dZW0vI9sJZ9w/Azzu5
tGtWEpKeKKd9B1bx/bZukCXu2ZayEy3wo8QXRwMtJER9TmxPLUZErhgnan8z
xz1TX7bDCf5jpWlkbyYhUb9GfAqHR9y0zMydiXtW3GCbBzcc+ZowaoaEcGfS
7v+C53/71BFljHvms1V7HCsi0XVD7nZNl5At86cmuMDjUjd2rJ2Ge6bF9IqG
r+3KOVFhJCH1/x7tKIJbE6syTAxxz8oPfuqCi90z9S9PkRCHCwvtdDkRMZ+p
OUp1Mu6Zv8oDN9g9Wi4kWA/3zP6d9nHYudZyUbsu7tm4MwnPYMP029ErdXDP
WPdePC8imnFmM8q0JcTrlfZOA3iKyX2nGRNwz660f/KAdzr0/ZA+TkI+7Ltl
dxp+FzfgpdpY3DPngAcvYPIi3fDwaAmx1bGY2FMsInPf3+nBjsI969Y7kcCx
J4daeGtJyMO3Zb284R38tZY6Ddyza7E7z8FKvZ17OI6QEP3QZZ/fwAsfdhwq
Usc9c9Gw7yMRkVcz3PynqUlIyuSvD8xg2Yshb9OG4p7JpU/cCT8fP+P8iCES
MuDj1sTLsKjXhpqYQbhnN6bKfYA/hjXtlVOVkAMRjI9yNxFZ1y05KkAF92x1
wWcrWLV2g/wvZQn5PfWQvT8sFzKhw6M/7llf27xr8Ltd+ZYf++GefVHR+QJf
ndmvh1Nf3LPcd4mDu+P779056Xkf3LOjZ+QWwBZp9o9nK0iI0np3nyD45Nle
T+/1xj2bMfHLDXiA4l8DQzkJCRrQYf8d7srhFa/2xD1rupU3vIeI/PXsYTe2
h4R05AXoOMJKA78yZ7vhnsVbnAyDYxOCVYdJJGSNZ+/e92C1Xw8S4njcs1nl
Pm3wwTF+YUqchLwaHPdlVE8R6Zgd8zGCwT37ucxhKZy+qfVsL5GEWBZpPDwM
TyvcVBYsg3t28qvOI9jyQPNavktMbm5NP/kHPt9ivy7gr5i0ztnWW7sXfnxh
QLnMHzEZO3zarpWwPm93zrdTTFZ2Mg0xcNCGtLo/HWJyoqTA4Sm8XLQ1bGe7
mFScOfRQJCcizUb7j3f+FJPeu2x19eGV5x4q7WgVk1kLBp5aB799o/jrV7OY
7B5Z0zsR3uEzb+aOH2JyvevMrjLYUGd5R2eTmPwod2+Q9BYRhZvD+/l8E5NR
Fyc6ToULq3bF/v0qJi57Oh5ughVXW+/3axCTOIfbumfgdZO3Vct+EZPn4/ae
egWrG7yJ3/tJTHpys+V7y4vIguVL74vrxWTm696+M+BXl97NC/koJrvSyhu2
wvPHz5jV+4OYXAuKc7wI9/7tdubwezH55rw8/x3cV0/XXblGTDR0NSf1U8Dv
Lx8Uc/ytmCzt3njKAnZ5MGOcerWYRL9Ll/eFO2KsRp2rEpOSzG2+6bBbbUDY
+NdiIgmb9rUOrvhXZJ/5UkyMXdlFA/vg59uKg6dWisn2KYX5c+EeS5SH5VWI
SXrv8El74WfRNUPmlItJw0fb09nw/kOmgeXPxUT95kCFRvhDlca8JaVi4hRZ
4ztMUUTk1d0C6kvEJMrt7FdbOF7+68BNxWLyZNr6RQfgwKVHVH4/EROun86j
2/DwcjO/wMdiMq2hY1ILPMGk1kK+SEy23L19WrOviGTsmbMjrkBMLkfvVXCC
xb5u8pqPxKR+/Wy/cPiZRv+eGQ/FZOhM+cYH8K8dRuun54mJg0rFol/w2YAb
Oo/vi0nE97hHY/vhHtluXep4T0wKHi7Xc4FNey/4XpcrJqLjmklH4QNV2nWb
74iJgVejQhHc0txGmNti4mWR4df1/48fDpSJvCkmF4Zsb9RREpHt3e8OH3ZD
TD78nLbYDZa5HJp65bqYqD5mC+LhjbVFsSRbTGxPFeo9g0f2c/lakikmB7eF
J3H9RST85sRTy6+JyUNruz4GcA/nYTebM8Ska7jqbg/4714Fg73pYqL/u6bx
FHznSd1ApTQx2fjs7OIXcNzrvctTLotJytn1BT2UReShc3F3w0tiUrNLR5/A
i+TO9396UUwGLPyVtBm2Te8IWn5BTOaPutPnHBw2IGHxz3NickAmcPcb+NJg
/8jgFDG5XzH7m8IAPB/P7hkz+KyY/L4o72QGe5wOGpmRLCa6ARUFO2AXuc3B
s5LExN0xXv8yXNM42qr6lJgkj3dJroW95h/etPmkmLzhtBSVVUTE3v7gr+6J
YqJU1bjbCvZRk/1w8oSYWKdnfNsN7/xQPGHKcTEJ2r/d6Rp8uLL6bUmcmOQu
mV74GU6a2eeHW6yYdOhykwcPFBGt7dYrZGPERLtHUfJ8WPvZ1imx0WKypiZc
MQheku65UeeomJzKsvO/Ab8JVe/2JEpMXoWpNjXBS197MKsPi4niivdOw1VF
RFl9ylLZSDGxNEgpdICzWlapxoeLyV55j8lhsEt9lYH+IdyzOp0zd+FLp/xy
SsPE5OfNX4ptcEKZTpxHKO7Z4Tv+owbBetVV3UPEZNWawKYl8LZQV7+zwbhn
0y2dD8MLk1L2zNwvJi/6KRTlw+l2kXU1+3DPvlZM/gOv3Mdd8AvEPbsXf2bC
YBEJGVpfPGgv7tkxl74r4TBVVdube3DPPLT2xMD9fIINFvvjns381vQE7mXZ
d3enH+7ZwKvOoiEicjTh5IhYXzFx/bG9SG/I/+9vlEYb7MI9y58+ZR38YYVD
+KudYlJ2nDubAFfrWtnu3IF7trmobxn8cNaL7arbxcR0dsQeyVARifhc/ffW
VtyzofbfjWDrtbNqlm4Rk8w21SWb4GFav9RF3rhnj98XJcPkQEVekpeYaJ5O
mfIK/ir78KG5J+7Zdo+zcsPw+OqeqtGwUUyOzdXtNwOWH7np48ENuGcjOvds
hQc2tot0PMSk25873y/AT5s0/F64456VBi55BzuX1Tr6rBOTHSmWj/uqicgX
876Hh63FPfNVMLCAd8ueGJXvhnu28MXZXbDCvVVD16/GPRt9vF867L5w4WbF
Vbhnsq4BdbBRmJVGzgoxOfJC64eKOt4PWE7SW+6Ke5b6bclcuM+W1tMSFzHh
9159HAAfkNm44coy3LNFOwyy4fl1YccclorJ1gkk5SusOFZ3iOwS3DOeVxo2
HO9XP8xizjuJyaeqogBb+OXw9JkLFuOeZUT8CIbLFexq/ziKiWOw/dLb8OUX
Km/POOCeLR30pBk+drFOf569mBROqjXQHCEiq0oSGn/b4p71PJeyGI4MHSNz
dqGYGL73UAqHJ+p6bZi/APcsW3fvA7hFfZHhv3licvFg548OuP+9fNfzNrhn
K3KXjtUQkfW+pz7ZzRWTQYb7niyHbUpLChhr3DMFK8OjcAKZIk6zwj2rVzhX
COfY3ktcYol7duuFUhfse3b+0Z6zcc8OH9+ro4nvf3lJfc4sMZm81rV5NZwX
pH5kjTnuGRm5LB6esUn7hLKZmJxTanpSAi+aUyN6NBP37OtVQ05LRHrWDLi/
dYaYqNzfcW4KfLvzbrWmCe5ZDOnvAWt75tpWEjEJ2cAHnoJ3af3RDJ6Oe2b6
uLkC7iFxsjWYJiZ/BkYu6zFSRI6w+W8ajHDPmu2fTocHDRx+97ihmKx/NMho
M/xl3qKuuQa4Zydqz6XAgdk2x0RTxKR687n+b+D01d9CrunjnlluCFQYhcev
v8orNz0xmTtsUospXD/h5h7VSbhn7Z3LdsA+53MCS3Rwz57kPr0EXx399/3e
ibhnp/cZ1cLTfq+NnaKNe7bD6nz/0SLyya3hwrfxuGc2fZSt4MQnK/snjcM9
06gM3A2vCblb5ThWTF7/Od5yFV7cq+537zG4Z89dl3/+/+fn52x+OEpMrM6N
LB40RkTW6mua7xqJe+bXZDQfbn3fx0tXS0xu2V47vw/e7riyo0ED92z0TuUb
sJ4O/+L0CDEZJzLe1wQ7K7yRcxqOe1bJt6qPxfvPE88S+qqLScKlx8sd4L2h
RcFPhuGe7Y0sDoWTj6U/3jdUTOQXO0y9C68P8nAjQ3DPtAdf+AmnatQ7dQ4S
E3/xB+VR4/D5aQ57/qoq7tmbc/uWwDNepc7dMFBMmjM2tEbCoZlFc0ap4J4d
mOSSD497bpr0URn3bNnv4t+w9ih2wcn+uGd6d6dOGI/7efubo7MS7lnPoAsr
4OVxjdkD+olJr1qrATGwX/mnDRWKuGfX+wQ9gSuCH/ke7iMmvocqW2Un4PlZ
vfmjjQLu2coTLnrwENmK03LyYtJkuKJkLfxkZNn1x3K4Z31GTUuAhx6z1wzp
JSbLPjVdeA6fipr11aIn7tntawMk2iISsPGQpFsPMXkWtTPICI4M7OvzqBvu
2TrjnxthA71cs/0SMTExFrsmw76NO9xmiXHP+j8peQm3Dh5bI+HFJKMxcprc
RBG5b3bnSgGLe3bf4aIJHP95wIsDjJgMjx2sshXOihqx0EqEe7bxQ9AF+Nmb
Qk05Wdwzs/M/38Jqrs3zSrp48kR1o2tfHby+Fe0tjfzHE75l0rNZ8K28teds
//JkWsHvabvgZ93CKpT/8GRrwt2LaXCqfZljVSdPrngHqdTBj7aO1En8xZNP
lnP2q+ji85Wht8uKDp4MU1Nss4bjdiTWa7XzxLGj0jUA1lWOutf4kyeRT088
y4Lz/05uSW/lSWHSiulf4aRB27Zva+EJs3NU6tBJIrLB08B2WjNPDOd9V7GF
B3S57WN/8GSzZub+YLjq6deeRU08ufh3Z9steOrPS58ivvHk43PjFc3wv7Bj
AxwbeTLovLhUQw/vP29FJgz9yhO73U+mL4a/XNq349MXnhy0O5x6CH4Y7Xz+
ymee5I9xHPgAXnJVZvz2TzzpEg0J7oCDLBwlJvU8mfzyQ9sYfdy3JBu9HnU8
2Xj5/Irl8JUBJdllH3hyLnBj6RF4qPjuoRO1PHm/WI8Uwp3Pet5we88TlYl/
Uv/BufXxBjo1PFkguTdQZzLu3e1Fcv/e8iSkOih4NRxWOl6voJonD67OaY+D
ZS5w6VFvePLngOLKEnhseZ7/siqeTFr+spSdgs+rdY7JY17zZL0+LjX8Z9cF
1V8veXKm18pL62EzklSfV8mT6tpRqqfgw6/H8odf8KR/zvfgCjiVm7htWQVP
5oZntnc3wOdxn9ip48p5sn+Vz8rpsBY3z+7Pc57kGpk894Kfr59+r7CUJ7/6
SIxT4NKQuf4xz3ii/fnJpSo43GjdYbcSnqy9c1hVwRDvR1f6dOgX8+TUEccD
prBVi/sV8VOevF43pGM77P1a48aLxzxRNPm48hJ8TiVKOaWIJ1bKF56/hyOv
nXi0rZAngd82Gvc3EpEL2ROKLAp4cuuB3mVLWH+y7tCBj3jSFvtHdTdsYnM4
/+tDnozbdO/AVTh++OS7t/N4stp8f8cn+Pm7nr0iHvAkYZD1qkFT8XqZ/fu8
632eVLYols2Db3/8Fqt3jyfyhS+N98FjL5ZUdbvLE4vEhMs58GfbkI1v7vDE
f8vKQU1w90nd7NJu8yTHanSI+jS8PzqtGxZ4iyfNaj867GFVUUe/RTd5MvpX
5qpQeFfO1O/jbvDEtdinLBceMPX7QDaHJ/HJJiY/YW1R57GX2Twp2ym5MnI6
Xn+DTVdfzuJJr/lPBy2Bny26tS8wkyemWlEhkfBD1qp98TWe+P5z/PUQFg+u
yp54lSdZZUNW/4ZTZjoUdcvgSdP5j2XjiYgYD74wriaNJ1r+F0xWwN/s77zP
vsKTZfabrhyDZ53xqw+/zJOYsfqDn8AueRVGay7x5BnzN0TWGL/ftsvvjVN5
0v3VvV+TYK+Q1kqVizwxubJ/9Vr4RXH4kNbzPNm5z7r8BPxkyIbMJ+d4kuHU
d8Zz+JjTjuNnU3jydeKrK2ITfJ7wOF7mf5Ynw7slDjaCM8zuL3Y6wxPntytD
N8JbXldM1E/myZFrozuT4KbR9x37JPHkaciP1S/hydO8ShpP4Z65ZJX3miEi
d4eUHi04yZPpk3fNMIEtPhZeTE7EPZObkbYFrjo/q8+eBNyzD5IhF+Diw3r5
S07gnuU8DX0L3y70KzI8jnsWEdWpOFNE9vn3HjIgnieLVi9ymwWb/ii52xaL
ezZ1aIUPvGDR5YyyGJ4UKdbNSIOns0db04/hnn25kPYRLp66cW9ENE+McjcN
UTHFPXAa6brxKO7ZUf0wa7j29sXwuUd4kur+t3MP/DL/Y8/xUbhnJvfdsmCb
2jsv5A7zZPCA4IoG+EOAxo9vEbhnTdYzh5qJiKU651gczpNDeX3TF8LOJua9
rxzCPYt7NSQY7ramUjHiIE9kPBPDbsELNZJWeYbhns1a9fsHbC9/VLwwlCeb
Bo9Zo2GOz88PYtomheCetf6oWASPqYvVUT6Ae1aYNfMQvGFY4O3O/bhnJ3el
34eJ1szoN0G4Z1tnDO2AP2bcv5W7D/dsTreDY2aJyIm9TdpJgbhn6sW/l8Hn
lme0BO3lyd9fUWuOwIYDfovcA3DPSha9KIB9d6cvtdnDE48zQ03/wWFeed0m
+eOe+dSlT7TA5+3yIbIqu3nydv7Foath1fBU0y5f3LORngfj4PVRi1582MUT
my79P8Ww2qs+mYU+uGflf9ews0Xk9dJ7NVd28uTuhfsvJsP9R9suit6Be+Yf
bLoeHjcra4jvdp5MdJibcRKeV1imvXIb7tm4fsMq4ICimHCrrTw5zb4+2N0S
j2f3ZkPdLbhnrxL/TIN1ygt1VL150jdt1VovOFen9zZ2M+5Z0JjKs/CmWxck
jZ64Z87NplXwtEuhH8s34Z7pZGfIW+Hz2KwTcnc24p518x1mCj+seByQsoEn
49/NOLQdHp7CmkZ64J5ldvubCr9TnDjfZz1PEkOL176HD281vrDKHffM5Uil
0hwR2a8/xGbeOp4oTFlsZglfu51FjNbinvUedtUPvu3b7qO5hid7PtYNuwp/
bSpkFd1wz25cPPQJHhsxuPLfKp60RHj+VbXG581P1W1fVuKeuU1eNw/O2d2x
7MUKnqyY9q8yEO5stFd64Ip71veBWQ48quCzUpoLT8q/BF/9Bk9Nj3U5sRz3
7O5cNfW5IpI51/5XyDKemEX3C7eHz1r3fL19Ke7Z+td/Q+ALLmfEbktwz2ac
XJcLfzLt42fnjHs2YPXLVpi/bmRs6oR79n2M+UgbEZkQ0MdadzHu2cPmq85w
b8/dyeqLcM/is9Ui4UeOXuaKjjwp9fQNfwh39K3UYRxwzyxm/uuEM/bGrW2x
48mMId3dx8/DvQ4/31Bri3v2s/ilKzxbozmzbCFPrhYdMT8G7zRY+jhvAe7Z
ycXXHsOv8qtHZ83nyYhtw9Rl54tIdLFzeco83DPr+vBJsKljwaNYG54cHZ76
bw1c4SnHh83FPev0dD8Bx09QCfOz5on42eRXpTBJfensOQf37Ow/c/ECEXnQ
zWDbSiuebNv14JohvGu9VpWDJe7ZggPqG2EFPjLYajZPPo+0iUiCt4hX7CYW
uGcySl2VcMOFkFzdWbhnFa/dey0UkXadNouR5rhnF0++Mobd6sJVB5vhnu1Z
PWsLbCVvMVnRlCes49jM83Az2/O4ZCbu2fgW9bfwh0H5s/+Z8MSbux6haCsi
dTmrjVuNcc9e+3aZw83Gr3d/ITypS5u53gfWG9K7W8103LP93V9fgeXzvr98
MY0n9ktKZn2Eu19c3/J0Ku6Z7tHMAXa41/O9bB8a8eRRd6fh1rDrtKauW4a4
ZzXDIvfAp349bb5mwJMpWfVdmfCtfjLjLk3BPQtLXd8At4/cmHZmMk/Ou3q9
HmIvImnPe+5K0Mc9mzLFYiHsmnk//JgeTwbKd2Xuh+N27vkaMQn3rO7B8Fvw
31K98BBdnoTePBD5AzbwfLozUAf3LNJGRsNBRPr107/sNxH3zE3JYxHssGvJ
qB3auGfTq14fhMs9JzZunoB71u+UxX149f3E9g3jeXK2YXVWO1xvEm2xbhzu
2d2xI8Y4isj4IqZ21VieKB9riVwG9zcqu+8yBvfM47rMEXj9zraGJaN5EjzT
z6MA/rXZYfHiUbhnKqZVf+EtKp8UHEbypPN799kTF4lIhOvh3rZauGf5JVmr
4I9zZi2cr8mTdcePjoiD26ta387VwD3zcjpcDOurBKXPGcGTKgs1WXYxns99
G4ssh+OeDf3kMRne9r7vmNnqPJnTllrlDhcd/1o6Sw337LHX7JPw59UuuebD
eHL71JTscvjU6hWtZkNxz7Z1jejuJCInC955mA3BPZubd3ga7JqbN95sMO7Z
iBBZL9hwr6y+2SDcs982G87Csxfs2Wuminv2TOnNa9hnk56y+UDcs5Sq2fLO
IhKi1bPZXIUns31PZc+E2/J/KFgMwD1b6KaxHWaSy7fOVubJjVHjolLhLJUz
6lb9cc9kWmXfwy+D5/WzVuLJmBfXNygtwf1zeGhl0w/3LNXvzWx4TGtzwfy+
PDkeYGrpB4c+yQu1VcQ9c+xxPQPOdBp7xKEPT+QmPNP4BIuGKNcuVsA946Oj
VJeKyI7ozVuWyvPEr8pJNA8us9ae69ob9yxdbWMg7PHcaP1qOZ583//pzXXY
+npgybpeuGdLL1l+gwfHdm7b2JMnyydtvq62DH+efgdWeffAPethoGkPLytW
i9nRHfespisqBJ7plSG/uxvuWXaeKBduvzLqSaAE9+xgyMZWWHva1qchYp74
rJhXrbUcrz8VQX0jedwzg/5WzvCfKZYJxzieNMq/uR4BV46/4pHA4p7Vn9J8
CBcFJO85w/BkyS23I52wg1jldaoI9+zwOGa8C15vIv5svSbLk+I1rRtd4YZ/
ho63ZHDPSE51NByune+b18URorTb6jEsVgj79OQfR7Z9Nc2RcRURpwM+Ryv+
ciTtXg+tSbBS+N79b/9w5POxZ0fWwBNVom5/+s0RtQ3RzAlYXSN2cnMnRxaZ
Om8qhZ9kBrb9/sWRwwPV3/IrRCSwzLSDg4t+fLIyhHuGFUyV7+AI++hSzgb4
YEvXQ5V2jhid2KyVBCcMrTw8oo0j3psNjlbCkycaJ034yZHU2TJsr5X4fluO
6jBs5Ujd0IebjOHnR/YcMm/hyJD2kLfe8PlpU9YuaOaI/ZN5c87DV7ZP3b/0
B0fCT/e/UQ2n+fl+XvedI4+2v9FSXIXPTwcbwrY1cUTW5vRRczj4i5d34DeO
TNFYw/rAJ17ziZGNHPH8M87zCqx55XCvxK8cOV/a+vYDvO9Gt9upDRypTcmZ
M2C1iKyyc0i78YUjA/1235gD51R71Bd85shCW7ORe+CsLKNllZ84Ejq6Z3Qm
XGGRNrC+niN5sqVsA1wsujmgrY4jf19Eew5xE5EjtlaLOFjvkvO7BbB9zrw3
fT9yxGOvuvV+2OfSjVPDP3Dk7KLPN27CJ65uP69by5G3Ey6P/AEfXLizdeZ7
jiiLvaNHrMHni4FXdtvWcGTeGwNuEdwZK5676h1HgjNkvA7Cf9ZuWrr1LUfu
BT98dw8u1nyTtr+aI51LQ63bYRUvA7PYNxzR0Zt/c/RafL5p2aZ6sYoj63oq
j1oGr7Ldr3v7NUeS3r+JjoKXWTgcLHnFkars01wBfDuwcmTtS470O7TG6y/8
IK+Db6vkyJyV42u014nI44KUEd3gfYY/rVfBZvaVgaovOHJb4cbNWDhj8lbN
CRUcaa/fPaoYTpnq3X1mOUfG3zY7xrjj/ZrBvXEOZRxxi+rJT4azu1lHuT/n
SOLaUi93WC9YYuhfypGX5FhNIvwnvkbt6DOOKPRfMrccLhxbYHmhhCOzG9Vv
dVsvIitHXr6WW8yRPfc/j5oGH9wTsKziKUduxFw+5glz2npWX59wpHWDN38W
3qedtU0EjzEz3PwavhfY9lH5MUdWqsq+7+2Be6v74fD4Io4cb344dybMWWzc
Y1bIkYpHobe2wXplB9KcCzgilzB/dCq8uUF9mPcjjph7K8fUwBrnRj8LzeeI
n2U1r7QB93xM5N2khxzJHpa0eTY8JNa8+WYeR763r3nvC99TMXItf8CRkU/H
22TAoVVL+367z5HlST9v1cMufU5zYjh2x43RqhtxD1p/6g29x5FSG/8YG1jl
9qyUKXc50kPTXBwIK6aHOC7I5ciMvz29r8PGSpdnr7/DEZ/npe8b4cJJp3cG
3ebI1XPHbNQ2iciZZQ5fT97iSKPfktt2cFzD7fibNzmiYTd8TAhsPCE/9MUN
jiwZ8yXmDvwrdPnN5hyORIuuiFvhbyt8R8vBxZXe3lqeItJnqNyrkdc5Irls
WOsEq46WfWSajXsWKDsvAg5qN/+5PIsj2xfn386DQ3+XLvfN5GgPB6ulR/aK
u8bRHs5LRP7Fbu3IusrRHg4ONfBUK8/gaA8Hfx/gFdKcztEeDhblr9WRh4Ue
bjNeL8osVMalcbSHg3u/lCFWVzjaw8HjN+1OWnuZoz0cbDL1unnwJY72cHDQ
+7iRKakc7eG88X6u+4DZ+Rc52sP97xXDztVd4GgPB189nWzGw0IPB6v5HVXT
OM/RHg6OyfhgZHaOoz3cFvy4yP/IqhSO9nDwkglOY4LOcrSHg4Mkq2VTznC0
h4PXOUb2LUjmaA8Hu7c9XfkliaM93Fa8387q9bMHLPRwsMr26ffGnuZoDwfb
qto+mXuKoz0cnLdvupLnSY72cPD+U03xUYkc7eG24fVyid3yrASO9nCwWuoK
11cnONrDwYX7epz+e5yjPRy8ut5w6DBY6OHgE8V1r2bGc7SH2473WzP/lrrF
cbSHgyvnbpSExXK0h4P3dk3YmRbD0R4OVl41YXTFMY72cHBI7FLl39Ec7eF2
iMiM7MsmQ2Ghh4P7vlU4b3qUoz0cbKSz1XrdEY72cPCKNyXjI6I42sPB8d3l
rbMOc7SH2ykii76OOPcmkqM9HLw5mzFmYaGHg9XPxfYbHcHRHg7u+vNaY344
R3s4uLMte/P2Qxzt4Xzw+1WrdSUe5GgPB7//1/3hozCO9nDwphSXgu+hHO3h
4GXjB3YbAAs93C58vv46ItA4hKM9HKxvtHnq2gMc7eFgm93t2oeDOdrDwZqD
T7rc3M/RHg4O93Mp/hjE0R7OF8/3PmO39YaFHg4utGh2mrKPoz0cfCLu9C7X
QI72cLA4YOKrsL0c7eFgLb9wz+wAjvZwfvjzKl42q93D0R4Otsz3s5ODhR4O
ztFoPTnFn6M9HJx596/Wyt0c7eFgvzEHG8L9ONrD7RaRgK6jn2/6crSHg11e
dFP/vIujPRz8ZWFldD9Y6OHg/oNazU18ONrDwT1fWuts2MnRHs4fnz/0XjnG
7+BoDwcnfQy6UbCdoz0cPPe4hUP7No72cPATJYUJI2Chh4PbepeYLNjK0R5u
D14fZ28L99/C0R4O1gv7rXzFm6M9HBx00rKqejNHezi4xXbRq16w0MPBz3wG
KE714mgPF4B79nXHPndPjvZw8HG/jbrxmzjaw8GRfb+qPt7I0R4Olj34dvqf
DRzt4eDwUqPjY2Chh9uLzxePf+o6e3C0h4PvrfvDH1zP0R4OLjtponjHnaM9
HFy1Msfx+zqO9nBwdLrtq2Gw0MMF4tfv448sWMvRHg4e8PF2cOAajvZw8Nyy
jdlZbhzt4WDFpXLDvqzmaA+3T0R6RQXfV4WFHg4uDyxLmLuKoz0c/Gd2zbU9
Kznaw8Ey/05ymSs42sPBc29JDn125WgPFyQi5hfE8wfBQg8Hj/sWbj3PhaM9
HKx75ejewOUc7eFgzyE9Wq8v42gPB39c/y7+21KO9nD78XnxmcRPHRZ6OPhJ
wJZYhyUc7eHg5HsDm8KcOdrDwVuKv/jcd+JoDwfHNJXP+LWYoz1cMF4/3Itn
jIeFHg72jSzwWbmIoz0cPDYj81ucI0d7OJhVD44pdeBoDweHGOjs6gYLPdwB
3D+7szHEnqM9HFxS/uLbVjuO9nDw6UFZPpdtOdrDwVZH9GfUL+RoDwfPSbE0
GQILPVwIXi/zPm63X8DRHg4myzs+H5rP0R4OlvvhHfloHkd7OPhLk42XLCz0
cPDQqp2hBjYc7eFCReSW/uc3XnM52sPBgftDVqdac7SHg9vsbUfWz+FoDweb
6kxRHwYLPRzsfGGk7WIrjvZwYXg9WDjgzhFLjvZwMP+oc1nJbI72cPCHxFyD
HrDQw8ED/ZytzCw42sMdxPODf3DEfxZHezj4SFWd0i1zjvZwsF9qdnGHGUd7
OLi75phcXVjo4WDN3zqfNppytIc7JCJr3t4zT53J0R4Olgkrqv48g6M9HHwn
l6RqwEIPB/cx7JfhasLRHu7/n59r+D3RmKM9XDjuZ/+zK6oJR3s4+H6P2fKq
sNDDwbHu/Vscp3O0h4N79hT1OjaNoz0c3D33j3PFVI72cBEiouDS+bEvLPRw
8NjixqQFRhzt4eD2+oLYSEOO9nBweLh//jMDjvZwcOIV8WgFWOjhIvF5VWdu
ns0UjvZw8Fqx5dHwyRzt4eAeQ74dL9HnaA8Ht2wYXSUPCz0cbNfy02aeHkd7
uMN4viWTPxGTONrDwY+D/r0p1eVoDwenx6u1KcJCD/e/GxJm2upwtIeDl/mt
KTg6kaM9XJSI3F3pubdSm6M9HGx9JdVbBRZ6OLjRS+640wSO9nBw66OgzhPj
OdrDwZpFPQ/WjONoD3cEnzdjwu2Hw0IPB2vZ8/arx3K0h4MPjFween4MR3s4
WM8gqr1xNEd7OLjlWuQxbVjo4Y6KSN3juRu8R3G0h4OPpt/eeX0kR3s4uP54
6a2/Whzt4WDlAt9JJrDQw0Xj/dimzPf7NDnaw8HvKt3zijQ42sPBGSZH3sjD
Qg8HV7WpjbYbwdEeDp5Dul2KG87RHu6YiMxeb7iqRp2jPRy8svjiAk1Y6OFg
3xs2W9arcbSHg+8HqzzNGMbRHg4+f+Tvos6hHO3hYvD3ndqoagwLPRx8+kOV
4v4hHO3hYK7pzvTiwRzt4eCUvOBEJVjo4WCnsrF6SwZxtIeLxfvvAwkyZ1Q5
2sPBHo6lXY0DOdrDwaezruvowUIPB0cOsoj3VeFoDwfriTdPyR/A0R4uDn/+
lrE95GGhh4NPrVyr4KjM0R4Odn+vanWqP0d7OPh78+QbDUoc7eHg0erpSybB
Qg8Xj8/jIh89v34c7eHgBLUDJgV9OdrDwWkDSvYowkIPB4/cbdzurMjRHg5+
/eNZQkofjvZwx/H+oZe3T4sCR3s4uNF7cNg0WOjh4DPFd58Fy3O0h4PN7s+f
Xd6boz0cbPHnQdtQWOjhTsAje75wl+NoDwd3/h7YkN2Loz0cPHLkp4kcLPRw
8A23FZfm9eRoD5cgIhe89zqf6MHRHg6WyBmRhu4c7eHg1mZfu8mw0MPBpz+R
xMBuHO3h4IWZ3oOeSzjawyXifmgoPB0KCz0cLOHF6R5ijvZwcOEIy4KbPEd7
OLi74zPFHrDQw8FGW8IiHDmO9nAn8Xpg52WSwnK0h4MXvdii0c5wtIeDp70I
mWoGCz0cLJpyJuiIiKM9HDz0/XX2oyxHe7hT+Px3I+eqLiz0cLDJ5fjovTIc
7eFg9dQFqWVdLO3h4H5nnv8cDgs9HLzxoPwm738s7eFOi4i/87/BD/+ytIeD
9/aK6FKChR4OvhB3s4/bH5b2cLCCxNvh+m+W9nDwA9tLJd1hoYdLEpHrB5x2
OnWytIeDSy97OVz6xdIeDq4sqV8tAws9HLzjz8Vz8ztY2sPBc2ZmDUpuZ2kP
lywiRTc777e3sbSHgy13rYufDQs9HCxJ/Hvm+E+W9nCwikly7fdWlvZw8JYA
u/kzYaGHOyMiDfu4lugWlvZwsJrnmbyGZpb2cPDx9WMLp8NCDwenJx2UifrB
0h4ODjW97fbpO0t7uLMiMsr/imgqLPRw8OIQx6cRTSzt4eBbsalFdd9Y2sPB
tz8ldhrCQg+Xgtf3NM3FEY0s7eFgc129xrqvLO3h4IT03CtGsNDDwRM33UiO
bGBpDwc7Zqk8/vSFpT3cORHRLi5Vnw4LPRwcw1VePPKZpT0crHt+8Oqvn1ja
w8FLe8fNnwELPRxscMB4Q2w9S3u48/h6ePK3ftSxtIeDB6pXG1rAQg8Hi37d
bEj8yNIeDl64MPpxxweW9nBwUfTyahtY6OEu4PGgJT/sXC1Lezj4wIboKFlY
6OHgexUNkxe9Z2kPB3cUycpl1LC0h4Md7jxR7AkLPdxF3AP1mbNXvmNpDwef
8nBMu/2WpT0cPFlZZKEMCz0cPDduooJnNUt7OHiJ99tuj9+wtIdLxfsrjb8T
NWChh4M3au8O3V3F0h4OPjTQWen1a5b2cHCl+/6SSbDQw8F1l9tywl+xtIe7
JCLfNsWXN7xkaQ8H3zPxGGoOCz0cXHB1WdypSpb2cDDr7Gb27wVLezi42/Pt
wxbBQg93Ge8P04LHZFawtIeDUw6Hru4DCz0cbKmytdSjnKU9HJxXN3V9URlL
e7grIrL7eLm+Fiz0cLDnx4kTA5+ztIeDVdxmO70vZWkP9//PfyafOR0WejhY
v2TH9OPPWNrDpYnI/H67OjpLWNrDwesX9qxxgIUeDk6aMehXZjFLezj4SFwS
6QcLPRzs3D86y+spS3u4dHx+2/zZufQJS3s42MkrXEcbFno4eGrF7snhj1na
w8HmLpfdm4pY2sPBf6rlS6xhoYfLEBF7pViXS4Us7eHgvLLpw+VgoYeDR35u
6+tRwNIeDi4bflX36SOW9nDwgcXuAeNgoYe7KiI7XfvKHspnaQ8Hm/U7mdr0
kKU9HNxqKQ62gYUeDv71wfBwWh5Lezh4fK7O4z6w0MNdE5GXd2p1Nj9gaQ8H
JzwiheX3WdrDwSF3px/Sh4UeDu4eVb4n5h5Lezi4YXR70u+7LO3hMnEPtsb8
dIaFHg5+uyptc24uS3s42LVRR00dFno4WENG6V/gHZb2cPC9o1aSz7dZ2sNl
4f3mhcfEChZ6ODh+SsjZy7dY2sPBt8guI0VY6OHgbXeju7bcZGkPB/e6U/z9
1Q2W9nDZ+PNPV5GfDgs9HDzHwt35dA5LezhY5lNOpRgWejg4VvO3v/t1lvZw
1/H1UlJzfJbN0h4Ozns4fIkeLPRwcOrsjvC4LJb2cPCI7IgfMrDQw8EizTq/
VZks7eFy8P487Yvh42ss7eHgGK+oERNhoYeDTUMrjY5dZWkPB09Vvej/L4Ol
PRwcZca2roCFHu4GHr8TKg4XpbO0h4NLZPsvnwgLPRz8p/bG4pg0lvZwsAKT
EyADCz0cPCWMf7n6Ckt7uJsi8jz96OLiyyzt4eD1Z5b20IeFHg5+GG/36cQl
lvZw8NPHG5t5WOjh4MQNp0duSGVpD3dLRAJya8NeXGRpDwd//qMxhMBCDwev
X+HyJuUCS3s4uHRyyCMFWOjh4K5bR9/tOM/SHu427pHBjhEfzrG0h4MlP0dF
z4GFHg5eMeXEpKwUlvZw8L4FBTLDYKGHg7siTnYcOMvSHu4Onl+mqoN+nmFp
Dwffzx3nsRQWejg42+FpQ0EyS3s42G7F9yO6sNDDwVeMDrgnJLG0h8vF+1Oj
iA3dYaGHgy3vdZ7wPs3SHg5WHnOz890plvZwcObrwj1WsNDD3cW90lXVzz7J
0h4O1o1P7j8cFno4eOgOp+HhiSzt4eDv+nrOfxJY2sPBZsZa99xgoYe7h+8P
o7Wg/ARLezh4ctMoeRNY6OHgqd4avy4dZ2kPBx/rJi+nCgs9HCxRe2MdHM/S
Hu4+Pj/qBdxoi2NpDwePym1fsAIWejh4seEE5dJYlvZw8IkRahICCz0cnPLv
nvqlGJb2cA/+76Mk61RhoYeDXwXWvzlwjKU9HDxnqp3Pr2iW9nDwsDYLMzdY
6OHg91OyDV8cZWkPlyci8lFHncxgoYeDB0W+Srl2hKU9HLzu/vahI2Chh4Nn
X19zPyqKpT0c3MEnRrCw0MM9xOPZuE/I5sMs7eFgO5nMyx8iWdrDwQOqdnct
hIUeDn6ywW1HXgRLeziYOLgM1YOFHi4ff37dFT/OhLO0h4P5JNfG/rDQw8Er
Ztv1DT7E0h4OPlykvarzIEt7OLjwScP7dbDQwz3C3+/X9gNvwljaw8E+7c+c
5sJCDwdf3fzZ8W4oS3s4eN3gTH8dWOjh/v/1SWPLkkNY2sMV4PGVZTpPGRZ6
OPh499aOAwdY2sPBUQvGFf0NZmkPB1fM+pK/ERZ6uEIRYU4Paqrdz9IeDj6k
epvYw0IPB+dsunuzMIilPRwcuWyQ6zRY6OHg7yn5Oun7WNrDFYnI9p6Z4zRg
oYeDj1lXL4gNZGkPBwfo6p2Wg4UeDtYNzFAN2MvSHq7o/3/f1iq3PYClPdxj
fD4P+RnmDgs9HKxXmRxYs4elPRzc79b8s3aw0MPBPbo3Nxf5s7SHg4+Hb3cz
hoUe7gmeH8PfirN2s7SHgy1ilJ+NgYUeDlbMH/jglB9Lezj4eWD1O2VY6OHg
S5ftNA/5srSHeyoivkN3RHOw0MPBJdemafvsYmkPB9dZx7Y2+7C0h4MzHu+p
WQMLPRz8WuFb+7udLO3hinGfRKX6DrDQw8ETAoefLN7B0h4O7u7/WsccFno4
OOrt16bb21naw8FPQ6zL9WChhysRkeWebbWXtrG0h4OP+78aqAkLPRy87dx3
n4StLO3h4AOvx4mVYaGHgxV6hOSEb2FpD/cMrwdjfh/tBgs9HByh7x2/x5ul
PRysod5U+HszS3s42OXzEjVvWOjhSkUkLjDn1DcvlvZw8IPWdks3WOjh4FWT
eg1+78nSHg5ONv+u7AQLPRxsODbaqGITS3u45yKy9XP7fhtY6OHgaf6Sf4Ub
WdrDwdzv23GmsNDDweVLFFxyN7C0h4PNMn/aGMJCD1eG9/c9XdwyPVjaw8H6
HlYp2rDQw8GXPp+XT13P0h4OvnLQ66QWLPRwcJRH/KIkd5b2cOW43/EDjYbC
Qg8Hi8bUm8avY2kPB1fr/NyqDAs9HGxQZFgatZalPRzco0faQgVY6OEq8H6m
l2VX2BqW9nDwkqauZ91hoYeDLZ/kPQ5yY2kPB/s9jGxiYaGHg9f8djLYs5ql
PdwLEWkLU0ntWsXSHg4OPnnXfBcs9HCwaPGs7r9XsrSHgzPfJbVug4UeDt64
6AnfvoKlPVyliGz+kUW8YaGH+98li061uLK0h4Nj1C+O9oSFHg7eqXyq6rsL
S3s4WL164rUNsNDDvcTzNXnhtW/LWdrDwXIJf6vWw0IPB+/rUh/TuIylPRw8
5vetU+6w0MPBIx7dJV+XsrSHe4X3E8dH8O6w0MPBl669bW5YwtIeDg61qOPd
YaGHgxcdGW/y1ZmlPdxrfD8r0pLcYaGHgy/Odh3X6MTSHg6On2jwdj0s9HCw
ZfGYrG+LWdrDwUtctTM3wEIPV4XPExOnVX1fxNIeDu4eYDHSExZ6ODgr1uJ4
iyNLezj4613dyd6w0MPBvU1kO9scWNrDvcHr68rk99tgoYeDt2/v39xpz9Ie
Dp5aOEdrFyz0cPDXM9MCu+xY2sPBUUvfSfbAQg9XDZuOzGBhoYeDj1/ovTfI
lqU9HHzxY/DO7rDQw8HdLQ7GhC1kaQ8HzxujWC0PCz3cWxFZWi9nEbWApT0c
vPz51lf9YaGHg4tmz4yMm8/SHg62Pbd24xBY6OFgWauazafnsbSHeycifSNO
JGjCQg8HK1Ue+37BhqU9HPzc/+HqCbDQw8F23wdx1+aytId79///33Pk0RRY
6OFq8Pp6Xj39tjVLezj42p3bd2fAQg8HZ49zbn80h6U9HLxi6c/51rDQw8F6
N3aVPbdiaQ/3Hs/vi193OsJCDwfPSpxs8daSpT0cfETkYLQSFno4WNXE2LZh
Nkt7uFoRWf30y+FNsNDD1f7/71NZdrRbsLSHgz0jHPb4wkIPB5ukdpvIwUIP
B7e8XSgOncXSHu6DiLAJE0SKsNDDwcOWH1aLNWdpDwcPPeHlNgwWerj/f35x
/vMUM5b2cHDn+n0rJsBCD/cRn5/bklWyTVnaw8HRH1TbpsNCDwc7Z9a05c9k
aQ8He375omoDCz0cfFdmvFvlDJb2cHV4P7ojqXIZLPRw8MaXxh6fTVjaw8Hz
T/7V8oSFHg72snsq+W3M0h4OdvU932svLPRw9Xg9Ttiv3wsWejg4wGTpvqOE
pT0c7NI0vHMILPRwsPuEkshz01naw8HZ4fY2OrDQw33C62V82sRb01jaw8E/
3pVNMYeFHg7e/TVr5bOpLO3h4GjreZmLYaGHg69HR4+uM2JpD/cZ7x8c/fM2
wkIPBx/U4Pb+NmRpDwefihyweh8s9HDwnonXPBRgoYeDRfFPY+MNWNrDfRER
8SqnBk1Y6OFgPy3bZRlTWNrDwSt8Lv+aBgs9HJzze3lW4WSW9nBwqLFrjB0s
9HANItL0+VzCe32W9nDwv4gxhR6w0MPBL1/UKP/WY2kPBycvyg0JgoUe7ive
T+TcVusLCz0cnHHs+ZvESSzt4eA50T9vjoWFHg4OdByYm6PL0h4O3hdgWG8O
Cz1cI14vcqwmluuwtIeDQ5NMT7rAQg8HV31S1f0+kaU93P8/Pr7gyy5Y6OHg
a8OM83rAQg/3Da+Ha3bej9FmaQ8HX03z+KgJCz0cHHNGYXTmBJb2cLDcz0VR
M2Ghh4MZS+Nhz8eztIdrwuuF/Y1ny2Ghh4PrC+4kfx/H0h4O9lxgetwPFno4
+GqySbYcLPRwsK3XpbbjY1naw33H13+Dn8NYWOjhYLHNxTc3x7C0h4P7FIze
ZwULPRy8MaJ1XtVolvZwsPuyv8QdFnq4H7j/34wW/BnF0h4OZlrP7Q+FhR4O
zhttWKMKCz0cvNmm3il1JEt7OPjjoOTfU2Ghh2vG5wmbdbeearG0h4Przkw4
tRQWejg4rrrh3HdNlvZwsFPW4TJ/mO7D4fn7Y7CaIkz34USkm/XeyCQNVroP
h8+rh3JG6MF0H05Ecrdmv84fwUr34fB5pGjzVUeY7sPh/dzcussNw1npPhzu
zyPm6S6Y7sPhPv+9LycP0304vL+4NsjzlDor3YcTkQ9Z4g5dmO7D4fX36bbE
fDVWug8nIsb3V69bBNN9OLxeLCtyaBzGSvfhROTGxli33TDdhxORZXeLYhVh
ug+H9yND7JrODGWl+3D4/Go/YZUBTPfh8HgzmNf1ZAgr3YeDj17OWQ7TfTh8
/YxMjv0czEr34fD5529XdDBM9+Hwfvr82+uDYLoPh++3cuXftEGsdB8Ory8D
3rmawXQfDp9//b81vFJlpftwIhKk2XlkA0z34UTE6t2v5SxM9+Hw/n/Ph7kx
A1npPhxeX+quLB0H0304fN79YBtxX4WV7sPh/YNt4QcHmO7Dich0RW7RtwGs
dB9ORHZ1/PkeANN9OPz6dynnBsB0Hw73OaUr4LIyK92Hw+vnmA4/U5juw+Gf
Nzv4+Ov+rHQfTkSevTtXtQmm+3AiYlpsM1UC0304EUn6ufnOCSVWug+He6zb
y3USTPfhRKSnh7zW436sdB/u/3/fzlvOFab7cHh8OeoodfZlpftwIvLzGZke
AdN9OBFZXxoVrAXTfTgR+TJd4+cdRVa6D4f3PzJf/e1hug+He9ZZNb6pDyvd
h8P97Pf93z6Y7sPh3k5RbRoM0304vH+0cZDJUmCl+3C4FyZxE+fCdB9ORDQ7
XwfWy7PSfTgRKXVR6PSD6T4cPg+5TTykDNN9ODwe2yaZpvVmpftweL/a2Ud1
Nkz34URkhkuuYq0cK92Hwz1XnTTGB6b7cHh/p+y2sh9M9+HweczU5s6lXqx0
Hw6vZ1EfpsyC6T6ciLxoG1he05OV7sMxxHhJY/hOmO7DMWTNrbnr+8F0H44h
8WKDtZd7sNJ9OIY8n3A6yAKm+3AMSR+7J6+2Oyvdh2PIgZYn6r4w3YdjiOO2
XaeUYboPx5AH6UHGGd1Y6T4cQwbF1spYw3QfjiHOGvvffZKw0n04hmjZuL8L
gOk+HEMK5INkhsB0H44hE12KSY6Yle7DMeTvNKOTtjDdh2PIulMPhv3gWek+
HENc9i+9FwrTfTj8eCMToAXTfTiGXH+a4vqAY6X7cAwZPMp0xTKY7sMxRPFf
8d4/LCvdh8Pf34LkHYPpPhx+fc+wEZNgug/HkCDz1ORnDCvdh8Pf93e0qQdM
9+EYojpyJtcDpvtwDHn4POXDWREr3YdjyL+/N2tnwnQfjiGmF7aK3suy0n04
htx8W0z8YLoPx5ChiTdPqMJ0H44hT3/oqubIsNJ9OIbkvhp/3R6m+3AMObg8
yftnFyPdh2PI2rDgeYdhug/HkOGrKqy0YboPxxDNVv/Vxf8Y6T4cQ7aRgJPr
YboPx5Dshc86e8B0H44haoauXuf/MtJ9ODw+/o3vYQHTfTiGLDk/7l79H0a6
D8eQpNl2x/bBdB+OIX8ajoeNgOk+HB6PcX9OPvjNSPfhGLJw9ZpyV5juwzFk
v/NrTQam+3D4c4RZxJzqZKT7cAxp5i6MNIHpPhxDPrxoq6z5xUj34RhSpDj8
rD9M9+HwzykcGTUMpvtweHz27kq428FI9+Hw92qJLVwO0304hsw40Kooguk+
HEP86kU+p9oZ6T4cQxYPuSWaAdN9OIYkm6mk1LYx0n04htzwVHDfC9N9OIYc
uh5jPQKm+3D4+drn5z78yUj34RjSt3nKhtUw3YdjyJ4+JFUC0304PH8uZHQ7
38pI9+EY8qwsZK8lTPfhGFKRcmdQYwsj3YdjiLqxWflBmO7D4fmVrXRhAkz3
4RjSe6RWQmkzI92Hw9f/8qa0zTDdh2PI6NVfapRgug/HkDnrgydc/8FI9+EY
wrw1Pb4Ypvtw+P1eKWn9+85I9+EYorCrpSQRpvtwDLlfVxo9A6b7cAzJ0rvo
U9fESPfhGNIVusUvGKb7cAzR6z4ycQxM9+EYsq84p7r4GyPdh2PI2X9qhl4w
3YfD9/m6wzUlmO7DMeSX+oI5OY2MdB+OIQ7LujFLYLoPx5C6SM8KWZjuw+Fx
+i4wP/krI92HY0iLu0GFBUz34RjCLg0SfWtgpPtwDFlV5WoVCdN9ODwfe+Rn
6MF0Hw7P774pk19/YaT7cPjvQf9e+cF0Hw7PA5vc2OEw3YdjSFvZx60Fnxnp
PhxDROUrPT1gug+HP+cO/QOKMN2HY8jepnl3sj8x0n04hngtvaiwBKb7cPj6
/pzqz8B0H44hbtV/e52rZ6T7cHg8mdVmWcN0Hw5/jkUffVvrGOk+HB6Xs367
xMJ0Hw7fj2mqKwhM9+Hw/Fk3fU/dR0a6D8eQt/8W3wqF6T4cHmdaa/rpwHQf
jiH8gCUHXn5gpPtweHzITlTdDdN9OIaQPlWFGjDdh8PzxnfB0Se1jHQfjiGP
tx3y3QzTfTiG1OoEBQyE6T4cvk612sn33jPSfTiGKN/cV7sGpvtwDNFu9pmm
ANN9OIaMv9EjM7uGke7DMeSL1ajZy2C6D8eQ/DfFnWKY7sPh65nUkn/5HSPd
h8MdehmaZg/TfTiGmGREZnW9ZaT7cPi6r/vz8ixM9+EY0mhwV9kGpvtwDLFZ
XOnVUc1I9+HwuOenNCTCdB+OIVO2vfK1gOk+HL7vXzLGNb9hpPtweL2LvdkZ
C9N9OPx+9xvez4DpPhy+Pqcm13+tYqT7cLhTW2LFR2G6D4c7tVMyczpM9+EY
MvLH9vhPrxnpPhy+nkp18pEw3YdjyLLRM08awnQfDq9HG0LmfHzFSPfh8Lga
ntHvEEz34fB4DUn/NRmm+3D4/n3c/ev9S0a6D8eQTVv69QuD6T4cQ+x3r7bS
h+k+HEP6m3sk1FQy0n04hryUGyYXCtN9OIbYqW49pgfTfTjcsaurp9W8YKT7
cPj7Dv7SFQLTfTj8/id+VunBdB+OIWd2+ZfXVDDSfTiGmIkCP4fCdB+OIY82
tytPhuk+HENeDypxrS1npPtwDLllxhcehOk+HO7AlAhLA5juw+H1Z7rbp49l
jHQfDo+T5D2JETDdh8Ovu/bCaypM9+EYMvDmEpfPzxnpPhxDxvG93Y/AdB8O
3893b8ONYboPh69P7KOSxlJGug/HEMPduaNjYboPh6/n+9snzWC6D8cQsfyN
iS3PGOk+HEP8HS9WJ8B0Hw6vT70PJFvBdB8O3/8Ay6BfJYx0Hw6vx+JPAWdg
ug/HEJlvdnELYLoPx5ARBw49kYHpPhy+r+ODVS4VM9J9OPzvOoZ7FsN0Hw73
73M82w2m+3B4HJ1NPpn5lJHuw+H5+MDKcQVM9+HwOIoOHt0HpvtweB3ZskA5
9wkj3YfD9zvn5BAPmO7D4U7cWGesCtN9OIb0ep6yq/AxI92Hw+vhYpuybTDd
h2PI1EuOppow3YfD40TzZkl5ESPdh2NId7UNW/bCdB8Oz8PONXo6MN2Hw+NG
Lkn+fSEj3YfD3bvRl4uA6T4cQ44vyVAkMN2HY8hd+61GTQWMdB8Or7e8g98J
mO7D4etbaFU1B6b7cPjzs3MW/H3ESPfh8Ov72Xy4CNN9ONyR5XMOOcF0Hw7v
1yyMFvaE6T4cQ5om9NW5mc9I9+FwV3wej3aH6T4cQzrDnaapwnQfjiEWz2+s
ffyQke7DMSTmXM0VH5juw+FxviNPfixM9+Fwx1OXHHiTx0j34RhSfD5p0EGY
7sPh+fLqYOE0mO7D4Xlxpm9E0wNGug+H96fbx25KhOk+HO7bzZK182C6D4f3
R1U/d4lgug+Hx8XMqPMZ9xnpPhxDri4//X0FTPfhGNJ+UsVGCab7cPg6ef14
lH+Pke7DMWTRzCGLt8N0Hw4/f28cPxqm+3B4f5fsXFR1l5Huw+Hxr+R87iBM
9+Hwejg7IpHAdB+OIeXpP6405zLSfTiGhN73fpUE0304PB6+9x1kD/9X1FmG
V5FsXZjTTXU37h7cXQLBoXB3Qgju7jI4wYIHgkNwdwnuOrgOg+vgLoM735rU
Xve7f+ZZdxhycrqralfV2u8yfDjUCeuP9Y8Bbfhw+D57jHi154AtfDi81xtL
D+oGbfhwqD/vfUyfHtrw4Ww9bci8e3/vt4UPh7/3R47do6ENH87W9a7MXlsU
2vDh8B6F3t72cp8tfDjUMaFvry2ENnw4rOe1TiauB234cJi/WjTv6EAbPhze
k4A1V3bttYUPh89VfXGTrtCGD4fxnLHE93TQhg9n60VFem2+tMcWPhzW89jF
R4yFNnw4fN9pJ3UqAW34cPi9PrTq/Ha3LXw4W6ePFTlqGbThw2F8PO2+vSG0
4cOhvos7K1ocaMOHw/sePU3rQ7ts4cNhnq3x43ZfaMOHs/Wz7tl75oA2fDjU
5+/n+d3daQsfDt9Xi5r/TIM2fDiMy1KF9laGNnw4WxdKVmXTzx228OFsXaLv
8L2boQ0fztahDy7/0x7a8OFs7XtdMnVqaMOHw/4qfWTPi9tt4cPhPY6V9c4Y
aMOHw76l2KxWJaENHw6/f6mvv95ts4UPh/l1Rfktq6ANHw51rt0zpBm04cPh
/X/at3ViaMOHQz32pGrzU1tt4cPhuU1/0msYtOHDYV0cVW5BALThw2Fdqdrg
3ssttvDhbL0hJFmJpdCGD4d5btfQDcHQhg+Hei18ZJH40IYPh993fuobxzbb
wodDvT6g/LQh0IYPB33wTeuC0IYPh3EXJ1n1F5G28OHw3v2MrLYE2vDh8P3m
3tkqGNrw4fD3FE8/JT604cNhHjn+8MrxTbbw4fA8e37zD4E2fDjMZzeCVwVA
Gz6crQct/+b/eqMtfDjMb30uXVkObfhw+Pkv7oQ3hTZ8OFvv3pigVRJow4fD
P9u3qXp2gy18OIzPneeqhEIbPpytf1ar3KIktOHD2frlyRNhH9fbwofDe3ir
0sX10IYPZ+v9ufflbgdt+HBYpzqlW5QG2vDhoEt1zH51nS18OLw/QZNPToY2
fDjM423GD6sMbfhwmB+T1q3pgzZ8OLyHqe4U2L3WFj4cxnPWLHl6Qxs+HOrN
l+l1LmjDh7P1+jQnOzxaYwsfDuOtV6JVC6ANHw77pvlffgZBGz4c5pkGPTol
gDZ8OMwjDXq9OrXaFj4c6pnAT6NHQRs+HMZNnA8BpaANHw7rarHWPz+vsoUP
h+93VvEbkdCGD4e/736fs52hDR8OdeB152pmaMOHw7xU/Nmnuytt4cNhH3My
Ue4IaMOHw7+vMHRAfWjDh0M91DPdrbjQhg+HejH+u/onV9jCh8Pzevr8wUho
w4ez9bgD1rhS0IYPh5/bOH/5r8tt4cPZek1otyRboQ0fDu+js/lHN2jDh8Nz
X/3+a3Zow4fDelAkZ5xHy2zhw+G/G147YBG04cPZulvdxn0bQxs+HMbfgHKn
kkIbPtx/dWW0QheX2sKHs/XIOBO2hUEbPpytb6W+Ua0KtOHDoV468+hzdGjD
h8NzeLV818EltvDh8PsHJZwyGNrw4Wyd5n6GoUWgDR8O83ub88M+LLaFD4f1
Zle8OZugDR8O6/Sem8e6QBs+HNbLCjljZoc2fDjMQ4U+tXq0yBY+HOavTgX/
Wgxt+HBYBw7frt8M2vDhMH+ne/4qJbThw+G5t6kz7+pCW/hw2J/0jtVi+kJb
+HAYf/niF60DbfhwmN9HBGWNC234cJjPal/PcXqBLXw4fN6RYeXGQhs+HOor
u0vPCtCGD2fr8D1dtlrQhg9n67ezx8Q+ON8WPhzq4bFbBwyBNnw4rOcDXnwv
Bm34cFg3GmWa9mWeLXw47PPSBJXeDm34cJhvdw6K1gfa8OEwT6UcfyU/tOHD
4b0oNvDQm7m28OEw3uOVP7Qe2vDhbF1jyt3LnaENHw6fc1f539mhDR8O39fw
ziWfRtjCh0Nd8bha+Apow4fD/PDo9uc20IYPh3E7OEWfjNCGD4e6fu2n6Pfn
2MKHw7zcp+uaRdCGD4d9w42+bZpDGz4c9gn3XP800IYPZ+uLYamS3p5tCx/O
1m2frIozD9rw4bBefFqZojG04cNh//9n/GIpoQ0fDu9p45vdrs+yhQ+HeuLU
7x2zoQ0fDnVB6j+SNIQ2fDjUoa0DxiSDNnw4PP8NReJcnWkLHw7PJX7flTOh
DR/uv/XpQWADaMOHwz6/w+DkSaENH87W5ccXfnN5hi18OLz3KeLcmAFt+HC2
3pnv47VAaMOHw/7k2ZMXSaANH87WR1veTnhlui18OIyz7WdrzIQ2fDjsy5zI
eQ2gDR/O1lV7h/xOCm34cHhP0ub/4+o0W/hweH9y7482G9rw4fD7/ZlmYUNo
w4fD+IxZrU4KaMOHw/4qW/FkN6bawofDe17xydsIaMOHw7o0pdKdxtCGD4fn
HFD/rh+04cPhc7VWH25PsYUPZ+s/KtfzWwht+HC2Tp4soGELaMOHw3O2VqxM
D234cBj3pefGfBBuCx8O4zV63OHLoA0fzta9xn6K2Q7a8OGwXqsaq7JCGz4c
xvGOGMHPJtvCh8PnvZYp9Vpow4fD/7965ocu0IYPh+fQIehuHmjDh8N8ENT8
9ttJtvDh8PvtWvF6M7Thw+H7+Ttzor7Qhg+Hz/38UtXC0IYPZ+uildbN+Bpm
Cx8O48N/2fs90IYPhz//dWubodCGD4d58vGVpxra8OEwH1SxhtnQhg+H979n
3hzHJtrCh8P3sKnBk7HQhg+H96dRjx3VoA0fDuv+n30i4kIbPhzmqwpNwv+a
YAsfDutnwbRzpkMbPpytI19u2xoEbfhw/61/yR+khDZ8OMwH2XWmO+Nt4cPh
uXbK1H8xtOHD4Xm93nenDbThw+HzJlMNs0EbPhzGfZV3D16Ms4UPh3H7YsiI
jdCGD4d6ru0i/97Qhg+HuiJd3c8B0IYPh/lw9ISz38bawoezdQq3wvb90IYP
h/kpXr/IEdCGD2frlvFTHqgIbfhw+JyDs9yNCW34cLZudnx6gvNjbOHD2bpm
+6YNpkEbPpytT/7df30QtOHDYTyNvpvUD9rw4bAf/Tpu6j+jbeHD2Xr82h7p
lkMbPhz+npQTD3aENnw4W3c4dqlXHmjDh8OfL1Cu8PtQW/hwqBvun4+zE9rw
4fB5mvb+NBja8OEwDrNn+bcMtOHDYR6/+M9PB9rw4fDPe3P9zoyyhQ+H9/JR
rRpToA0fDrrrx8kNoA0fDuMgZujDVNCGD4d9bK3PVe+NtIUPh/n7QvkjK6AN
H87W/pnb1egCbfhwtu7yqN6z/NCGD2frA2udWZ9H2MKHw/eWuF+DfdCGD2fr
BfvmZx0JbfhweB6VesesAm34cNi/1Hv7Ky604cPhPRkdR10ebgsfztZDRh3x
mwtt+HCoSz/FrNgS2vDhML+F3hqWFdrw4fDf38l39tUwW/hweP/XRcu5Fdrw
4VD/LywfMRDa8OGwbnb8mLIMtOHDYV+4L9Z6F9rw4TBf1B5W+1yILXw4vG/X
q6kZ0IYPh/ctQfvTjaENHw7Pe8upJRmgDR8O39fg7hOeDbWFD4ffP2fN0E3Q
hg+Hfebw5uH9oA0fDvOOnreuFLThw2H+y/PzuoI2fDiM4wSDkp8dYgsfDp9n
c9wO06ENHw7j6NamE42hDR8On6tJo2IZoQ0fDj8/WvR9zwfbwofDvDFnRe3N
0IYPZ+u634t9HABt+HCYT77uWlMG2vDh8HM6+/WMAW34cKi/cjSu/NcgW/hw
WB8TdM83B9rw4Wy963vt7C2hDR8O9eLJrwWyQxs+HD5Pk1Y1/h1oCx8O78XM
kf13QRs+nK2PNWmwdTi04cPhe5/5d7Sq0IYPh/oi94emCaENH87WAXEiT98Y
YAsfDvNHervqUmjDh0O92/jBtc7Qhg+Hffzaqv0LQhs+HL5/VSDbz/628OGw
/2k29elRaMOHw7jZ2GbXJGjDh8O88+/iiCBow4fD35uu3MR00IYPh/m5aJlJ
z/rZwof7795lxqLN0IYPh8+fr8iRQdCGD4e6PXHGT+WhDR8O3+vbmkXjQhs+
HN77s1snXv3DFj4c6tOtNd4ugjZ8OMwrWxO26QRt+HBYJ27+eOIPbfhw+Gcx
NfhnX1v4cBh/DzOlOw5t+HC2zvem/qVwaMOHw+fsOWl2I2jDh7N1qdGnumSC
Nnw4vCeVrTqv+9jCh8P7ejlPhZ3Qhg+HcVyjSpUR0IYPZ+svf1dtWh3a8OHw
vCfmGp4U2vDhUD/Nf7L1n9628OH+u7fo+2UNtOHD2Tq427lqfaENHw7v4eiX
G0pDGz4c9isrT6SPCW34cKibrCbLLvWyhQ+H9eP0woCF0IYPh3q8cNi1jtCG
D4d1IiT1+ILQhg+H9fB2lWq/e9rCh8N4nhTL7xS04cPh9zzf+Md0aMOHw3z6
wP9lc2jDh7P1qVhhL3JAGz4c1sdJLb597GELHw7jZ/PK5IegDR8O9dLhxhUn
Qhs+HD5fjD9GBkEbPhzesytvzmeANnw4jJP+h3O+7m4LHw77onJPZu6CNnw4
PO+JQQlCoQ0fDvuY1bHn1sY/DR/u///J/59/jv8d/x7+vfw5/Ln8HPxc/Jz8
3Pw9+Hvx9+Tvze+B3wu/J35v/B75vfJ75vfO58DnwufE58bnyOfK58znzveA
7wXfE743fI/4XvE943vH95DvJd9Tvrd8j/le8z3ne89xwHHBccJxw3HEccVx
xnHHcchxyXHKcctxzHHNcc5xz3mA8wLnCc4bnEc4r3Ce4bzDeYjzEucpzluc
xzivcZ7jvMd5kPMi50nOm5xHOa9ynuW8y3mY8zLnac7bnMc5r3Oe57zPdYDr
AtcJrhtcR7iucJ3husN1iOsS1ymuW1zHuK5xneO6x3WQ6yLXSa6bXEe5rnKd
5brLdZjrMtdprttcx7muc53nus86gHUB6wTWDawjWFewzmDdwTqEdQnrFNYt
rGNY17DOYd3DOoh1Eesk1k2so1hXsc5i3cU6jHUZ6zTWbazjWNexzmPdxzqQ
dSHrRNaNrCNZV7LOZN3JOpR1KetU1q2sY1nXss5l3cs6mHUx62TWzayjWVez
zmbdzTqcdTnrdNbtrONZ17POZ93PfQD3BdwncN/wv32E7Cu4z+C+g/sQ7ku4
T+G+hfsY7mu4z+G+h/sg7ou4T+K+ifso7qu4z+K+i/sw7su4T+O+jfs47uu4
z+O+j/tA7gu5T+S+kftI7iu5z+S+k/tQ7ku5T+W+lftY7mu5z+W+l/tg7ou5
T+a+mfto7qu5z+a+m/tw7su5T+e+nft47uu5z+e+n+cAPBfgOQHPDXiOwHMF
njPw3IHnEDyX4DkFzy14jsFzDZ5z8NyD5yA8F+E5Cc9NeI7CcxWes/Dchecw
PJfhOQ3PbXiOw3MdnvPw3IfnQDwX4jkRz414jsRzJZ4z8dyJ51A8l+I5Fc+t
eI7Fcy2ec/Hci+dgPBfjORnPzXiOxnM1nrPx3I3ncDyX4zkdz+14jsdzPZ7z
8dyP54A8F+Q5Ic8NeY7Ic0WeM/LckeeQPJfkOSXPLXmOyXNNnnPy3JPnoDwX
5Tkpz015jspzVZ6z8tyV57A8l+U5Lc9teY7Lc12e8/Lcl+fAPBfmOTHPjXmO
zHNlnjPz3Jnn0DyX5jk1z615js1zbZ5z89yb5+A8F+c5Oc/NeY7Oc3Wes/Pc
nefwPJfnOT3P7XmOz3N9nvPz3J/3ALwX4D0B7w14j8B7Bd4z8N6B9xC8l+A9
Be8teI/Bew3ec/Deg/cgvBfhPQnvTXiPwnsV3rPw3oX3MLyX4T0N7214j8N7
Hd7z8N6H90C8F+I9Ee+NeI/EeyXeM/HeifdQvJfiPRXvrXiPxXst3nPx3ov3
YLwX4z0Z7814j8Z7Nd6z8d6N93C8l+M9He/teI/Hez3e8/Hej/eAvBfkPSHv
DXmPyHtF3jPy3pH3kLyX5D0l7y15j8l7Td5z8t6T96C8F+U9Ke9NeY/Ke1Xe
s/LelfewvJflPS3vbXmPy3td3vPy3pf3wLwX5j0x7415j8x7Zd4z896Z99C8
l+Y9Ne+teY/Ne23ec/Pem/fgvBfnPTnvzXmPznt13rPz3p338LyX5z097+15
j897fd7z896fPgD6AugToG/gfz4C8RXQZ0DfAX0I9CXQp0DfAn0M9DXQ50Df
A30Q9EXQJ0HfBH0U9FXQZ0HfBX0Y9GXQp0HfBn0c9HXQ50HfB30g9IXQJ0Lf
CH0k9JXQZ0LfCX0o9KX8z6civhX6WOhroc+Fvhf6YOiLoU+Gvhn6aOiroc+G
vhv6cOjLoU+Hvh36eOjroc+Hvh/6gOgLok+IviH6iOgros+IviP6kOhLok+J
viX6mOhros+Jvif6oOiLok+Kvin6qOiros+Kviv6sOjLok+Lvi36uOjros+L
vi/6wOgLo0+MvjH6yOgro8+MvjP60OhLo0+NvjX62Ohro8+Nvjf64OiLo0+O
vjn66Oiro8+Ovjv68OjLo0+Pvj36+Ojro8+Pvj/6AOkLpE+QvkH6COkrpM+Q
vkP6EOlLpE+RvkX6GOlrpM+Rvkf6IOmLpE+Svkn6KOmrpM+Svkv6MOnLpE+T
vk36OOnrpM+Tvk/6QOkLpU+UvlH6SOkrpc+UvlP6UOlLpU+VvlX6WOlrpc+V
vlf6YOmLpU+Wvln6aOmrpc+Wvlv6cOnLpU+Xvl36eOnrpc+Xvl/6gOkLpk+Y
vmH6iOkrps+YvmP6kOlLpk+ZvmX6mOlrps+Zvmf6oOmLpk+avmn6qOmrps+a
vmv6sOnLpk+bvm36uOnrps+bvm/6wOkLp0+cvnH6yOkrp8+cvnP60OlLp0+d
vnX62Olrp8+dvnf64OmLp0+evnn66Omrp8+evnv68OnLp0+fvn36+Onrp8+f
vn/2AbAvgH0C7BtgHwH7CthnwL4D9iGwL4F9CuxbYB8D+xrY58C+B/ZBsC+C
fRLsm2AfBfsq2GfBvgv2YbAvg30a7NtgHwf7Otjnwb4P9oGwL4R9IuwbYR8J
+0rYZ8K+E/ahsC+FfSrsW2EfC/ta2OfCvhf2wbAvhn0y7JthHw37athnw74b
9uGwL4d9OuzbYR8P+3rY58O+H/YBsS+IfULsG2IfEfuK2GfEviP2IbEviX1K
7FtiHxP7mtjnxL4n9kGxL4p9UuybYh8V+6rYZ8W+K/ZhsS+LfVrs22IfF/u6
2OfFvi/2gbEvjH1i7BtjHxn7ythnxr4z9qGxL419auxbYx8b+9rY58a+N/bB
sS+OfXLsm2MfHfvq2GfHvjv24bEvj3167NtjHx/7+tjnx74/9gGyL5B9guwb
ZB8h+wrZZ8i+Q/Yhsi+RfYrsW2QfI/sa2efIvkf2QbIvkn2S7JtkHyX7Ktln
yb5L9mGyL5N9muzbZB8n+zrZ58m+T/aBsi+UfaLsG2UfKftK2WfKvlP2obIv
lX2q7FtlHyv7Wtnnyr5X9sGyL5Z9suybZR8t+2rZZ8u+W/bhsi+Xfbrs22Uf
L/t62efLvl/2AbMvmH3C7BtmHzH7itlnzL5j9iGzL5l9yuxbZh8z+5rZ58y+
Z/ZBsy+afdLsm2YfNfuq2WfNvmv2YbMvm33a7NtmHzf7utnnzb5v9oGzL5x9
4uwbZx85+8rZZ86+c/ahsy+dfersW2cfO/va2efOvnf2wbMvnn3y7JtnHz37
6tlnz7579uGzL599+uzbZx8/+/rZ58++f3IAyAUgJ4DcAHIEyBUgZ4DcAXII
yCUgp4DcAnIMyDUg54DcA3IQyEUgJ4HcBHIUyFUgZ4HcBXIYyGUgp4HcBnIc
yHUg54HcB3IgyIUgJ4LcCHIkyJUgZ4LcCXIoyKUgp4LcCnIsyLUg54LcC3Iw
yMUgJ4PcDHI0yNUgZ4PcDXI4yOUgp4PcDnI8yPUg54PcD3JAyAUhJ4TcEHJE
yBUhZ4TcEXJIyCUhp4TcEnJMyDUh54TcE3JQyEUhJ4XcFHJUyFUhZ4XcFXJY
yGUhp4XcFnJcyHUh54XcF3JgyIUhJ4bcGHJkyJUhZ4bcGXJoyKUhp4bcGnJs
yLUh54bcG3JwyMUhJ4fcHHJ0yNUhZ4fcHXJ4yOUhp4fcHnJ8yPUh54fcH3KA
yAUiJ4jcIHKEyBUiZ4jcIXKIyCUip4jcInKMyDUi54jcI3KQyEUiJ4ncJHKU
yFUiZ4ncJXKYyGX6H6dJuE3kOJHrRM4TuU/kQJELRU4UuVHkSJErRc4UuVPk
UJFLRU4VuVXkWJFrRc4VuVfkYJGLRU4WuVnkaJGrRc4WuVvkcJHLRU4XuV3k
eJHrRc4XuV/kgJELRk4YuWHkiJErRs4YuWPkkJFLRk4ZuWXkmJFrRs4ZuWfk
oJGLRk4auWnkqJGrRs4auWvksJHLRk4buW3kuJHrRs4buW/kwJELR04cuXHk
yJErR84cuXPk0JFLR04duXXk2JFrR84duXfk4JGLR04euXnk6JGrR84euXvk
8JHLR04fuX3k+JHrR84fuX/kAJILSE4guYHkCJIrSM4guYPkEJJLSE4huYXk
GJJrSM4huYfkIJKLSE4iuYnkKJKrSM4iuYvkMJLLSE4juY3kOJLrSM4juY/k
QJILSU4kuZHkSJIrSc4kuZPkUJJLSU4luZXkWJJrSc4luZfkYJKLSU4muZnk
aJKrSc4muZvkcJLLSU4nuZ3keJLrSc4nuZ/kgJILSk4ouaHkiJIrSs4ouaPk
kJJLSk4puaXkmJJrSs4puafkoJKLSk4quankqJKrSs4quavksJLLSk4rua3k
uJLrSs4rua/kwJILS04subHkyJIrS84subPk0JJLS04tubXk2JJrS84tubfk
4JKLS04uubnk6JKrS84uubvk8JLLS04vub3k+JLrS84vub/kAJMLTE4wucHk
CJMrTM4wucPkEJNL/D9OsXCLyTEm15icY3KPyUEmF5mcZHKTyVEmV5mcZXKX
yWEml5mcZnKbyXEm15mcZ3KfyYEmF5qcaHKjyZEmV5qcaXKnyaEml5qcanKr
ybEm15qca3KvycEmF5ucbHKzydEmV5ucbXK3yeEml5ucbnK7yfEm15ucb3K/
yQEnF/x/nHDhhpMjTq44OePkjpNDTi45OeXklpNjTq45OefknpODTi46Oenk
ppOjTq46OevkrpPDTi47Oe3ktpPjTq47Oe/kvpMDTy48OfHkxpMjT648OfPk
zpNDTy49OfXk1pNjT649Offk3pODTy4+Ofnk5pOjT64+Ofvk7pPDTy4/Of3k
9pPjT64/Of/k/jMHgLkAzAlgbgBzBJgrwJwB5g4wh4C5BMwpYG4BcwyYa8Cc
A+YeMAeBuQjMSWBuAnMUmKvAnAXmLjCHgbkMzGlgbgNzHJjrwJwH5j4wB4K5
EMyJYG4EcySYK8GcCeZOMIeCuRTMqWBuBXMsmGvBnAvmXjAHg7kYzMlgbgZz
NJirwZwN5m4wh4O5HMzpYG4HczyY68GcD+Z+MAeEuSDMCWFuCHNEmCvCnBHm
jjCHhLkkzClhbglzTJhrwpwT5p4wB4W5KMxJYW4Kc1SYq8KcFeauMIeFuSzM
aWFuC3NcmOvCnBfmvjAHhrkwzIlhbgxzZJgrw5wZ5s4wh4a5NMypYW4Nc2yY
a8OcG+beMAeHuTjMyWFuDnN0mKvDnB3m7jCHh7k8zOlhbg9zfJjrw5wf5v4w
B4i5QMwJYm4Qc4SYK8ScIeYOMYeIuUTMKWJuEXOMmGvEnCPmHjEHiblIzEli
bhJzlJirxJwl5i4xh4m5TMxpYm4Tc5yY68ScJ+Y+MQeKuVDMiWJuFHOkmCvF
nCnmTjGHirlUzKlibhVzrJhrxZwr5l4xB4u5WMzJYm4Wc7SYq8WcLeZuMYeL
uVzM6WJuF3O8mOvFnC/mfjEHjLlgzAljbhhzxJgrxpwx5o4xh4y5ZMwpY24Z
c8yYa8acM+aeMQeNuWjMSWNuGnPUmKvGnDXmrjGHjblszGljbhtz3Jjrxpw3
5r4xB465cMyJY24cc+SYK8ecOebOMYeOuXTMqWNuHXPsmGvHnDvm3jEHj7l4
zMljbh5z9Jirx5w95u4xh4+5fMzpY24fc/yY68ecP+b+MQeQuYDMCWRuIHME
mSvInEHmDjKHkLmEzClkbiFzDJlryJxD5h4yB5G5iMxJZG4icxSZq8icReYu
MoeRuYzMaWRuI3McmevInEfmPjIHkrmQzIlkbiRzJJkryZxJ5k4yh5K5lMyp
ZG4lcyyZa8mcS+ZeMgeTuZjMyWRuJnM0mavJnE3mbjKHk7mczOlkbidzPJnr
yZxP5n4yB5S5oMwJZW4oc0SZK8qcUeaOMoeUuaTMKWVuKXNMmWvKnFPmnjIH
lbmozEllbipzVJmrypxV5q4yh5W5rMxpZW4rc1yZ68qcV+a+MgeWubDMiWVu
LHNkmSvLnFnmzjKHlrm0zKllbi1zbJlry5xb5t4yB5e5uMzJZW4uc3SZq8uc
XebuMoeXubzM6WVuL3N8mevLnF/m/jIHmLnAzAlmbjBzhJkrzJxh5g4zh5i5
xMwpZm4xc4yZa8ycY+YeMweZucjMSWZuMnOUmavMnGXmLjOHmbnMzGlmbjNz
nJnrzJxn5j4zB5q50MyJZm40c6SZK82caeZOM4eaudTMqWZuNXOsmWvNnGvm
XjMHm7nYzMlmbjZztJmrzZxt5m4zh5u53MzpZm43c7yZ682cb+Z+MwecueDM
CWduOHPEmSvOnHHmjjOHnLnkzClnbjlzzJlrzpxz5p4zB5256MxJZ246c9SZ
q86cdeauM4eduezMaWduO3PcmevOnHfmvjMHnrnwzIlnbjxz5Jkrz5x55s4z
h5659MypZ249c+yZa8+ce+beR/nhoNf2HdV0QSxl/HDQezq02VAntjJ+uAVY
X7I/LaDiKOOHg/72PdWLndBRfjjoKtljX+0SVxk/3H/6x5+f0sVTxg83H+vb
kbpVL0NH+eGgV5w/9Ne4+Mr44aBf9U0TViqBMn446P1x+g5+Dx3lh4O++e9f
C1clVMYPNw+fZ1iZz00TKeOHg45McWFEosTK+OGgF2YYX/YkdJQfDrqyNTgg
JIkyfjjonBk3NyuUVBk/3FzU4++K7HkBHeWHg+5y36/6kmTK+OGgl7TtlCA4
uTJ+OOgj73PHip9CGT8cdIDbp+hx6Cg/XAT2p6mrzBuaUhk/HPTSHbv8A1Ip
44eD7hZ88fcr6Cg/HHTe8QujrfBTxg8H3eRS7oBmqZXxw83B+nR03KKkaZTx
w0GrNwdKn4eO8sNBL314K9HYtMr44aDfl3zlVyadMn446DUzfjb6Bh3lh5uN
zz8u5bkt6ZXxw0EP3VP7j64ZlPHDQbc9v65e1ozK+OGgq3Yt3u4edJQfDrqG
jrFhbiZl/HCzLH3rU4acDTIr44eD3lJ2xu34WZTxw0H/c63L0dPQUX446KM9
t98fnVUZPxx08pNDC5XNpowfbqaln8y/uO8ndJQfDnrm5v2DdmVXxg8H/fhM
re59cyjjh4N+v23q7Pw5lfHDzcDzKDb98yvoKD8c9PjsLSeuyaWMHw46W5AT
1D63Mn446Mg54UGZ8ijjh4POejr2pHvQUX646Rg/J8Z8W5BXGT8c9Kvecec3
yaeMHw665qb1fVPmV8YPB32oba9R16Cj/HDQLUI6npxZQBk/3DTM5y8Wlg/0
V8YP95+el+FTooLK+OGgz4z5dfsidJQfDvrRcv1jSiFl/HDQDd5/rF0nQBk/
3FT8/t1z3opfWBk/HHSstK/nX4CO8sNBd3KrzQwvoowfDrqhf62jtYsq44eD
XrTJzZmgmDJ+uCmWDg8ffvwv6Cg/HPTnJycjphZXxg8Hnfv8q2X1Sijjh4NO
0Orbo8QllfHDQcc8+KPpFegoP1y4pWPHtuLMLqWMHw46okuy98GllfHDQR+J
VTW+n1bGDwedLdnKNnego/xw0NEOFn+7qIwyfrjJlk5YPMmW1mWV8cNBHzio
12cpp4wfDjpa2Ok7z6Cj/HDQHe8errS+vDJ+OOis3/2f9qigjB9uEj5v1lwH
C1ZUxg8HHbJ+5/kv0FF+OOgZtx4n3VdJGT8ctM/5c8bwysr44aBThTStXrGK
Mn64MEs/XHSwWKyqyvjhoJ0T31pcgI7yw0Ffq5/iwIxqyvjhoJuuzR7YuLoy
friJ2O/5F82YvoYyfjjoT0GB2Z9AR/nhoEPHTmi/vqYyfjjofYWf3e5dSxk/
HHS6W4MmFqutjB9ugqWfv6nd21dHGT8cdNx/+049AR3lh4PWLb88m1xXGT8c
9NujjwYE1VPGDwddY1W1smnrK+OHG2/p6jMKl3sCHeWHg16aesfgjYHK+OGg
L1y++rpfA2X8cNDJG6yco4OU8cNBTyjmPyRGQ2X8cONQT2ccN+cidJQfDjr3
lu2v5wYr44eDHjr15OC2jZTxw0GX7XK+XN7GyvjhoOe8uVzuK3SUH24s6p3z
zwcfaaKMHw56+eFUb8KaKuOHgz478o+Ihs2U8cNBd/3LC8nYXBk/HPSjrv/M
ew0d5Ycbg/1F2lgfdrVQxg8HXXDTzFGhLZXxw0HneR1es04rZfxw0JXWunVT
t1bGDwdda583+Rl0lB9uNN7PX4vV9jbK+OGgf1S9t21EW2X8cNCXQy8trNVO
GT8cdJzp4474tVfGDwedqHnc9M+ho/xwofj7L/XYuaODMn446BSP9o8L7aiM
Hw768GhnRr1OyvjhoGdtDryRvrMyfrhRmL/b7g5+Cx3lh4O+tLhsogNdlPHD
QR/u/MOZ1FUZPxz0szMfCzbtpowfDjr8Yon5ubor44cbifEx6W7pH9BRfjjo
qYlf+p3poYwfDnp+SI+C83oq44eDnvhy4OguvZTxw0H/NThFopK9lfHDjcD8
FtjoRpw+yvjhoMcsrnbrDnSUHw46IOx78k19lfHDQe+v2j98+B/K+OGgP8W7
ULZeP2X8cMPx/JMmyJe5vzJ+OOha86s0/Awd5YeDXvZozJ6TA5Txw0EnCbgR
PG+gMn446NjXa/p3H6SMH26YpZOl/lCp7GBl/HDQz+tfm5VkiDJ+OOhWV2Nk
fAYd5YeDHvl75rO9Q5Xxw0GH5Jr0IjxEGT9ciKW3H/qZre0wZfxw0LuzfFhc
dLgyfjjoasdDGsQdoYwfDrpFoo0VH0BH+eGgs4WE99o5Uhk/3FBLuyML3Agb
pYwfDnrB3KVDWocq44eDPlXlXZOio5Xxw0GvSJi7f7wxyvjhoMNDWp1/BB3l
hxuC+TPN4lZ7xyrjh4OuPexz/mnjlPHDQRcu0adkp/HK+OGg67zMHFpmgjJ+
OOgWeVPFSDFRGT/cYEv3XNXq5FvoKD8c9P1fMY+dCFPGDwfd5k6G34smKeOH
g/72aWefAZOV8cMNsvTvHzez1A1Xxg8HnXF1RJKcU5Txw0H32WmXiT5VGT8c
dKOXmVffho7yw0HPixm/5o5pyvjhBuLn3b6Qd8p0Zfxw0CX8+9XsPEMZPxx0
4rsJ1lSYqYwfDrrczo1l081Sxg8HPSGiefLv0FF+uAGY/9rly3lltjJ+OOhR
v/MNipyjjB8O+lqtHl5YhDJ+OOgp5X9e7DBXGT8c9ILzj2+Un6eMH66/pds/
KZ4u/Xxl/HDQp0bHWvoTOsoPB51hfZvWNxYo44eDLt+sQcsdC5Xxw0GPXfJm
3vRFyvjh+qEeG106aa/FyvjhoAP9As/WWqKMHw465YDSh3MvVcYPBz1oR5yP
sZYp44eD7vLpXNvn0FF+uD8s3Tl4auKTy5Xxw0GP8dr7Vq1Qxg8H3Sxfk1xj
Virjh4POYA2f0W6VMn446DlbHpaouFoZP1xf/PuQmRmyrFHGDwe9denyis5a
Zfxw0A/bpF/9GDrKD/efjpmi6vF1yvjhoMfcn5t91Xpl/HB9sH6U3FVp3AZl
/HDQeXsOW9ZpozJ+OOh416Pp6puU8cNB17xUJWWeSGX8cNDW8U7+8Tcr44fr
jfUyRe8J76Cj/HDQE4v1ynB5izJ+OOhfEf2+7NiqjB8OOsPmqXHmblPGD9cL
f/77xZZDtyvjh4Me87nSx5Y7lPHDQfvl9J2osFMZPxx0wnRxb2TfpYwfDvp1
m6E54+5Wxg/X09JfJ7bc+w46yg8HXSbf8YlX9yjjh4Oe+2L/vL17lfHDQa9o
0fDl4n3K+OGgTxVaOmjMfmX8cD3w3yfdWLXrAWX8cNCJNk8IrndQGT8cdMr9
lVcVPaSMHw7a/fAxIN1hZfxw0K0SLlXuEWX8cN3x+95qnvg1dJQfDvpwyhKt
L/+pjB8OOm1EpXd7jyrhw1l6ca6ph5YdU8KHs3SW1Tn/mnhcCR8O4/tFxvR9
Tyjhw2E9uDQ+sulJJXw47Jeq9BhR8ZQSPpylWxd8OC3vaSV8OPz80E+Pkp9R
woez9Oj8O/pbZ5Xw4fDf5w+o/hLa8OEsPWnEyBZXzinhw2G/lH3jtoPnlfDh
8P3lPllt7QUlfDis7/PuZZj5lxI+HD7fOK/48ItK+HCW3hmj5vQufyvhw1n6
WLHDeRpeUsKHw/6vZN+Y5S8r4cNhf1WkX9Z8V5Tw4bC/DroW6ndVCR8O+4eT
qzLHuKaED2fpP49+cT5BGz4c1sfQa9kfXFfCh8N8XKXhpAs3lPDhLN0ucGzB
/TeV8OHw89/391t3SwkfDs+7d7GKEbeV8OEsfT7r7cixd5Tw4fD7durZvN9d
JXw4zNcRbq12/yjhw2E/nmrTsMB7Svhw+D7rD/pQ/r4SPhzmu60D1hR8oIQP
Z+nBG/YsyfRQCR/O0kG769xO/EgJHw71eWD1RuqxEj4cPo+1N8UnaMOHs/SV
KpGpnjxRwoez9I4dJVpce6qED4f19U63JyefKeHD4fdv0DByz3MlfDi8D3ti
7F//QgkfDuvfpmlxFr1UwofD573pLJr6SgkfztLjnvfuG/paCR/O0hcnvQjr
/0YJHw77zZChzzq/VcKHs/SmASXHNv9XCR8O+/VSRTvVe6eED2fpv2eMmFzp
vRI+HOqDajm+FP+ghA9n6SIFyizL91EJH87SC9Ndm5b5kxI+HL7f97+Ppfys
hA+H+iXsZMn4X5Tw4bCfuFThi/qqhA+H+mh76Kfv0IYPh/U0S0SRd9+U8OEs
XSDl9P1Pvyvhw1k6afiosXd/KOHDWbrJ+MEzr/xUwofDfJAg7OnZX0r4cKgn
8h8fevS3Ej6cpV/8Kh68L5ojfDisT1N+9Nvmc4QPh/2qm/LmessRPpylT49c
PmKF7QgfDutn3k3dFkZ3hA+H969otYWzlSN8OEuXujIm8VTHET6cpfOX6ndu
gusIHw772005zoZ6jvDhsF723hJ/WAxH+HAYH+czzBkY0xE+nKVzJRnfrm8s
R/hwlk4T8a1/j9iO8OGwXuwKvdA5jiN8OEt3+7tE1/ZxHeHDob6umb9W63iO
8OEsPXBWnz+ax3eED4f1JW3yB40TOMKHw/NukntGw4SO8OEwf549OjEwkSN8
OHyeD+9O1k3sCB/O0i8bHqteO4kjfDhLXx9XJ0nNpI7w4fD+p1yRsXoyR/hw
lraXX+5XNbkjfDjUy8f/TVAlhSN8ONQz2WK/q5TSET4cxmPPgOSVUjnCh7N0
1XojRlX0c4QPZ+nio3yFK6Z2hA+H+fbg0bwV0zjCh8N8fvKfbhXTOsKHs/SS
9m0+VEznCB8O+4v2rQ5WSu8IHw7Pe/7Li5UzOMKHs3T/+4lzVc3oCB8O80vi
V6erZXKED4f6M+WYzTUyO8KHw/O99eFurSyO8OGwv6tRuX7drI7w4VBvtZ4W
LzCbI3w47B9TPk3QMLsjfDisp30aNm6cwxE+HPaLgz69aJbTET4c6v8Sl460
yuUIHw71xGn7QbvcjvDhLP2k7KwqnfM4wodD/XZk0efueR3hw2G/16vAqz75
HOHD4X0f0izHwPyO8OGw/0hSeGNIAUf4cJYu1uvcoFB/R/hwlv55MSB8QkFH
+HBY3weNeDmlkCN8OHz/24+Ezw5whA+H+efv2EMWFnaED4fvJ3uPyBVFHOHD
WXpfkmh5NhR1hA+H5/P13LttxRzhw+HvK/Xm977ijvDhsH+s2zvwWAlH+HCW
jrmu6/tzJR3hw1k6/tG316+WcoQPh/UvbbwY90o7woez9LsyN4c9147w4Sz9
eHf7Mh/KOMKHQz2X+njVX2Ud4cPhz0ePPd8r7wgfztLV41cpkqiCI3w4S3d4
HO6XpqIjfDj8fv6fqmSv5AgfDvPN2gkHC1Z2hA+H5+22GaarOMKHs3QCZ+q4
6lUd4cNZekjXbLcaVnOED4f1NEax/m2rO8KHs7Ref71prxqO8OGwn8iXMiyk
piN8OKw/veI6YbUc4cNZukLwyRMRtR3hw2E/fr7p5VV1HOHDWfrG8Ts5d9R1
hA+HertY8zNH6znCh8N4y/Ju+6X6jvDh8PnC17x4EOgIHw71wai5nd43cIQP
Z+kvia/52w0d4cNZ+kRw70qJgh3hw6He7TVsecZGjvDhLJ1vZMKaBRs7woez
tLOrRJkKTRzhw1n6aYWEIQ2aOsKHs/TaVivcDs0c4cNZemXN2DcHNHeED4f5
q1bQ1wktHOHDWbrk5ohWC1o6woezdI6Tz5JGtnKED4fx/Coo6Z+tHeHDYX0e
9qXF1TaO8OEsHefpnU/P2zrCh7N07ilprv1q5wgfDvPfm1PRE3VwhA+Hemfo
58FZOzrCh7P0tv07dIlOjvDhsN4UTlu7TmdH+HCWntavzNp2XRzhw1n6n0QF
6g7u6ggfztKZVkWvMLWbI3w41GtXzoxc1d0RPpyl71ReEPdAD0f4cFh/Nkx8
dLmnI3w47Hf3rfVe9XKED2fpg/7x+kfv4wgfztL+l0/5+/V1hA9n6dld3hUv
+IcjfDhLjzw9J7x6P0f4cNhfn7qUv21/R/hw//mjdqQdOsARPhzmp5yBjWYN
dIQPZ+mbzQ/f2zTIET4c9iM3Em4/NdgRPhzmt+mNrj4c4ggfDvuP8PUVfg91
hA9n6R6X0/pSDnOED2fpsN5HYxQa7ggfztJDh21uXnuEI3w4rAcpvltdRjrC
h7P06pZb3o8Z5QgfDvXTqDf5l4U6wofD/LzlyL6Dox3hw2F8ZSs/6/YYR/hw
lu6ePnT/t7GO8OGw/j2O8E8+3hE+nKWL/jnnU6EJjvDhUC/Gn+nWn+gIH87S
9bMsa9crzBE+nKVjdLyWaMokR/hwlm5atlK8TZMd4cNZulpGFXw+3BE+3H/9
dln+fT3FET6cpWs/OHA17jRH+HBYb48/ip13uiN8OEs/2L8uvNYMR/hweL+b
ZG/dY6YjfDjUqyV7jJoyyxE+nKVLR5/5YfNsR/hwlq7XaOOWS3Mc4cNh/vj3
wqFPEY7w4VCfDo+XNsU8R/hweN9PhZwuPt8RPhz+/mkBx5stcIQPh/l6TeWE
IxY6woezdJVHp9YtX+QIH87Sh9JenHlysSN8ONSXpXpfeLXEET6cpd/kPBKc
cJkjfDjMnzevFCi83BE+HOafikcaN1nhCB/O0ve6zb80fKUjfDi8z00Gzl+5
yhE+HOrNtN23n13tCB/O0lfPh6f9sMYRPpyle0/4cC3lOkf4cBhv/TfeL7Pe
ET4c9pdHr5TouMERPhz2FytCnoRvdIQPh/1x0IH7Ozc5wofDfjbN2jz3Ih3h
w2F/U77h6RhbHOHDoV5Nc2tnga2O8OHw86JX/9x4myN8OEv/1Wjf6NDtjvDh
UG+Pq9B+4w5H+HCoL61vs6/vdIQPZ+kUJd+mir7bET4c5uvdJd/m2eMIHw7j
y/qSpNFeR/hwqB+XFgwL3ecIHw7raaEYDSL3O8KHQ30UOKHH7QOO8OEw/627
cCvGIUf4cHj+j15HBBx2hA+Hen3n9zWtjzjCh8N+4p/Ycab86QgfDutVpiKH
9h91hA9n6bK1px1/ecwRPhzqqSIF06U64QgfDvP9znynq5x0hA9n6anbFpzo
f8oRPhzGd8rpyVeddoQPZ+m+N7PsuXrGET4c1uv3XTa55xzhw1k6sO3gL4XP
O8KHw/6gROdpHS44wofD/mlCreFz/nKED4fP37X04VMXHeHDWTqbqtPgx9+O
8OEsXWtwRMk8lx3hw1l6vSrQv8UVR/hwmN9v5namXXWED4f9s1725Og1R/hw
2D8MWev39bojfDjMR4+Dl+e66QgfDt/35aPDW9xyhA9n6Whr1ebptx3hw2E+
vJg34OQdR/hw2G/tbxT3111H+HCY75/MK+Z/zxE+HOaDv2Lv6XDfET6cpdO5
hyYveOAIHw77wxQXdl566AgfDvPhstoBsR47woez9JgqwV7ZJ47w4SzdbGu0
vAOeOsKHw/s7q+maTc8c4cNZ+vmG0QOfPneED4f1bN/UheleOsKHs/SvsNkp
gl85wofDev1xw9Mprx3hw2H+OPcy9uk3jvDh8H7/7jA6+r+O8OEwP/cqFljq
nSN8OEsvS91/QP/3jvDhLH38Z5H3mz84wof7r59q+uFXHx3hw6F+HbjoSbbP
jvDhLO0r3rdVmy+O8OFQv/TL7r/oqyN8ODzfoEvBt745wofD+IwRdiX5D0f4
cKhnj3ZaHfjTET4c5ovToy5O/eUIHw7rX+t3dS78doQPh//+9qmscX2u8OGw
X5qeuX51yxU+HMbLsxRXx9uu8OEsfaTigU0no7vCh7P0hzS573mOK3w4rIev
Bnao7LrCh0P9HnCw4ljPFT4cxk9o4sEnYrjCh8P63mOyFyOWK3w41N/TK7+s
EtsVPhzej9lBWSfEcYUPh/kz+6VdZ+K6woezdFrflaVx47vCh8P3e6fPo9oJ
XOHDoR4dd2LotISu8OEsHXL5afcriVzhw1m65dxXO1MkcYUPZ+m2+18HN03q
Ch8O81uO6PUWJ3OFD4d64+8Kyx4ld4UPh/3p9tM1cqR0hQ9n6XI31tfqnsoV
PpylU9aIvmarnyt8ODy/LE+afEvtCh8O9ceYbh10Wlf4cJZePnvzmdHpXOHD
WXrUxNPjzqZ3hQ+H92/BXwsTZ3SFD4f1O8HtuE0yucKHw37D37m6NLMrfDhL
Dwhu++VFFlf4cHhe9xP2LpjNFT6cpTsVzlppSHZX+HCWXnR8d59jOVzhw1m6
cZzH3+PlcoUPZ+mOEw7dCs7tCh8Of/5s22TL8rjCh0O93OHF2td5XeHDoR78
3imiaH5X+HCW3prz5/1RBVzhw2F/vWZ36AV/V/hw2D/m2zvCr5ArfDhLdxue
8kaHAFf4cJbe3P71hG2FXeHDWTp0Z+3ZVlFX+HAY73Ua/a5VzBU+nKVTp8p0
aH5xV/hwlp4R/fjtFyVc4cNZOpbXJLBYKVf4cFivsv3IOq60K3w4PP9eBwOv
aVf4cFhvvh26k7WsK3w4zHf3UhzpV84VPpylG9W4Z50o7wofDu9Dz/wLkld0
hQ9n6aNjMs7oWMkVPhzmt8sXnuyu7AofDuNnZd2Zsau6wofDfiDw8KJm1Vzh
w2H91UXdyOqu8OFQj128cNKu6QofDu/T0CVPG9RyhQ+Hevjw8dZrarvCh7P0
+4yNiv+q4wofDutlwd7d69ZzhQ+H8TkxV7SV9V3hw1m63YWFr74HusKHQz2z
7nHhOkGu8OEsvfFqyrsrGrrCh8P+PkGDBz+CXeHDoT7MtLl8vcau8OEwPh9W
ttc0cYUPZ+lEuQum9TVzhQ9n6bqPw2Y3bO4KH87S46P16L6phSt8OEsn/OPD
Uq+VK3w4S1vVCgW0bO0KH87SJcKqZ9ndxhU+nKW71K/fJ1E7V/hw2O8ebpeu
a3tX+HCWHuZbkON4B1f4cHh/KiWelr6TK3w4jK9LD4IHd3aFD2fpc2+yhFzt
4gofztKpXn22/Lu5wofD/j97z0eTurvCh8P7G3N9lhc9XOHDYb/mO3asUi9X
+HB4/uOvHF3W2xU+nKXTZ/ua0errCh8O9VGnyvea/+EKH87SU57d+bmvnyt8
OKx3la8O8BvgCh8O+7GC1QMHDXSFD/fffVHD8BuDXOHDod6LSJqz2BBX+HCW
nrlwceaIoa7w4bDfrJZ42LcQV/hwlk4yeFyxxsNd4cNhvffzC9w7whU+nKUn
pHtyPvUoV/hwmD9Hq7Uhoa7w4TBeG0x9fG+0K3w47EeWrRpRfqwrfDhL95/Y
OmTlOFf4cHi/A+7cijnBFT4c9CX/ud0musKHs/SGJSG7L4a5wofD+vbkVrHC
k13hw2H9et/Ob164K3w4SyfPWLS5b6orfDhLN7/ZzW4/zRU+nKVvT8wY4+x0
V/hwqCc29+rhP9MVPhzG/1/9ikbMcoUPh/prQM02vjmu8OGw3pdP+G+HCFf4
cKi3rt25e2GuK3w4Sw96eD5f0fmu8OEw32XwPVy8wBU+HPZrQZO+xlzkCh8O
9X/daT37LHaFD4f9xKuc1e8scYUPh983bp9xlZe5wofD+7V0TPYty13hw6F+
XTkiV5qVrvDh8H2lGT513CpX+HB4fikWNv642hU+HOrRzV/GtFzrCh8O81fc
NcnOrXOFD4f3q+n5mMU3uMKHQ71yc1TLVRtd4cNZ+sDZx6mSRrrCh7P0z1EJ
io3a7AofDvNr0/R7321xhQ+HendvgSUtt7nCh7N09iStXl7Y7gofDvvtB6cj
9E5X+HCoNzdOXL9plyt8OKxnMQ9lSr/HFT4c5odpodGm7nWFD4f57d0nbe93
hQ+Hf38r/+M+B1zhw2E/Ga/e28cHXeHDYf8c2K958GFX+HCWXjlyj/+ZI67w
4Sz9dWCJrqWPusKHQ72UJVnsLcdc4cNhPA3tED/rCVf4cNgPjqgxcO5JV/hw
ls5X9kGV+Kdd4cOh/rxcMST0jCt8OKxfzWek/H7WFT4c6q34L1P1PO8KHw7z
ScYOI59ccIUPh/F8K0udZhdd4cNZeuzkCqGX/3aFD4fPN+te2hqXXeHD4ftv
ljz90Suu8OEs/SXQHVfymit8ONRHv04Hbb/uCh/O0h0ejAzLe9MVPhz+/Jzq
OVbfcoUPh/fvz3J5Mt5xhQ+H+Tv+mDnz77rCh7N04oCCXZLfc4UPZ+l43zus
mHbfFT4c5ve85SrHe+gKH87SNzb8U2fCI1f4cNj/t2x+xH3iCh/O0hmL3Z43
6qkrfDhLdy7S/47vuSt8OPz89jXHhrxwhQ9n6VO3hkT8fOkKHw7z/d5MSQa/
doUPZ+ni/i2/fHvjCh/O0gMH1yk/8F9X+HCWvns70dev71zhw2E+W30s6cAP
rvDhLP2uxNj53z66wodD/Wj1Cxv02RU+HPYn3SMf//jiCh8O49FpsHroN1f4
cJauVn/k5Wg/XOHDWXrN+6DOI3+6wofDvx//rpPz2xU+HOqnUz0vjYvmCR8O
82nPDyvjWJ7w4fB8qs55NMX2hA9n6Um5QsKSKk/4cKj3v/65cK7jCR/O0hEL
x/ml9zzhw1k6aaqX9soYnvDhMH57xWqQO5YnfDhL/97tJNoa2xM+HOrPRD+L
FY/rCR/O0otXxjl3OJ4nfDhLV4kMOlM1gSd8OEtn7vut0N8JPeHDof4rnyRW
k8Se8OEs/c+Q49UeJfGED2fpuBPyfemWzBM+nKX9HnSP/zW5J3y4//ptl08f
mdITPhz2q2FvRsX184QPh3ogTvd7c1J7wofD/jlvuTWZ03rCh8P+at2Eu5Hp
POHD4f0r12F4qQye8OGwPh37Mvl0Rk/4cPh+4jWNFZzZEz4c3hdn2/vHWTzh
w+H7XJyuSt9snvDhsB+/fyBW9Bye8OGwvl/dXHxaTk/4cPh956a4niG3J3w4
rA8NEz/cnMcTPhzmo7JHmpTL5wkfztJZ51Ysdym/J3w4vL+b989q6+8JHw71
yYNqjT4X9IQPh3pnVtwJ4wI84cNZulL5rDn8injCh7P0+S7bC28s6gkfDvuB
Rbe2lC3uCR/O0tuG7F5wpYQnfDjsd9b3+NKplCd8OEvPepz20O/SnvDhMJ5f
P/0yvYwnfDhLv5jxcmGOcp7w4fD891bbfrC8J3w4S/+onrVEUEVP+HDY75dZ
lP91JU/4cNjvLro6M7SKJ3w47J+Gvu6cuponfDg8z28qclt1T/hwqNcrlG5X
s6YnfLj/6ps9E57U8oQPZ+nTZealH17HEz4c6ttpVrZU9Tzhw1l66ft4C7fV
94QPZ+mDfz8aXbuBJ3w41Ktblt99EeQJH87S19L0XD0m2BM+HMZDZMeHGRt7
wofD+5cwMvxgE0/4cJYu+bnDhqbNPOHDob7LtKXk9+ae8OEsvb1jZKk5LT3h
w/n07hWhkYVbe8KH8+n1x+vMvNLGEz6cT188VvhV33ae8OF8utS64O1JOnjC
h/PpK2HX/93W0RM+nE83n3x9YYPOnvDhfHrI/UEHP3fxhA/n04eP3a83p5sn
fDif3jQuX6PiPTzhw/n0wdFj/r7d0xM+nE93yxrz4LDenvDhfLr4gxtpM/X1
hA/n0ztL+70//ocnfDifnnjhbdEu/T3hw/n0oMKDPsQf6Akfzqc7Z7qTYfsg
T/hwPt07sMTRxkM84cP59PWZO2/6Qjzhw/l0uiN9260a5gkfzqdjH5nZttYI
T/hwPr0urNT1TyM94cP5dIts4YcWhHrCh/PpOys2pKk0xhM+nE+Xzrnv7Zux
nvDhfNp6fKfwnPGe8OF8OmnSwh/KTvSED+fT97xnmV+FecKH8+kKKZOfnTXZ
Ez4cfv7WJ8/KTvGED4fPV2fQ4NdTPeHD+fS7Pz6NipjuCR/Op0fvHWxXmukJ
H86npx/L/+X9LE/4cD49o3LR1ovneMKH8+lt0XeUrzXXEz6cT986fW7ez3me
8OHw74cs67xugSd8OJ/e7jWJbLzIEz6cT2ftlKJbrCWe8OF8OteGaEv2LPWE
D+fTJ94UqtFluSd8OJ9+2fB299QrPeHD+XT/DKlinl/lCR/OpytPT+Q3fI0n
fDifLqxeLPdf5wkfDn//zaMrH6/3hA+H5zfhRPqIjZ7w4Xw6/ZxkiWtGesKH
8+k2s68OtbZ4wofz6fI5c7fasdUTPpxP17RL7u+y3RM+HH7+vZzTMuz0hA+H
93FGmnvXdnnCh8Pn/VV01eQ9nvDhfHpxrKVPK+7zhA/n01t3D13ya78nfDif
jpvi3eXtBz3hw/n0gHIZRnY/7AkfzqfztCu4JtufnvDh8D7srVHt/lFP+HA+
fWrqtHbzjnvCh/PptWVz/mhw0hM+nE9fDSgWO+FpT+c+1qP8t3c+ffbMf//z
9P8BSPPCIQ==
"]]},
Annotation[#, "Charting`Private`Tag#5"]& ],
TagBox[
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJws3HlYTW3fxvGy11p7qyQZG6gk0aAQlSEXIYlSEmmgQgMlRSFT0oAiqWQq
oSSVUlGkSYpQpqhkphBFlKHkPu917fef9/gc9/TcDb+91vN+31PNdb3N6j4S
EhL6chIS///ve3f//x8RGbJVsblJVUBU9Ue5VMOyqbfcn8OzXnR01N4Rkbnb
DtQNUBMQT6Yxt65aRHba2JrOheem3z/z7LaIXBmjmLMVvtVwr/z1LRH52vty
xEVYMemW3IcqERlTlxL5Fk4VFUS1VYqIy4W1f4aOFJB+moeNO2+KyLHg8R4L
YL1+1oN6KkTk4dKfdbtg9fsfhgtg6XHXTfPhKeHWdlI3RMSUCcn5CPda7L4+
oFxEtjXOUxmhjr9+it9ihTIRycuWjbKBb64fNkytVES+hD3+Ewa3y6yTHlsi
IhpOxzyuwf0MVumOLxYR54krn7TDV/v+2m58XUTi+46ePWqUgBTnjfg7s0hE
al+25iyDFZxr0+dfExHh5RyVKLhbXzJ88VURIZGBUWVw5fILhxwLRWSz6/Tu
TlhG+mb16gIRyTESeGppCEi0/5wJ66+IyEfZ20+c4Vm31G9tviwiI98fmH0Y
nj1jaeTufBFZfs32UhX8Vu7pjsg8ETl8SFG1Bz4aeCwpPldE7ri/itIfLSCy
2Qltpy6JCGOS2r0KHvj71toLOSIyfdA6z6NwyuGRQy9ni8imT+Of3oNby098
Lb0oIlmlP2f30RSQSXfH/bqTJSLN8dcvTYa7u2p1n2aKiIp3iOpa+Hlk4KE3
GSKy1NT8QBJ8ukFZve2CiEQr9O95BBtpX3nzO11EbrU/9hSNEZDsB9Pvs7Bk
5bGn0+CZKmmtA86LiPGJlXM2wPM8vhiMSBMRP7/RuSmwqYDN0DonIunzPqs2
wg/mNS8yTBWRtyMuHZAdKyBXDkeoz04REaXOwJ5Z8FPyVt36rIjY3pnuFQhP
vvjF2vmMiEQmC+ovwD9nJGWuPS0iNwNvz3kFO9q1T96SLCJ/Fx7MHaSF78/S
ui9hp0Rk8qglaubwpQvzHsYmicj6P4oHt8PXrpF3pxNF5Nz9Vz05cPz3PPWc
kyLyKjXVqxkeUnYiuuSEiAzbvq5eUVtANGLbtWqOi4j14glzreDqF2c7mo6J
yN6xv3JD4JGD81paj4pI+b/ragXw6sxBUt0JIvKnLuTgZ/i1SrG9FDwxw/yv
qo6A/Gk+90ThiIis3d1/7RJYd+ftXWPjReTssrr6vXBfd8VlxnEi0jTu+Nxi
eKJKjKN5rIgMZl3yOuDVWmMO2B8WkYXPRo/U1BWQdf0ef/aMEZGwnM8HHWAN
q6jNWw+JSHH4pb8H4eDNFuP3R4vIT6fNayvgkEHc0BMHRUTPwKThFzwtO29s
5gER8ZBizHTHCUhNo6VncZSInHp1O88F9tS4W1cbKSINlw+OjIcXqo9a/3q/
iMhHLYmuhis9LSd93yci892Uenth3ehZY1g4xPj12ol6AtKi98ts6F4Rudb/
XIM7vPrdmtixESLy4/06sxOwukVYv2nhIqJTNCH/PpwqsMy1DBOR1TG/RrL6
ArLtYn6oS6iInPQojjaGTTry9mzcIyJPTPb0esN7N5hmh4fgng2ev+40zNYt
Ex3fLSJmrf0bn8DOlZ8js4Jxz8rqzKTHC4jZt67p5btEpODI8fwZ8GbBeqUn
O3HPvF3UN8KZGQs0Pu0QkbGzNQ+lwamJ4Q6923HPFL/0NsEaUUOL5eFjXy+t
GzBBQL7q/liguQ33rHJz4xy4xmiwaFoQ7tlJk3lb4TB3v/ZFW3HP/JnLWfDr
TQLBmi24Z+bV6m/hFLXSWUGbRSRfJfrQ0IkCckzrVFZ0IO5Z55J/FvAem+Nz
UwNEZPRdJe9dsIbTeamiTbhnp1835sHT5Mr/PNgoIkc2n5v3EQ6Z+HzIB3/c
M0vvy8MNBCQ3usO5109ERBoTR9nAQd9/PxwEk+5fh8Lg8LGtftobRGTLg+J/
V+FtfYpNZvninp3b490Od1l5TbZfLyKfts9/pj5JQKLet9j7+uCe2cqZL4Pv
Jow7H+4tIg5aTy5HwoYzJ49KWod7JnFiVBlsVtBVfXmtiNx94hLTCa9rcD9Z
44V7lqkpoTUZP++7g483e+KehXzxdoY3HZp6s9cD98w+91kM3P0hSnEonKW3
xbwKrl/re1zPXURa2BlXuuHp/xrN5q3BPWtiNPQNBWT+vpsqLqtFZNml6phV
cP8uTfWtq3DPIqIljsLRun+sD7uJyG1nO5978LXhBhkZrrhnk5SbJI0EZEP+
vfGVLiIyRfqN+WR4x/viNy9X4p69PnfFC0489a/49woRuXDFWyMJDnwWXjkQ
fhs18fAj+ESk1W9dZxFRXvVbQmSMr1eG5dJ5TrhnU0p8psGXJm1/5eooIlFy
oU2+sPOoR7HbHXDPmufPT4FrAuZtTFguIr1FcgUNsKZu3Y5ce9yzw080ZKfg
n2e+Ia9mGe6Z54nDs+Cc2kGDPy3FPZvhKhn4v29eOcXCrwaPWX8BnjLRZqma
He7Z5y9NL+Gvak1G05fgnpXnzh80VUBWnlw4x95WRPYlbCmYB/+5lLht02Lc
M58Zo7fDcn5VLw7ZiEj3bDY2B65vLVmbZY17pnRHshleN3GX+p1FIrLuW/R6
xWkCcsNJgvtghXtWZffcEi4MNhrIws9PKluEwKICVYuRlrhnG98UXIHnK+Vk
zlgoIpbz00Z/hn9XvZ7itAD3TNUnVnU6/v5N6R1bLUSkpGtinyVww2amLmE+
7tnd3+v3wotKml9fNhcR/TMlz6/DZY/MFerm4Z5tCbXogDufaQR9NxORZCuL
wtEmAnL4n59QHm7QGKDpACt4jC3Wn4t71vMk9iD8hsxMspqDe/bwRJ8KWOXK
pXSf2bhnaa6+v+Cm35teRZmKSNGOMS90ZghIj3EIyZyFe2bbZuECT0l/WH13
pojoaucVxsGjdzru/ExwzyS3albDY9qHOcvAiU9nxPXCQRMk3HVm4J5lsoKJ
REDGh0gdW2AiIv333PF1h/WG6/9cNx33bPmhF8fhcSaeO6Kmicgu/aUL7sOF
Gll6WVNxz7jhV5mZ+OODf0rVThGRb01vNI3hIqtpcl+Ncc9y0+K84VWKATMG
wK57fQSn4c5rJxImGOGerTDY8ASW356mZGsoIo8m/XkhNUtAxqYdurVpMu6Z
TOmCGXDg3kVJRyaJyOw3oVf9Yan1z5MKDXDPCizGpMGFafrVzybinh0YEN8E
a0fMGtE7Afds1VPBAFMBebhS+oQqPHrqyQ1z4I/hIaam40VkxQC3l1vgrbZn
Bq3Rxz1rGbMwC7ZTceu/V09E7l9vu/oGHmZ6bWLGONyz2LwxQ2fjHiqfDa7V
FZGZXlvjLeB00ZDfHTq4Z4Qwu+ATHn2PDYEvDeH88uC8kwGrpmjjnn2+8/ID
HCBtt8xZS0TUbxxaOHwO/n2Hntq0eyzu2dGl16zhZ5oLi1LHiEjs+uFjw2Cn
1CU6dzRxz+a8jb8Kz/6bc7N9tIiwyueZdvhTwvKIQfD0Dh8/9bkCsrbFbKOx
hogE3DJ4tRROWea313kU7lnin4WRsKHzw6oQddyzjaXXSuGQtSv1zo/EPbMI
G9sJp3cOKq1Rwz1TW3BkrJmARPp/2PJDVUQO/RzAOsO3nR45KsK37z31i4HL
xtV4EBUR6XP25KtKONr1wck1I3DPtrpZdsMDAuu6I4eLiP+isUV68/D71Ppw
d64y7tno9rGr4Gmzyic0KonIu568Iwnw/L/HpSVh5Udb2XvwneRl/cYoisiS
88Rf0hzPd5e/Glop4J7t5F5Pgr+VO+4PGCYilUvuWnrBd63jhIlDcc+0Y4oS
4T1tMRk3h4iIYZ9lWo/gnaMtt34ZjHtWPzxBOF9AXkSU+A6G07LestPgwNSX
B6cPwj3bc97fF64bcO7p6oEiouCw/vVZeNoK2XkH5HHPxk+yaoCTR8m+vjwA
90zYXdTPAvfwd+Lpl3K4Z89LtWbBdwILI0Vwd25YQgAsOcUuaXx/ETHYt4C7
ACs9925cLot7tlJ+40v4wL9f0/f0E5GUyfWvBy4QkNCZX29nyuCeySRazYMb
Zi/Y8VQa71dv3a5vgwdnsg6SsGXhWO0ceJPK4JXaUiISfrA94T38epZ/1JK+
uGer8znFhfh6lQx7u1MkIr+mBm20hL+Q3pXpQtwz+ZlvdsO3NigL6zgR8fzA
LboCj5JYV/ePxT0rvnu9FV5w/P0dLbgxNkZb1VJApv4I/rSEwT1bu+yoLRx3
3Xh8sEBELGaOEO6F0y6wpzL64J4NfbfxOuy98cXkekncsy/n33yDw2qLOgXw
jxvrF422EhAScLRJTwL37Nik4uVwpLp3q8M/IVnt2619EBbF6o+M6BWSxLll
R2/AP0KbduX9FZKnyuHCX/DUQk/h6x4h6f99wSadRfh9aL+f3w+ed1v+7Uq4
sFUqckq3kOxKql8UB//zk9vn/kdICjclFt+Gr1o0Xoz9LSTfLFbp9ML9TFz+
lv0SEq2RWscmWOO+DUz0a/8pJK6/2oXu8LiEvf2Hw8dr8jcdh30SlB/P7xKS
R2eD3tbCo99alW7uFBKZoJnWjI2AnJmn/Dj1h5DMthaWGMEPjm3tX/ddSLZr
3tPxhqdnuvkJ4Py/MceSYfkl93vGdwhJ26Nloiewomdh1spvQjI6fUSA1GK8
T5YNjTj4VUhW7Hr31gRmjN9FFLcLyRG7dGt/ODp9aM6XNiG5r+Nbcg5O/p4u
MRzuK5is2wTLf48PXPBFSGY2dB+TsxUQh72PB2/7LCRbL5aJ5sBRCY7PLrQK
yaXQ8IAtsC0z5tazT0LS6rDwXSb8M0evSRpWnzDQ5g28OGLd0GkfhcRR1FAy
ZAl+/tY/3bLug5DEvkjUtYBzbDwFJ1uE5F7equM7YU9lpbx7zULC7tfqmweb
XX2/v/e9kJi4fA34AKsqle/TgwMML79TthOQFXrns1e+E5KL/bbZWMOCj4f/
HnorJC1vZ5aGwqemBm248UZIVK8Kx139/89XXibT+VpIlkXfO94G9wSr14yG
D6053Fd9KX7eVz25vOyVkNyeZh+4FD5b7Fm576WQ9Bmo8n4/LNj/pKfohZBM
+fjOphT+Ujl4eftzIfEvSS/9Af/0VX2hBmfE+Y4buwzvo3vbI2ybhOTd2skn
nOAjA7YtD38mJMNn9fSNgXX6ldhcbRSSJcPKAyvhhl05G740CMmBtvD3f2DG
f8EVVbiyYuFiPXt8nrRGqNvWC8m/YwPL3GDVHysuhz8VEsMNDeMS/v/jR6rX
X3siJL5mSSfuwilvyqza64QkbfhqKcnl+Pd/a2KnDr/+rrV5EhxwfkrI0sdC
olD99b0nPGpu1pP9j4TE5tTlxYmw9t2YRaUPhWRfwLayh3Cd1euvPx4IyY0F
s/SEDgLyqznmyli4e6To5FS4Pe3UWef7QmLw+56UL5ycJSg4XCsk62oPbz4L
b5bP/3arRkhSUuyb62HPr5nWvfeE5EWQim0/RwFpXd3ydCI8xOZ92Uz476Hl
ezzvConVmAt6AbBGnMTSpDtCEt7rezId9jz00KquWkhKH0+WfgkvS7/tIw3/
Su/ZPNBJQPqwL3Nn3haS8cHlzWbwnypplc23hMRzaYTtNnipknl2VpWQnNa1
LM+Gc8ZEu7+vFJJGwSD99/BIpcbZyvDAxoaTCs74vFVRnbf4ppBYZCdJW8IT
3Rw27KsQkj1hq7fshvcNCS0tuyEkRY7aLZfhVV7xk36XC0nnhG+2rbDDoYj7
+rBu3yvlKitw70psD3mUCcmal9v0beFtWj8CT5XinuXPSoyArfuu3FNfgnu2
XyRzHY6NPXRZDu7vWrPlG2zD7ZY1L8Y9M4pt0VgpIIOOaUUGXxeSYNnlS5av
/P+/X9mjd7UI9+ydyo0DsM7wvb86rglJx9X3+jfgP/vGt2jDWocuJP6EC4cG
dq+6KiRu7htkdFzw/MMtnpRYiHs23XDrSnjS8eLYpwVC8njg35ZYeKJyrsIA
WOZT+ZLb8Nn7YyvmXxGSOaURN/7CSySVY/dcxj2Ltxw/wVVAIn7t3lucLySX
1w1KWgN3SS47+ysP92xWo8xxuMYr9t0EWFPh1NZaODd4/HzvXNyz9tUfBG4C
cj1+TN25S0KScFPbzgje0u0X+iYH9+z4txvr4A99pByGw339roxPhrdJtixZ
lo17Nm97Uh08fKEg4PBF3LMRpv2kVgmI2vRl12qycM9+iIJMYFutlxpScGt1
zQc/uN3nUP6cTCEZlRxrdw5OWuPhFZyBexa4vOIZvMvHafb1C0ISt1B1gtxq
AVF+72n6Ox33TL05aTbsqxXuPgnm/lzotwV+l5SVveE87tn9DUGZsFVaw4is
NCGeMww/voZ/npO89Okc7tm2v3ZD1uDzn1H10oQ/2NyomA9P0BhntioV92zs
3gk7YV8/DfPkFCGx/2d5Khc2sfu3/sVZ3LO6QbIf4N6p+deU4OoLjUHK7vh6
RBMd+zO4Z7tPfVwEt5cdK4s/LSRTl61ZGgr/nnE96HEy7tk4nZuF8Omg5OXy
cAbTMaENdmohzotO4Z41Xjk10kNA2J+xYQeScM9ytssuhZtUjjy6mygkduGm
2/bDkfVkjjR8wKnvpxJY4+j+Z+YnhaRqYu3SH/CIZ77xESdwz/rG3Rzjic8L
hU+bqo4LidGr5ROdYO7+1y0c7HtZNfkQ/GLbjtNzjgnJ+chm2Ur4fWJk+56j
uGeuGdv+wPsuD3KpSBASRWO/T+O88P2aI/dTANv0N1rmBtvXbs4xPSIk+9//
vXkEtqo3iw6Jxz27dmPiXXhrc8DhG3FC0nNob7LEWgExCP53VQAbeFj1nwQb
j3/GzY4VEm+Twds94ZRdgsA9h3HPBj37dBL+8WeD9M0Y3LNPp5Y9hCV0VStY
eEjZmkpuHb5eKcLkuYdwz47oGEyFj3eonQ6Pxj3z7kheDxekelTdOoh7ZlrQ
/yycs7hOTgr+rbBjez1sFOWyw+IA7tlX01YZb9yTD5xcVJSQeFX2tZ8Jh3QX
36yJxD07UVu5CQ50DkmSg5/5xRmke/9/HxeetNmPe2bucPoFnLxlaEnsPiFZ
oKImN9AH7x8ejczTvbhnnc3bzeARA6N9FODrdzJag2BphQk9DhG4Z8l+9tnw
fYWrmYnhQjJus1HVOzjtslrI6zDcM8teA4X1+H7HuG4bBSeNqji9ENZfFHDU
PRT37M9eud2wVLxdY/oeIZF7YLXjMmwu9dekLQT37Nzgz5/gBlu3qvFw8PZn
9iq++HkeEeK/aTfu2eLkqsXwwoF2poXBuGdj3SdFwHnP6yb/3SUk2hK6Z4pg
P+2ehTNhtycdct9gxQvlEaE7heRERsEOjQ24pzLqLbd34J7t3vHZHlaQHOop
C/ezn738AGwwNUF28XbcMz2pW+Vwuc+pp0e2CckO9v6kn/CPRWMrmoJwz57F
ndH2w+d9gs5jNbg9x2HASvhAzxmh+1bcswi1nbFw8+S9zhlbhGSlc8vnW3Cp
5JP6b5txzwwyl/+Fnw3bE2AIP5DyvzXeX0BmGUcZbg/EPXttNHkNbK3WqnQj
QEhmXek9cwzOiT6i3hfeGlUxoBZeNi/S0mqTkOS67dsp2Ih7K3XjRNxG3DPj
RV8M4dpjk2Sb/HHP5IY4rIP7Fj8/PRJ2bH526xTsOCV/uacf7llR8uQ62PBp
/qTsDUJSE+N+tu8mfF46NUz86Yt75qkrbwKXxissMYFnzPi+0w8us/Q9Groe
92xw4ZdUuMP6qcQ9HyHJbt3h8Aye6DNv/yD4Q9ns2/0DBCTT77qRo7eQqCVI
Gc6G7+vp9z27DvfM5/7ZzfDiwGM9rWuFJGZ2vHwmbKDcJW8AVys67noNF3RM
W7DNS0gE39TaBgfieeC+R1qFJ+5ZVYvDfHhYpL9mP3jjyczbO+CGv3a3l3jg
nvn7G+bC3D+ZA4nuQvLe3DilBZ7qdXBTyxrcM9V/8sqb8fulVL9TH7brqti1
CN7X/ipjy2rcs7v72vbA426e6SlfhXt2epFjIfwtSHG9DCyxZUj1F7j4hwlj
54Z7ZtVkOHKLgNwYIF2U5CokGzROp9jB6y5vjv/ognvW7T5wP+xZFXx4Ivzm
gW5wCZyqpZq7fSXuWdr3tu+wTdXCzqoVQrJ4R6HjmK34eQlllsvD+213VjvC
rVYmrx2dhaRCa47RIdhHrnPfOSfcMwnp1Jvw/tyRSzschWTS0/sD/8DnRpfN
mQ57Z8YHjwsSkDXLqu0iHIQkNcSx3RVONTLa92g57pn9SKcj8O4C5tUIeKj+
h+o78KLqscu87HHPuCwjiW34/HdJ7shfJiQRTf6pBvB8/9UXJeHSS8aDPGHz
zvUHFi7FPYv4F3wSfv3i6sGjdrhnK262P4APjiG575fgnk3a78Rtx728+/vX
ePiMtPWdKbBexeuVO2xxz14PMV4PT+jX8al6sZAMKmhKPQN7nR11ZCi84MDp
QfXw2gj/1atshCR0lcdumR14vyuoX5JjjXs2ZdxXAmsaWnr0LhKSLrkfTptg
BbbmhAU8rqXwznl41mib7wlWQuJ+fafxC3h20uO1zZa4Z4fnnJPfid//TVac
AVzvKT3YDHbOKSoPXoh7Rh7sDoJL7Yck1y4QEvMhR75ehCM32yUPh4M/Ozq/
g9cMC7yx1kJIrpaPvDtsF94P5/gJr87HPUv4YLwQfiI9y1sEa6/POhcM52x9
9cPOHPdszsbBl2H1ZLPElHm4Z0pTQj7B1Qc3eP4wwz379u/riGC8/y9bZmcK
97t103kxrCLbtSpmrpDMTdx/Nxz+XTE77vUc3LON1lOKYKcYkxZ9+Mr8oWlf
4frI58t3zcY9U30+WGM3/nl3lb7WmgrJmJ+nQ+zh0Z7fU1Xglfc8vkXBndud
d66fJSRHz4xbUQ4/1li6pWQm7tmWH3e74PHbn8b2h6UWXZ2iHYKfr+SGBysI
7tnoXWkr4J6cpfrZM4QkqGfOkFhYvcYiWwLOfSi95xZsPDTb2tpESD6nPfjW
A4dd3DHo9HTcs51HVozfIyBBV3N+dUwTEqclTvdWw3mOpr2mcJy2+tRjcNc1
XY24qbhnkh/TauBx/7y8m6fgntVnDRGE4vPCsvOJITwja+MeQ1jiUaXLXmMh
2bxnSsda2ORKQ79nRrhnyyVWnoILRo95pgN/1K+89xhWt8y4vcMQ90wYObVv
GJ43HFY23J8sJMufW5+fDi/bbiKlDsfkDh3qB897Rxw3TRKSO3uf70mF/cpc
aqsMcM9WnulohOeYHXdThKdN9lzZPxzP4+dbhnlPxD2T0asxhR2VZ7aXTBCS
zDc/pm6GJzxJbpaH3xdcPZ8B1/Vj/q0eLyQjDu4a+hr26HYxKtTHPVs9N3Rw
BN7v6vNjZOCDU2W+m8OhL373W6mHezbg4codcI/5mPTccbhnH47UXIINl051
F8JGxU7TWuC/prpzHHRxz2LV05X24o9b/TK9qIN75vVx6CL4c0G8mwB+Qy6G
7oHnlPc5u1RbSJSGbvpeAIdnTmYztHDPvkxx+QIPKdYJl4Ajb0jUqu3D+6nR
y7FLxuKeHa2cZgebu877cn6MkPxdH5m+D56/2/VBrybu2VybYSXw0leaTxbD
PsrDwr7Da27GdKeNxj3reP5dcz9+/4JOzuzVEJKXt864OMI/F85KWwwPTfKs
jYZ/RATpnR8lJIs26U2/CbdsMX3aq457ZtGZ/htetD42yRYuU7s2bFykgNwt
8IhIH4l79nNXmCvc79zVQxLwhJq5P+LhN/v3XLNTwz07K+N6Bx5/tZTNVMU9
2/qw9h/8O9TTVwA/W5Qw3SAKn++zt3Tbq+CeaTpf8IA9LT6lZo8QkoV/1RVO
wuEdl/2EcOijj2EPYFFMg7PzcCEpPn/xB3tAQFxCFqzNV8Y927nJdQqsqCaV
IAPr2U297wPXVcq8d1PCPdORNDkDz31gaXNNUUhO9am68BQ2TKx+KQ/X10cq
yBzE80Pk1igvBSEZcNEmnMDaPcscyofhnoUO69wIa1quNFeEdzu8cD0Px7/b
t9RvKO7Z+LP3n8MpIx+FVg8Rku9CLxP5aAGJWzfx8UhY+4Vexlz4smbqrKDB
QrIqr1MhCPa5qvHg0SDcs33Xwi/C4yMzdurAdSuDO9/Coewky9CBuGeGZm7D
DuH9Prpw2gt53LN+/R4sgK3iDSwM4R1vH5oEw+p7Tm2JHoB7VpiQkQ/PqfxZ
9VFOSL4edFb8BO+rNphsCo9ZMypiRIyAPP1nXXGiv5C4TPvUaQOrPDH365LF
PZPPdguHXYuHkEXwww+bHlyDs7VyddP74Z6VTJ3xFR55QGEqA5vGSWaOOozv
v+NsD2cZ3LO1VYr2sIbMuPwCaSHJmxkVEQVryT9QGwh/Hrq4qww2adbM8pYS
Eo22Yau64KsSustv9cU9q3jxQCsWz7+NjRrqcPyxszNWwJvbtQfsEOGe+Xpl
HoZPFSoqNwiFRGimr3QL7sxPnmsAzxjeFdED93G9Fn2Qwz37fq1LPw73aZrr
n08s7tnt4FWr4SMV0SFz4Y9JZg+PwiuCZuqcZnDPAvqRGtjxjc+PvwLcswWP
MvvE4/Nx28Ame/jwyKNKhnD13bFv8/vgnv1y3rsWzl+W0VceZmpH/UyC76TE
WflI4p6lfFr1GH465VVetYSQbArKfig6gufBpDBjTTjTOoBMh9WdQp6H/ONI
s+a0rA3w0L/3T73q5ciIXknlVNhDyitkOrz0cdXeRvivnHnosb8cOZge9VM2
QUCKTnqk/uzhyK1di1ebwjEmN5ptYYmlCo8CYZ/di+de6uaIse5LkgHP+D3w
Zn94gyAl6xXcPfGfq/cfjqQ3eCkPPoqf34r+qnd+c+TNRf195jBjQnrGwEph
XT+3w8Rg/8+wXxxZ7Fi0+tL/ntY64P1PjkRO2P2oGe5tXW5hCt8UzZupdAzv
742PzyR3ceTvi34XreDopMVKEvDk/EfKe2Dbxw9ynDs54rP/6L4C+JL8fPfr
PzhyzmXFr89wYuflqcrwS0ONNWrH/38/G6gX9J0jw2RbHy2BPyjYz2zs4Mii
d9kz98Hq8SF+xvDeqwEXi+FUnajyhG8cKYueNvz78f8/n3zH//rKkT9r+uzX
PCEgymPHlCyFJ0y/9csBvv8ga+2Vdo6sHXhgTTS8SPHf5KHwmY+LH1fAG1IH
qgW2caSpRGHWb7iPUsvYp184Mij+5UXdk/jrh2+0NoQXrksZ7gqfXJJ/5Mhn
joTOWrs/Hh7rldLzs5UjxcPG/66GdZgZu5bBXW1da/7BS+5tG1n4iSN6N4se
T0zE+5+v/VsF2OP47lke8JWE2vKtHzlyasO87BOwzveG0mcfONJgJjviATxV
1//5NHjAiMf72SQ8f3fGDUts4cj8H0d/G8Mm3dP8/jVzZHf1CncfWLPd9dNK
+NopjbrT8MHdfYLL33Pke0DrrKdwg/uQyaNgnYU52dKnBGS5zdG+Ye84sko9
cASBnbpCu1vecuTk72mRG2G1vk+l58N1tX3+pMENJHxKxhuO9nBwlu2hcFmY
7+GS8fvf097h+5qjPRws3XFy26NXHO3h4NNtcaMmw3wPB/tnPvyU8JKjPRzs
+smytvsFR3u403jecGUfOsN8Dwd/fvi1o+w5R3s4WNQtPUED5ns42OyY9cGI
Jo72cPCsDUVSn59xtIc78///PcrsrBXM93Dw3nufHXIbOdrDwQX158YPhfke
DvbU9NcIauBoDwe/22Fu+LKeoz3cWXy9UjTcTWG+h4N/uvTJP/eUoz0cfGNb
o6oMzPdw8PXitHTfJxzt4eDab+42dXUc7eFSBOTBK/lhU2C+h4NDl57tTnzM
0R4OThg59K8A5ns4OLX/GmXPRxzt4eAJX/bb1zzkaA+XKiAZ+0LyJsJ8Dwd7
F5jpHn3A0R4Ovmb26EbvfY72cHCplNrmVTDfw53D5+Nj7fnVtRzt4eApW9qM
9WG+h4Pj7rmZxddwtIeDt5wL8+u5x9EeDj7x3PqaK8z3cGkCkmRWqnb7Lkd7
uLT/3+fvpujBfA8Hz1P0M4u/w9EeDs6efIH7W83RHg7e3ub31g3me7jzAlIz
vOJ59W2O9nBwevLRzvEw38PBPUvbtI7e4mgPB8eqXN8uAfM9HDy6XqLNvYqj
PVy6gFi45gXVVnK0h4N3Jj0cbQjzPRw80s+uPfEmR3s4ePN1fLdgvoeDU1Zv
rfep4GgPdwH3z0ru95MbHO3h4L0uPyfPgPkeDu4M1oo5V87RHg5OTTgrJQfz
PRyseWDlqc1lHO3hMgTkk4X94telHO3h4OlFe9Xnw3wPl/H/++1nudwSjvZw
8ETX7UrKMN/DwY99J5uGFnO0h8vE+8I7+Yi26xzt4eDV6f0+LYX5Hg6OylXz
LCviaA8Hv243Z7VhvoeD0xYFF8de42gPl4X331vlsb1XOdrDwd3z+kZ4wHwP
B6+pskp4WMjRHg6WMDp0cxrM93Dwyuhb/c8VcLSHuyggvyq/BgyA+R4OHvyI
6Q66wtEeDn6Z8e9482WO9nCw/cIme2uY7+Gy8XyZFWdQlM/RHg7Oqh6townz
PRz84OQ+EpPH0R4OnjSqaMPfXI72cPBwh8slHjDfw+UIyDmyUevxJY72cHDl
o685M2C+h4PnDdK0u5DD0R4OftBHfuhQmO/h4OenMn7szuZoD3dJQEq+fmtr
u8jRHg4+3dnEOsB8DweH5XoYV2VxtIeDZ+pF750I8z0cvNPHsispk6M9XK6A
lAcm7pSB+R4OdrUJ0tiSwdEeDt7LvWp5f4GjPRxsfLKq0gbmezh4jqpueUk6
R3u4PHx+HZNu1IH5Hg5uHuIse+w8R3s4eO5plRVCmO/h4ARzi7sb0zjaw8G1
ik1L3pzjaA+Xj9+HUfe6rWC+h4MbAxSKr6dytIeDs9WKTmjDfA8Hb5icfeRo
Ckd7OHhs1dcsIcz3cJfxvty8+c2msxzt4eDSNNMJ785wtIeDq9UWJNrAfA8H
q7hHjS47zdEeDm460OeOHsz3cFcEpPVi6v7EZI72cLDwzUaPfjDfw8GF0z1c
tp3iaA8H2zUFBbQmcbSHK8DzVX36ueUw38PBeRZff9xO5GgPB2ssNnM2hvke
Dn4jdeFt2kmO9nDw7OghocNgvocrxPOWZOisiBMc7eHgJdu/Kf06ztEeDs5W
XzrAA+Z7OFg4OGdk/TGO9nCF///3lX+s5sF8D3dVQIqdxx0tOMrRHg4e2WPW
Owbmezh4r8+snUcTONrDwT6Nw5SlYL6Hg4esrny89QhHe7hreD81mHu+NZ6j
PRx8bv3ho44w38PBnMn5lHtxHO3hYNlbu++ZwHwPB7dNVhqQHcvRHq5IQI7n
efuqwXwPBz9eu6k15jBHezhYMUJ3NwPzPRx8ddIhg4AYjvZw8I3k430+HOJo
D3ddQGT+mH22h/keDh7vfejbnWiO9nBwnJa/vAnM93Cws+sHy+yDHO3h4IA5
n1NHwnwPV4znKXarYtwBjvZwsHJd5HkhzPdwsF2Liu3WKI72cPBk33GKXyI5
2sPB287mdq+A+R6uBJ9Xhem/Hu7naA8HC5plB8yF+R4OPrDy2ezCfRzt4eCB
LtKxOjDfw8HKqsd6k/ZytIcrxefJk917BsJ8Dwenl5RqhEdwtIeDRYOt3vwJ
52gPByfKj73qA/M9XBl+vn+YZ74J42gPB3v8yrhmB/M9HBzosPB9dShHezjY
33G01gyY7+HgtCkT9+Xu4WgPV47nx8nr2TEw38PBqQfrjp8I4WgPBxdHuCwc
APM9HJzlJqsYtpujPRy82e2pZHcwR3u4G/h9vXOF8YX5Hg5e8jp95PtdHO3h
YOWPFxyWw3wPB2uOvXyxdidHe7j//aFixByY7+EqBCTC+1Ha1R0c7eFgf8nn
C/VhvoeD73xu6pe6naM9HDxuS80HJZjv4eCurxkvDm3jaA93E58fSf7tQpjv
4eCC2uFKO4I42sPBbG2qy4+tHO3hYKdPfW94wXwPBxeunzXj9RaO9nCVuF+Z
Fk+WwnwPB//5rhpRs5mjPRy8Lua67RyY7+Hg7gblaUWBHO3hYEPlKSYTYb6H
qxKQtRfkHNIDONrDwfGNx2PUYL6Hg33/PnmXsImjPRy8xuO6tRzM93DwCd/5
DeEbOdrD3cLzyNotQf/8OdrDwa+z5xgFwnwPB9+IT+/f7sfRHg6O3HRG0h3m
e7jbeN9L0ZZ9uYGjPRw8Jdhk0lKY7+Hgoy5PA2p9OdrDwbXJ3x6awXwPBzuc
jDAvXc/RHq4aX4/sI41GMN/DwR8NFcNyfDjaw8Huh6QXaMF8DwfrK7nrnPHm
aA9X/f/78BhNZZjv4e4IiOm0+dPi1nG0h4OPH761Vhbmezh4yfHE/PC1HO3h
YIP8KgVJmO/h4HTTGQlbvTjaw93F+9N5ifE/PDnaw8GHLYTvvGG+h4Mdoyxz
Wjw42sPBax4/SHCB+R4OPhQWeeyZO0d7uHu4z1JbLy+B+R4Onl4V97l2DUd7
OLh11LNp82G+h4MHRc45V7Gaoz0c3GfNfe0ZMN/D1eB9QTmwunAVR3s4uEBx
UogBzPdwcMAd1u6iG0d7OLj52LtZWjDfw8F5nXfNU1w52sPV4vfB/KqXKsz3
cPB6QVrKcReO9nCw3OFDf4bAfA8H+7n7ecas5GgPB5/4OqejH8z3cPfxvpsk
jNu7gqM9HJz77pI1C/M9HCw50XRMsDNHezi4vid32F8njvZwcHS+hPoWmO/h
HgiI7oNRZp2OHO3h4OUVSqEbYL6Hg72Z101fHDjaw8GrhL6WXjDfwz0UkPem
FQ3Nyznaw8HTxzfscIP5Hg5eZZY+/ZU9R3s4uKt3whAnmO/h4CkPfESNyzja
wz3C55uR/aClMN/DwdpZX4wfL+VoDwenZmlusYb5Hg72zO/zsMaOoz0c3GOy
dfYCmO/hHuPz/Nbe+7eXcLSHg1/X6gSYwXwPBwc9cp5005ajPRy8wUZJ1hTm
ezh4910nibLFHO3h6vDzU64mMwPmezhYN891/HUbjvZw8NZRyr5TYb6Hgy3i
zG8VWnO0h4MP7W02NoL5Hu4J3qf3tFVcXsTRHg4OknbynATzPRw84bSuZp4V
R3s4OLzGoXcCzPdwcMKQt205lhzt4Z7ivkuW/NKH+R4Ojh/cqpS9kKM9HPzp
mesyPZjv4eCqJrWsrAUc7eFgv2T14eNgvoerF5CHuW4pmRYc7eHgdYnP5+rC
fA8Hu3+OlMycz9EeDo4Y612nA/M9HGzwZkt5hjlHe7gG/L6eybqlA/M9HPzs
D/chYx5Hezi4KGCHqi7M93Dw1xQ5v0wzjvZwjfh8H1rYpAvzPRz8wdF/ZdZc
jvZwcDA79e84mO/h4GFnpHMvzuFoDwcnVb0K1of5Hu6ZgJxnL3vmzOZoDwe7
fA3zmgDzPRwco2S1J9eUoz0cfEpJ6ooBzPdwcFRobp/LszjawzXh57ttrrsh
zPdwsHxbybuCmRzt4eB8BcWgKTDfw8EL+1prFRGO9nDwa9uVHdNhvod7jve9
ONNHJTM42sPBo9267s6E+R4O/rBs48sbJhzt4eB7coVSc2G+h4Ofa5Ra3prO
0R7uhYBcmxh6YT7M93Bw8hOB2r1pHO3hYLcLhhetYL6Hg72tlO0eTuVoDweX
r8wcvATme7iXAvJ3e/OXp1M42sPBNnNvvFgO8z0cvM9+xofnxhzt4WDRMjsp
F5jv4eDyN4I574w42sO9wvvjcdMEd5jv4eBi9QFMqyFHezj4xQiPCB+Y7+Hg
P3qzNTomc7SHg3/9OdW4CeZ7uNcCsnjU1rTfkzjaw8FK1ncObIf5Hg7uGh0d
JQnzPRw8fEHF2VADjvZw8Ap3t8d9Yb6He4M/ruqpfGAiR3s42GrEg23yMN/D
wduljnTGT+BoDwdXRF0OU4L5Hu6tgNRZa+ufGs/RHg7ukPj2bRTM93DwtzmC
u+f1OdrDwVPuOhWPg/keDq6a0XMrV4+jPdw7ARm1sLHVCOZ7ONgn+fvo4nEc
7eHgJZ9Mt5rCfA8HD3tS+f6WLkd7OHjfwM2eljDfw70XEGmbxexjHY72cPDB
mbaF9jDfw8FHYgJCX2pztIeDJ3fle66G+R4Olhshu6ZVi6M9XDP++UVbt26A
+R4Orgz5mfpzLEd7ODhfc1frdpjv4eB/DnLzGJjv4eCBdWeK9o3haA/XIiCf
zSabD4D5Hg4e4nXjyxFNjvZwcOq3uekjYL6Hg2fHFe1IGc3RHg4eKaO6Vgfm
e7gP+LyU9V6fq8HRHg7WXZy0fwrM93DwrthLJWWjONrDwa77T0ubw3wPB1d8
81p/X52jPdxHvN/uFrYuhfkeDo7+6b/j5UiO9nDwsX4ZY91hvoeD1+y68LlN
jaM9HJwk41MVAPM93CcB2bG+vbBXlaM9HHxjjXZFGMz3cHBR9vBmWZjv4WAi
U65yRIWjPVwr3ieMBm1QgfkeDu7o7N94bgRHezh4J5OzXB/mezjYRuN7R8Fw
jvZw8HeFh6dnwnwP9xnPL2fNvaqVOdrDwSvDl5gvhvkeDn4X+m1GkxJHezg4
xU3BcjXM93Dwo3e3/NsUOdrDfcHXq6Y7OxDmezi46V0mKwnzPRxc3Na4YZ8C
R3s4WPHSjs6BMN/DwTc6Y6NPDuNoD9eGn4dgBVNNmO/h4E4lUb+coRzt4eDK
A45tU2C+h4O3nJZvqRjC0R4O3qU6+qclzPdw7QLy5GHMiIbBHO3h4N8htk5u
MN/DwZ971+R+GcTRHg426l+puhnmezj40y7vlD4w38N9FZBYVfuZUQM52sPB
Ftf2/BgK8z0cnD7ic/FpeY72cHDNsP2ndGG+h4PtNzsdLRjA0R7uG37fZVac
N4X5Hg6+fHb//Ro5jvZwsMOAl7LLYb6Hg6XVl6x635+jPRzclf7xvi/M93Ad
+OdtTbDtkeVoDwdXrXJqD4f5Hg4+MtUgeSDM93Bw4MNhXkn9ONrDwSp/ufna
MN/Dff+/b/lDrshwtIeDDVa0W5rCfA8HHyWv/WulOdrDwZf73r3oAPM93A8B
uR19oc8HKY72cPCBjKB1G2G+h4NnGxh9kYD5Hg5O+9e0J6ovR3s4+Gfz6omK
MN/DdQrIl/KaX6kijvZwcOW6gXUTYb6Hg6cV690qFXK0h4MjDqk8XAjzPRzs
Wvaio5HjaA/XJSASYz21PGC+h4OHnL26uZPlaA8HP5Wtfb4b5nu4rv/v+2l7
OZjv4eDY0fqfTzIc7eF+CojHgY1x2jDfw8HxDmuXFAo42sPBN9bJ6ZjBfA8H
yyWvUKjrw9EeDlautx3uBvM93C/c02+tht8kOdrDwTa1qp47Yb6HgzWs27P7
wXwPBwvtF/c/IcHRHg7uc3veHi2Y7+F+4/0v5E7/wn8s7eHg+2uf5pjBfA8H
j1jt4fWkl6U9HLx18Vbj1TDfw8G2Sn1VfvxlaQ/3Bz9PyXJKITDfw8Hn7kTq
ysN8Dwe77dxil9zD0h4OHnnmYZw+zPdwcMHw2NaSbpb2cN24T08Kl1rBfA8H
S+fPaHzxh6U9XPf///9oav4+MN/DwatCHUb2/mZpD9cjIIz5x5YomO/hYNsn
lTeGw3wPB/sN/Zqf+YulPRz8s2tl8XSY7+HgrysGP7/3k6U93F/cw+l95Z1h
voeDH28zcmrrYmkPB0/om1S8A+Z7OPhLrdHk/jDfw8EexZIVSZ0s7eF68XxR
3umuD/M9HLytWm5k2Q+W9nCw7k3LDmuY7+Hge8kX6t98Z2kPB/dfpF7nD/M9
3D88D5XmtDAw38PB0W9s5OI7WNrDwSFpfaw0Yb6Hg4ME188UfGNpDwcHvt8u
Ox/mezgJhnwiMw8++8rSHg4uEglGe8N8Dweb6Zc87G1naQ8HO1/YEBcN8z0c
bOozxGckzPdwkgzJ9j7vmNfG0h4Ovp842mUuzPdw8Oyfe4Pqv7C0h4NHeNde
8IL5Hg5+19XxreczS3u4PgyJ3v914UGY7+HgqJEVJWow38PBRbmeZnmtLO3h
4HWGz9/NhfkeDnZNVUxo+MTSHk7AkEe/h7usg/keDvbQfjvj30eW9nCw8aQ1
BjEw38PBDwecMdGA+R4O1i+Kcy74wNIejmFIqd6UWAuY7+FgF4/Ily9aWNrD
wW6uEcQP5ns4OFxR6woL8z0cy5DeKG/To80s7eFgr6uW73VgvoeDm07ePlH6
nqU9HPx0cqOnLcz3cPCCPdsWfHjH0h6OY8iJ0IzZ22C+h4OPTVljIwfzPRwc
eiZl09m3LO3h4H5la7KMYL6Hg61jU3ruvmFpDydk8PzuvNIF5ns4OMc1sqHz
NUt7ONjAVcdjH8z3cPBM1SkyKjDfw8Gqp3Ju5r5iaQ8nYkjY+wOx82C+h4Pj
f9zb/PwlS3s4+PUDLz8/mO/h4DW7XYKFMN/DwTHSWSknXrC0h+vLkOn+C16O
h/keDs4qMRpX9ZylPRyc8NMnxhHmezhYaWSrdEcTS3s4+Obc88fCYb6Hk8LP
l3eKyXCY7+HghsRnPy89Y2kPBwe9NaucB/M9HJw9u/n8i0aW9nCw2t1LpzfC
fA8nzZC3IeezpWC+h4MDAiofnWpgaQ8HV2axMoYw38PBY43c7O/Vs7SHg11H
PLvmBvM9nAy+v96eE/88ZWkPB6+fIFUaDfM9HPx8S6GLJsz3cPBia/9hxU9Y
2sPBKZUT39nCfA/XjyFDPnRVtNaxtIeDLSsKru6G+R4OXuW16aYCzPdw8OOP
Y95nP2ZpDyeLnyebWoV5MN/DwbfzVrm9fMTSHg5epva+LADmezh46fkFk2Rh
voeDFzkfuZ7ykKU9XH+GGNqULZ8O8z0cvPZIpUzdA5b2cHA2OfNoHcz3cPBE
l8UXGZjv4eD9Mo+STtxnaQ8nx5DLdiNSDGC+h4MVbMeX3K1laQ8HByuI2lbB
fA8Hqxcljv9bw9IeDj5u/W1vHMz3cAMY0tbe3aUL8z0cHJp5dXPlPZb2cPDE
5LH9V8B8DwfrvZl99eddlvZwsEKEaGs0zPdw8gz5me5rORbmezh4ktsWw/I7
LO3h4JTbIyY5wHwPB+/86Wj2o5qlPRzsxun7RMF8DzeQIbZysedHw3wPB1/X
C/1dcpulPRzsvfOfkz3M93DwMcV/TzpusbSHg18o71oVCfM93CCGGJ3ewY2G
+R4Olq3qKiqpYmkPB49JexduD/M9HJzvOtv9eyVLezh43iB5hyiY7+EGM6S+
0dxNE+Z7OLj8ccvOspss7eHgCtUP2Q4w38PB7Iu5XZ0VLO3hhjBESkdiUTTM
93BwmZZcsRbM93Dwlj9+5OYNlvZw8Ptro56ugPkeDlaOVtv9p5ylPdxQ3IeE
1TPjYL6Hgyf//DxIH+Z7uP9dk9tTXcbSHg6eRi7/Wg3zPRxs6ftVJAnzPdww
/H4EO+ueKGVpDwcfS+hZbQjzPRx8r77y0sMSlvZw8N81hQN9YL6Hg4d73I/o
C/M9nAJ+PiVF8inFLO3h4JfLHC8SmO/hYKvY2yubrrO0h4MtGi1Gb4b5Hg7O
sn75byDM93CK+P6o7fpysYilPRzcu0Gr3QLmezg4wquR+XCNpT0cnDcxctwe
mO/hYNOuqetUYb6HU8Lv97P314uusrSHgzfJhKnbw3wPB+/IHXays5ClPRx8
5c9RrRiY7+HgmzLc3XEw38MpMyRzkH3wnQKW9nDwo+kH53vAfA8H/809q8nC
fA8HW52JG3b6Ckt7uP9t5Dx8Bsz3cMMZ8irpz6Smyyzt4eB5QnfXLTDfw8Fj
TiSdHgLzPRwcFnmqKzefpT0cXM6tcbaG+R5uBEMSjT83tOWxtIeDp9rqeUbC
fA8HDwvTltGC+R4OHvivqbwql6U9nAqeN9pnRK2G+R4Ozg9ftFYA8z0c3PFL
yin5Ekt7OHjzxrWuM2C+h4N7tX2CnuewtIdTZchR6/5pQTDfw8FFQy0+KMB8
Dwcb5gyfVpDN0h4OnmodcsYOpvtwDLHR3jyi8yIr3odjiKf/r4zDMN2Hw+eT
k4TVBJjuwzGkv0ok8yCLFe/D4fnw85F762G6D8eQmj8q6bIw3YfD89Au1WOZ
max4H44hirlxJxfAdB+OIRtuB+W1ZrDifTiGTPlT82IfTPfhcP+27VfWguk+
HJ4vIjK9b19gxftwDPllO/6hB0z34fCfT2ngfBFM9+EYoj3Qqu5cOiveh8Pv
R8BrfzOY7sMxpHp7pUbLeVa8D8eQlW5/PoXBdB8On+cuW26Mhuk+HEO25cy4
WJnGivfhGGJy0DxrDUz34fD8MOlwKQfTfTiGfH45rDn1HCveh8PzZfWTEWYw
3YfD55n+ba+WVFa8D4fnX6vPt8Nhug/HkFurpk0bA9N9OIakZuSX3Uphxftw
DNFYbbvcE6b7cAwxvzuIk4LpPhzuver3ivSzrHgfjiHzT7XGW8B0Hw4/b/v+
BH0+w4r34fD7pqK8MQqm+3D4+UxcsHMcTPfhGHLNLOJk7WlWvA+Hr5fDnRpf
mO7DMWS7ovxAeZjuw+F5v3KZV24yK96HYwg5dfyxLUz34fA88OmJddcpVrwP
h+eHZu7NEZjuwzFkfL1mqDFM9+EYslty8tRnSax4Hw6fB6m6zHaY7sMxxLev
9KsRMN2Hw+f/+uqa0kRWvA+He44D6wrTfTj8fNm9esfAdB+OIXIuejLnTrLi
fTh8HgZbzzWH6T4cQ2p7Zx1uPcGK9+Hw+zhc4nsUTPfh8LyuEbpaH6b7cPjn
OdV8enicFe/D4f1Bun73Jpjuw+H3JzBRdxhM9+HwvPZxeOvVY6x4Hw7/vudt
rjnBdB8O718SxokSMN2Hw/2cfO/wmaOseB8O38846RNzYboPh+dN96+XPyaw
4n04/P53Br6LhOk+HJ5f9iaO0ofpPhyeb3xWBj46wor34XCvvhY2BcB0Hw6/
f/bnbBVhug+H55nOUS+vx7PifTiGtPfX2+YC0304hgzqKtNmYboPh+ebHw1f
0uJY8T4cnleW+pcvgOk+HD4f1+07/zWWFe/D4T7tVjoTC9N9OPz934+8aATT
fTg8HzSfuNd0mBXvw+Hz+EFo7y6Y7sMx5FlXw0wNmO7D4Xk3Ne7I7RhWvA/H
kOJx+f+8YboPh/fhVwZb5WG6D4efr34DhFcOseJ9ODzPC+amOsB0H44hh4fc
XyoB0304hhyIv6CUEs2K9+EYklT3+Js5TPfhGPJRY15j20FWvA+H55MGybrD
MN2Hw/Pc7N7XRjDdh2PIvgJjyRcHWPE+HN5H9mZPCIHpPhyeV2VWBIyB6T4c
Q+IOz7x7L4oV78PhfW2jrYE/TPfh8PVhYrOGwXQfjiEnj/RMKY5kxftwDBm1
Z1+DG0z34fD8qDJlX1+Y7sPhzy8VLry4nxXvw+H983q72hKY7sMxJH1dm6h7
Hyveh8P905DokwzTfTh8PYhaPzOY7sMx5OwgS60ve1nxPhyen//stj8M0304
/D6ZFx0zhuk+HEP2OHZ9eRnBivfh8PXar7s4DKb7cAyR0Xeu1oHpPhzeX87u
WfwonBXvwzEkbdbJti0w3YfD+8Xqs8dVYboPh6+fe/zyqjBWvA/3/1+/XtsH
pvtwDFkXqCM7GKb7cPjzp93uUxTKivfh8HmxaFZfN5juwzHkjGysmhRM9+EY
wtVdtcjZw4r34fC+IpEbvgym+3AMqWrbXPcvhBXvw+He/xVNOgfTfTj8Pu5f
kWoJ0304fP26No/t2s2K9+EYMifRuvgkTPfh8Hn0+v2qOTDdh8PziOqE4V+C
WfE+HJ6fCye0xMJ0Hw6/L7LvyqfBdB+OIZ07Z2W/28WK9+Hw/OU9/2IkTPfh
8P2a8qvEAKb7cAwZN3fem6adrHgfDs/73ycPCYXpPhxDNqaUOujCdB+OIUeu
v75Ut4MV78Ph8zopXmkHTPfhGOKX+SxuNEz34RjyzyJTrXY7K96HY0jJC2FJ
IEz34XAfbrd4q8J0Hw6fj37m425vY8X7cPh8nDZWwg+m+3B4Po8KeasI0304
hmTcsa2/EcSK9+EY4u549MU6mO7DMUSUurBrMEz34Rii2t9HpWQrK96Hw/tE
b5e9B0z34Rhy4dm7lAEw3YfDfelnILi2hRXvw+Ee/321YRVM9+Hw9Rrw4Vs/
mO7D4f04b07Ilc2seB+OIeELuzRcYLoPx5CCuV0NUjDdh2OIT99ZSXmBrHgf
DvfoX90mZ5juwzFk4eEsJxFM9+HwPKJ3y+5SACveh2PIBBMVF0eY7sPh+UE7
exsH0304fJ64Bp7P3sSK9+Hw/bLa0LIcpvtw+H44HZvMwnQfDs8Lf9riL25k
xftw+LyMWStaDtN9OLwPHJbZz8B0H44h671qRlz0Z8X7cPh+78m8YQ/TfTh8
v6xTtzAw3YfD87lJPrnox4r34fB5ce3JsOUw3YdjSOBkYR8WpvtweJ9RMe25
uIEV78Mx5E1zmNABpvtw+PfpqVHnYLoPx5AB94da5/iy4n04hng9cjroCNN9
OIasCDz5QgjTfTg8f+g+Msldz4r34WD37ovOMN2Hw/vVEfkJUjDdh2OIgf7g
m/k+rHgfDs8DZ/95uMB0H44hLWtqhveD6T4cvp+t298WeLPifTi8j6dKXV0F
03043BOpDclyMN2Hw/tXVObRonWseB8Oz0Nnik57wHQfDp+/5ceKBsF0Hw7P
f86zW0rXsuJ9OIb0tOWP9IbpPhxDvn9o9VGA6T4cft9vvLlz04sV78Ph5+NH
vLEfTPfhcP+/MwUjYLoPh89r47FmdzxZ8T4cPt+mSrQEwnQfDt9f/7Ajo2C6
D8eQc/YFyx54sOJ9OIZsXROjtQOm+3B4Phw4oJ82TPfh8H7eoC9R786K9+Fw
vye0CUJhug/HkBsJc4ZNgOk+HEPuhk2c/nINK96Hw/ttYJ5fJEz34XBP31cU
GMN0Hw7Prwtc+resZsX7cAzp1gwLiIXpPhxDDv7Qa5sJ0304fL6McwhoX8WK
9+EYssSG6X8SpvtwDFn9XLNgPkz34fC8sbB8wy83VrwPB6vcn5oK0304hgQ9
WDjEFqb7cHjfemMo2Qem+3B4X3uwr+eiKyveh8OfP9xU5AzTfTiGOM1xGiUD
0304hujdrlt01YUV78MxRHrs+SgPmO7D4Xnz/aPGITDdh2PIlx02RjdXsuJ9
OIY8CFBL9YfpPhxDtlhOHzUSpvtweB4IP33p/gpWvA+Hn8ezC613wnQfDv/+
mlMlxsF0Hw7PM4fdS5qcWfE+HEMee9Ue2A/TfTg8P41f7zMFpvtwDNFcZ+r8
0YkV78Phfp+c55wA0304/Pnzg3zMYLoPh+f9X08PdDmy4n043Bdth5IUmO7D
4fvlJSmxBKb7cHg/M65axMB0H44h31TO5+Q6sOJ9OIacOnNmpBtM9+EYEmmR
e0Yepvtw+M+f+NigfDkr3ofDXz+KebIBpvtweD5bbRKuBtN9OIYYfdw574E9
K96HY4ik0U2FYJjuw+F5qFGqWx+m+3D4+y1f+PnVMla8D4fn2Zl7v0TDdB+O
IYMVrvUSmO7DMWTk2pcq35ay4n04hqwp71iUDNN9OHyenP92yBqm+3AMmZtR
/0YSpvtwDIlfctb0kh0r3ofD+8l46zxXmO7D4X347jODgTDdh2OI9SVy88YS
VrwPh+dH322rN8J0H44hy2L3D9aA6T4c3r8ueNXV2bLifTiGnJ81JCUMpvtw
eN/8uG+PIUz34fC8pHvT/8NiVrwPh/fHxDK/ozDdh8P9uLMteD5M9+EY8tv0
e1K3DSveh8P394haTQZM9+EYIr+UkXGG6T4cvp7yCfb9YboPh89zh4bLpdas
eB+OIaNvVKj7wXQfjiF1jXan1GG6D8eQXINInbpFrHgfjiFD3VxuhcF0Hw5/
v18P/Y1gug/HkE0Rz8d9smLF+3AMuZ+y/fdxmO7DMWTDu4uPFsJ0Hw7Pv/W+
1/9ZsuJ9ONyLIdcv58B0Hw6/TxMOlbjBdB8Oz3tlH58Ohuk+HL4/y2/8q1rI
ivfh8PxySNFwK0z34fCf/2/rdh2Y7sMxZNgkg8cvFrDifTg8/9a0Gx+C6T4c
Q6xclC6awnQfDt+fPbkTuyxY8T4cfh/u51WlwXQfDs/jz5XWOsB0H44h1abv
h8vCdB+OISNO9HtVOp8V78PhfXznoRx/mO7D4X0iwjtmNEz34fDPX5S4u8Gc
Fe/D4Xlmg+ruSJjuw+H5K/Rr9AyY7sPheWOs9MWOeax4Hw7Pxz/XNaXAdB8O
P9/75BXsYboPh6/fzl+rZGC6D4fPP3+l0hIzVrwP9/9/P7FZyx+m+3AMqa2S
OjsapvtwDAl2u6/TOJcV78MxxNHvZkUUTPfh8NfHNK+dCdN9ODxvuOqP7JzD
ivfhcM92JbWkwXQfjiG6UfpFjjDdh8P72uhXSXIw3YdjyLYv6TEVs1nxPhzu
X3BU7GaY7sPhfofsSdGB6T4cQ77GRt58ZcqK9+Hwvmh3+kcsTPfh8L7rWT7B
HKb7cAwp9f248+8sVrwPh89j2UFNOTDdh2NI4jsTszUw3YfDz8+RNWWKMN2H
w/PL7fD5tTNZ8T4c7s2IpDchMN2HY0jzlPN7jWC6D4f3rxunZ3whrHgfjiGX
HCOY0zDdh2NI2wW7ejuY7sPhj9tJXZOG6T4cvv99TmWUzmDF+3AMeWk3KHMT
TPfhGGL4261IC6b7cPh6RO9v/K+oswyvYtmaMNCTmSFYcEmQ4BLcvSG4e/CD
Q3CX4B7cIbhbcAvu7u7uEgju9hW7V93v/jlP3XMgO7OnZXXXeut+CS/hw6H+
OjramQFt+HCWDipRN7AStOHDWfrS0ncT/hb3Ej4c6o0F9Z5vhTZ8OEuPuTa8
entow4ez9J7PPY+lhjZ8OEsHL89Y5WoxL+HDYf84acaDsdCGD4f3s+m+4Rra
8OGwv9o9P/+Xol7Ch7P0p9q5vqyBNnw4vE8Xux9tDm34cNhfPmi+NCm04cNh
PxLwY9LZIl7Ch8P81KLQuOHQhg+H+TlH8hmFoQ0fDvufErPXvS3sJXw4/PmS
264shzZ8OOy37wd7N4Y2fDi8r2e2VEsAbfhweB4RkxafKOQlfDhLT6n0I8Zg
aMOHs7Rf4Xfd80MbPhzq59yd30cW9BI+nKWLPOk6aAm04cPh+Uf/nLwBtOHD
Wfp04a+H40EbPhzWgxI9Bxwr4CV8OMwfB9sFDoQ2fDhL/+h5MVk+aMOHw/fr
vebXq/xewofDfJ7vQ9RiaMOHs3TllUvf1oc2fDjUv4n3/IkHbfhweB55Cvkd
z+clfDhL39qcqMIgaMOHs3SFytWG5Yc2fDhLj9z48NTrvF7Ch0P9N+u0/zJo
w4ez9JMId3QjaMOHw37h8IwfCaANH87Si3t2GXAqj5fw4bDfGzI19jBow4ez
dPMFP8MLQxs+HD7PyJVB73N7CR8OzydqaoLV0IYPh/Vnyq7bzaANHw7zVUbf
LcmgDR/O0l/abAq7kMtL+HDYr8QOGR8Kbfhwlo53odtEDW34cJZe1nHGgm85
vYQPZ+nB8x7u2Qht+HAYDylqv2wHbfhw+PNLnqXzhzZ8OIyPqLCON3N4CR8O
88meNoenQBs+HNa3E1UyV4I2fDhLpzxXfm4MaMOHw58fV8dvd3Yv4cNh/7Kv
y5oe0IYPh/1b+pkVAqANHw7z14AjH58EeAkfztJqxNe186ENHw7ryc9sPetB
Gz4c6o3FTSvGgzZ8OOzXCowPOJHNS/hwlj7ab1PKodCGD2fpgOyn/YpAGz4c
xlP8a1k+ZvUSPhz2n8/PlVkLbfhw+D67be7UGtrw4fB9dxu4LBW04cNZunt4
wMvrWbyED2fpp/f2FJ0CbfhwqO8uZZ1XCdrw4bD/rtDD24I2fDhLj/CaNmpv
Zi/hw2F/f3aUTx9ow4fDz2tTeVUuaMOHw/w6/W7VV5m8hA+HP5+qSPRl0IYP
h/rsZJNDTaANHw7jvXHZKUmhDR8O+5n5bzpdzOglfDis13Vr1x8HbfhwmO8q
9ahRFtrw4SxdvGylen8zeAkfDvv9uFeDd0IbPpylrc4+43pAGz4c1pMc33dm
hzZ8OKwfScd/eZ7eS/hwqM8+H9VL0osfrt+/931pWOP04oeDbhfh/ydJevHD
QS/IWbzbxXTih4PeeOLD+3HpxA8XYuklVUsOKZdO/HDQN8em9oueTvxw0Omr
Tj66O6344aC3NZ84oHda8cNBZ5qZpFTutOKH64/6aUeGhK/9xQ8HnXDWjg8r
/MUPB30o2pn7zf3FDwe960jjW37+4ocbgPd7c9tH19OIHw66wZyXX6emET8c
dIcq91NUSyN+OOgFs8tWjplG/HDQWWsnH3MktfjhBlp6XaWgK4NTix8OOmet
XwFFU4sfDjp1Ma9pX1KJHw66zu3O9uZU4oeDjqUKjO6USvxwg/B+jQpKnCWV
+OGg3aIXNj5JKX446Msf5zVYlFL8cNA5Ru2K1zil+OGgmx/PcDlpSvHDDcb+
cMLtpZf9xA8HPXjdjaGT/MQPB23/Td6psp/44aAX1p/X2vETP9w/PaVxh8O+
4ocbgvE6NGjQYF/xw0EXij52QVFf8cNBj33x7vTXFOKHg47wGWNvTSF+OOg0
tatX65pC/HBDLT17jF4akEL8cNBBExt4vUwufjjoP0Vn9VyeXPxwQ//5e768
a55c/HDQq/70CEmVXPxwwzAfnY4d/3Yy8cNB/1q/d+usZOKHg640enjrOsnE
DwcdN3ejdPGTiR8O+vqYUlFnk4ofbjh+Xpe8x8YmFT8c9OED2deUTyp+OGjf
xtnnW0nFDwd9N03OeQeTiB8OelNUzlWDkogfbgQ+7/KAg0WTiB8OunTGtM+/
JRY/HHS7mnFSRCQWPxx0FzeyQY/E4ocbifU/+44VuRKLHw563uJu0aISiR8O
elyFRG3XJBI/HPR7a/6tdonEDwcduMttlDGR+OFGoT6qUufF44Tih4NesHDA
sMUJxQ8HvTlsUJb/EoofDvq4X9Bdv4Tih4PuEV8tuJVA/HCjLb278eAOYQnE
Dwft8/RE2XoJxA8HXXPKnYBECcQPB32mwvY0l+KLHw662Me6/pPjix8uFPVO
3205qsUXPxx03EOXKsSOL364f3pHeJdTPuKHgy5ZpsjSUB/xw0GPqDHocTkf
8cONwXg53iOXl4/44aD/Tk069nA88cNBZ1zY5t3QeOKHgw683qSljid+OOiW
mX48+hNX/HBjLe01oFCXvXHFDwed5FBid0Bc8cNBv382cV2RuOKHg259Y9F/
3+OIHw56/YgKqXbEET/cOEv3vTXsZe844oeDvn+iysH8ccQPB92t5NLln2KL
Hw46IMfwmVtiix8OesDIl9O6xxY/3HhLlypweX7u2OKHgz6du/jWd7HEDwd9
Izj99Q2xxA8HPffCSLtLLPHDQUfUb1o6Ryzxw03AevM5fOwbb/HDQW+b3e7+
Wm/xw0EnLjJdd/QWPxz0kVNZ12fzFj/cRLxfOkvmyJjih4N+O3n8+vCY4oeD
7rmpZqn2McUPB90krNeDLDHFDwddvdjncS9d8cNNQn04/Wzgalf8cNBxw346
wa744aD/KzngRmZX/HDQu4dV2fbCET8cdIxGwQtWOeKHm2zp0IPnp7VzxA8H
nXDjgBmZHfHDQd9J02npC1v8cNBT4i7Yu8oWPxx0rZ6xn7SzxQ83xdJbq25L
ksUWPxz03pkz6r70Ej8c9OvK4YtWe4kfDjpH+3dfg73EDwf9KqpVo6xe4oeb
aumv163Tryzxw0EvSXe23BpL/HDQ6y/sOtfBEj8cdI17p1oEWOKHg85b5UeM
N0r8cNPwvqUot2GdEj8c9JaKa9p2VuKHg353K2NATiV+OOh157f9ehtD/HDQ
D7LUvbkxhvjhpqO+iox+qFsM8cNBn0i2MyJPDPHDQW/d0mf7x+jih4MedqDI
ka3RxQ8H3Tvw751e0cUPNwP1QKlD0QtGFz8cdMb9Q/J8iyZ+OOiIQwW77Iwm
fjjohLWebA+JJn64mdhP9Rgeu1g08cNBf8mRoNPvv5bw4TB+x024uQ/a8OEs
/XnSh5pDoA0fztL5ypW4Vgra8OEsvTKiUxsFbfhw+OergTGO/rGED4f6/XWH
8FHQhg+HevlovqYVoA0fztJnh1xN6Q1t+HCoJ7NWfnn6tyV8OPzzzNQDE6AN
H87ScXqtXlod2vDhML/nHD81PrThw+H9jllowuVflvDh8HN9wqfNgDZ8OKxn
Ne8vD4I2fDhLx7975XByaMOHw3M4MPrN7Z+W8OGwP4j9Oe0CaMOHw3p9IXmr
ZtCGD4ffz+/jxrTQhg9n6SrRB8V8+sMSPhx+zpTtnVZCGz4cxu/deXeDoQ0f
DvPnt6wNAqANH87S3z81fRD13RI+nKXbPMvfYxO04cNZuu2DtfF7Qhs+HJ7D
1wO7C0AbPpylJ5bs0u37N0v4cNjfnduaZw+04cPhv9s58e8gaMOHw+dI+uN6
KWjDh7P04z8fd1vQhg+H33dUvzXHv1rCh8P8enT0irHQhg+H7+uK77qq0IYP
h59zOs9+H2jDh0N9dOTknctfLOHDWTry+l2vWdCGD4fPl6ZjkYbQhg+H8bqj
W0hKaMOHw353d+TRB58t4cNhPgy87rcM2vDhLD28U+7BbaENHw6fo+7X11mh
DR8O70vyjG2iPlnCh7P0xSu7Xm2CNnw4fJ4Vm0N6QRs+nKV3rPNOUhja8OGw
XrsH9vz6aAkfDvX81fOdD3y0hA9n6aL5CwaMgDZ8OPy+FT5+Kg9t+HDYb+WI
fjIWtOHDYVx4N111/oMlfDj8vN/2tGnQhg9n6Z1ZvocGQRs+HMbTptxjfaEN
H87S13asm3n/vSV8OMwvLdqvXwpt+HD4HFdaXWwLbfhwmL9zz/mbDdrw4fDf
L3QKv3tnCR/O0mXKhg/c+s4SPhz2Z+UHn+0LbfhwWI/ODs9cHNrw4Syd/+/W
idGhDR8O773yiXbsrSV8OMxHMaYOGAtt+HD4vdMXsqpDGz6cpVNM/zszIbTh
w6H+DXma70aUJXw4rLfRnt+dB234cJYOqxV9anNow4fDc5qbu2ZGaMOHw/vs
1cs38o0lfDhLl9h/4t0GaMOHQz36McvFntCGD4d648KMPYWhDR8On3N4zC1/
XlvCh7P0i8LDth6GNnw4S69O9/tAKLThw6He6tLnRlVow4fDc68a9SMBtOHD
WXry66aZb0Rawoez9J5Bx5rNhzZ8OOyX86Vd1gLa8OFQb+kuHzJBGz4c9g+X
wyu/eWUJHw7zov+lDZuhDR8OP7fJo1R9oQ0fztL+u26EFYc2fDh8Dx03p1TQ
hg+H32d1x3UnXlrCh7P02hVWhYnQhg+HcR/W501taMOHw7iJODQ/ObThw+H9
L/i4/v0XlvDh8PNqXku1HNrw4VBPFpv9tj204cNhvObJcjoXtOHDoR5qP3zT
l+eW8OHw3FMtX7IH2vDhLB07dNyCYdCGD4fx8jDv8grQhg/37z57bkRcaMOH
s3S2WvsvXXlmCR8O38/9ed/nQBs+HPZXlXNnaw5t+HAY15f7tc0Ebfhwlv6w
pcf6N08t4cPhvc7mF20rtOHDWTp5366NQ6ANHw6/x81OhzW04cNh/E2In9+B
Nnw4S1e7Vn/T2SeW8OHwnn3UhaZDGz6cpX+mP36yIbThw+HvXfeitT+04cNZ
utH5JbFfPLaED4f98JkPe9dDGz4cPu/zq/16QRs+HPaLrSvqYtCGD4fnOKZS
fAVt+HB4n8KuvT75yBI+HNbb668uTYY2fDjMG+NGHA6CNnw4rJe/Fu1LBW34
cJae1aX4kacPLeHDYT4KCLqyFtrw4TCf9I+M6gFt+HB4jsu+JiwKbfhw2D+/
7RsYA9rw4Sw9cGXHgScfWMKHw3qR+MLBydCGD4d6e/gin/rQhg+H51rsdnBq
aMOHQz0ybuDZZ/ct4cPhOe8bUXQ9tOHDYV1PHbWlF7Thw1m64++IAsWhDR8O
+4Nldw5b0IYP9+85N2505p4lfDjM36F5f0+DNnw4S/dp8d/qRtCGD4fnVuru
f+mgDR/O0pd7haeJvGsJH87Sx6ofidwMbfhwll6TJvPBEGjDh8PfX+TyotLQ
hg+H8RJ1aKw3tOHD/bsv+DTo0h1L+HD4/Xu2HjgH2vDh8H69TjCqBbThw2Fe
qvojLCu04cNhP/YmWcSH25bw4bBvSNPx7i5ow4fDfqLY+7jDoQ0fDuvJ7OWV
KkMbPhz2TRNGTU4IbfhwWOe6THlw+5YlfDhLR4UdLrIM2vDhUF80T7GwI7Th
w+F7STstTn5ow4fDvJM/26jfNy3hw+H5fLrvHoM2fDj8vbvXz5gIbfhw2Hc9
mR4QBG34cJYefXrS2dTQhg+H+ubsvL4vbljCh8M8Vm5n9k3Qhg+HeXH6o9f9
oA0fDvV/4iQRpaENHw7zUqaaY2JBGz4c3sesU9pcuW4JHw77yoGXq86HNnw4
1MeDE5dsA234cPj7p9YpkvO6JXw4/P1JJ5b8ds0SPhzmx677qx2ENnw4rKd/
nrYdC234cPj7M/wdWxva8OEsPaO8u8MP2vDhLH3v5J+op1ct4cPhvfJ5kHMD
tOHD4ecPXh3SF9rw4fDnB9Y/Xwra8OHwHnR9lT0WtOHDYd7Y23jmlSuW8OEw
X55d6y6ANnw4rK/2jRFtoQ0fDp/v0m3v3NCGD2fpeGHb5vy4bAkfztLeh1rk
OwJt+HB4f3c+uD4B2vDhUJ+8DBgZBG34cJZOuadMMX9ow4fDujQ/w+9Xlyzh
w2Fe+nbm+NZLlvDhLB1SpNC8QdCGD4efe6FVSAVow4fDepmpRosE0IYPh/d3
/dfady5awofDeLxcv/oKaMOHw3O0u9XpCm34cHgPI4q3LAJt+HB4b2rv6W9B
Gz4c6prqr+afu2AJHw5/f4qjJ8OgDR8O9VKmSn9bQBs+HNa/l71LZIc2fDi8
NxcrjP563hI+HOqlOntvHoQ2fDj8uecX84+HNnw47Kd+DZ9bD9rw4SzdP9ZF
b39ow4dD/RwaMTzynCV8OEsPepXbjoA2fDiMi1V66hBow4fDfrbQg0yVoQ0f
DuM0UdzjiaENHw7PZcvxLg/OWsKHs/SGSd5p10AbPpylN/pfudsL2vDhMG4e
+y/V0IYPh/1kzffdYkEbPhzG85OSla6dsYQPh3+fIlbAYmjDh8P+rnONpB2h
DR8O/3+TOLELQhs+HD5vq5LeMaANHw71mXoS/+xpS/hw+P0jvqUNgzZ8OOzn
/oQUbwlt+HCWPt6gXfMc0IYPh/Wu4r6J309ZwofD71M15OgRaMOHQx3zYrbX
5FOW8OH+nW+nqN4I2vDhLP3w2ffFGaENHw7ju0b+P+9PWsKHw+dqdKrlXmjD
h8P+ZmzEpVBow4fD/rTF10p1oA0fDt9j8NgzqaENHw51UvpOQZH4p+HD/f8/
+f/zv+Of49/Dv5c/hz+Xn4Ofi5+Tn5u/B38v/p78vfkc+Fz4nPjc+Bz5XPmc
+dz5PfB74ffE743fI79Xfs/83vke8L3ge8L3hu8R3yu+Z3zv+B7yveR7yveW
7zHfa77nfO85DjguOE44bjiOOK44zjjuOA45LjlOOW45jjmuOc457jkPcF7g
PMF5g/MI5xXOM5x3OA9xXuI8xXmL8xjnNc5znPc4D3Je5DzJeZPzKOdVzrOc
dzkPc17mPM15m/M453XO85z3uQ5wXeA6wXWD6wjXFa4zXHe4DnFd4jrFdYvr
GNc1rnNc97gOcl3kOsl1k+so11Wus1x3uQ5zXeY6zXWb6zjXda7zXPe5D+C+
gPsE7hu4j+C+gvsM7ju4D+G+hPsU7lu4j+G+hvsc7nu4D+K+iPsk7pu4j+K+
ivss7ru4D+O+jPs07tu4j+O+jvs87vu4D+S+kPtE7hu5j+S+kvtM7ju5D+W+
lPtU7lu5j+W+lvtc7nu5D+a+mPtk7pu5j+a+mvts7ru5D+e+nPt07tu5j+e+
nvt87vtZB7AuYJ3AuoF1BOsK1hmsO1iHsC5hncK6hXUM6xrWOax7WAexLmKd
xLqJdRTrKtZZrLtYh7EuY53Guo11HOs61nms+1gHsi5knci6kXUk60rWmaw7
WYeyLmWdyrqVdSzrWta5rHtZB7MuZp3Mupl1NOtq1tmsu1mHsy5nnc66nXU8
63rW+az7eQ7AcwGeE/DcgOcIPFfgOQPPHXgOwXMJnlPw3ILnGDzX4DkHzz14
DsJzEZ6T8NyE5yg8V+E5C89deA7Dcxme0/Dchuc4PNfhOQ/PfXgOxHMhnhPx
3IjnSDxX4jkTz514DsVzKZ5T8dyK51g81+I5F8+9eA7GczGek/HcjOdoPFfj
ORvP3XgOx3M5ntPx3I7neDzX4zkfz/14DshzQZ4T8tyQ54g8V+Q5I88deQ7J
c0meU/LckueYPNfkOSfPPXkOynNRnpPy3JTnqDxX5Tkrz115DstzWZ7T8tyW
57g81+U5L899eQ7Mc2GeE/PcmOfIPFfmOTPPnXkOzXNpnlPz3Jrn2DzX5jk3
z715Ds5zcZ6T89yc5+g8V+c5O8/deQ7Pc3me0/Pcnuf4PNfnOT/P/XkPwHsB
3hPw3oD3CLxX4D0D7x14D8F7Cd5T8N6C9xi81+A9B+89eA/CexHek/DehPco
vFfhPQvvXXgPw3sZ3tPw3ob3OLzX4T0P7314D8R7Id4T8d6I90i8V+I9E++d
eA/FeyneU/HeivdYvNfiPRfvvXgPxnsx3pPx3oz3aLxX4z0b7914D8d7Od7T
8d6O93i81+M9H+/9eA/Ie0HeE/LekPeIvFfkPSPvHXkPyXtJ3lPy3pL3mLzX
5D0n7z15D8p7Ud6T8t6U96i8V+U9K+9deQ/Le1ne0/Lelve4vNflPS/vfXkP
zHth3hPz3pj3yLxX5j0z7515D817ad5T896a99i81+Y9N++9eQ/Oe3Hek/Pe
nPfovFfnPTvv3XkPz3t53tPz3p73+LzX5z0/7/3pA6AvgD4B+gboI6CvgD4D
+g7oQ6AvgT4F+hboY6CvgT4H+h7og6Avgj4J+iboo6Cvgj4L+i7ow6Avgz4N
+jbo46Cvgz4P+j7oA6EvhD4R+kboI6GvhD4T+k7oQ6EvhT4V+lboY6GvhT4X
+l7og6Evhj4Z+mboo6Gvhj4b+m7ow6Evhz4d+nbo46Gvhz4f+n7oA6IviD4h
+oboI6KviD4j+o7oQ6IviT4l+pboY6KviT4n+p7og6Ivij4p+qboo6Kvij4r
+q7ow6Iviz4t+rbo46Kviz4v+r7oA6MvjD4x+sboI6OvjD4z+s7oQ6MvjT41
+tboY6OvjT43+t7og6Mvjj45+ub+56MTXx19dvTd0YdHXx59evTt0cdHXx99
fvT90QdIXyB9gvQN0kdIXyF9hvQd0odIXyJ9ivQt0sdIXyN9jvQ90gdJXyR9
kvRN0kdJXyV9lvRd0odJXyZ9mvRt0sdJXyd9nvR90gdKXyh9ovSN0kdKXyl9
pvSd0odKXyp9qvSt0sdKXyt9rvS90gdLXyx9svTN0kdLXy19tvTd0odLXy59
uvTt0sdLXy99vvT90gdMXzB9wvQN00dMXzF9xvQd/8+HLL5k+pTpW6aPmb5m
+pzpe6YPmr5o+qTpm6aPmr5q+qzpu6YPm75s+rTp26aPm75u+rzp+6YPnL5w
+sTpG6ePnL5y+szpO6cPnb50+tTpW6ePnb52+tzpe6cPnr54+uTpm6ePnr56
+uzpu6cPn758+vTp26ePn75++vzp+2cfAPsC2CfAvgH2EbCvgH0G7DtgHwL7
EtinwL4F9jGwr4F9Dux7YB8E+yLYJ8G+CfZRsK+CfRbsu2AfBvsy2KfBvg32
cbCvg30e7PtgHwj7Qtgnwr4R9pGwr4R9Juw7YR8K+1LYp8K+FfaxsK+FfS7s
e2EfDPti2CfDvhn20bCvhn027LthHw77ctinw74d9vGwr4d9Puz7YR8Q+4LY
J8S+IfYRsa+IfUbsO2IfEvuS2KfEviX2MbGviX1O7HtiHxT7otgnxb4p9lGx
r4p9Vuy7Yh8W+7LYp8W+LfZxsa+LfV7s+2IfGPvC2CfGvjH2kbGvjH1m7Dtj
Hxr70tinxr419rGxr419bux7Yx8c++LYJ8e+OfbRsa+OfXbsu2MfHvvy2KfH
vj328bGvj31+7PtjHyD7AtknyL5B9hGyr5B9huw7ZB8i+xLZp8i+RfYxsq+R
fY7se2QfJPsi2SfJvkn2UbKvkn2W7LtkHyb7Mtmnyb5N9nGyr5N9nuz7ZB8o
+0LZJ8q+UfaRsq+UfabsO2UfKvtS2afKvlX2sbKvlX2u7HtlHyz7Ytkny75Z
9tGyr5Z9tuy7ZR8u+3LZp8u+Xfbxsq+Xfb7s+2UfMPuC2SfMvmH2EbOvmH3G
7DtmHzL7ktmnzL5l9jGzr5l9zux7Zh80+6LZJ82+afZRs6+afdbsu2YfNvuy
2afNvm32cbOvm33e7PtmHzj7wtknzr5x9pGzr5x95uw7Zx86+9LZp86+dfax
s6+dfe7se2cfPPvi2SfPvnn20bOvnn327LtnHz778tmnz7599vGzr599/uz7
JweAXAByAsgNIEeAXAFyBsgdIIeAXAJyCsgtIMeAXANyDsg9IAeBXARyEshN
IEeBXAVyFshdIIeBXAZyGshtIMeBXAdyHsh9IAeCXAhyIsiNIEeCXAlyJsid
IIeCXApyKsitIMeCXAtyLsi9IAeDXAxyMsjNIEeDXA1yNsjdIIeDXA5yOsjt
IMeDXA9yPsj9IAeEXBByQsgNIUeEXBFyRsgdIYeEXBJySsgtIceEXBNyTsg9
IQeFXBRyUshNIUeFXBVyVshdIYeFXBZyWshtIceFXBdyXsh9IQeGXBhyYsiN
IUeGXBlyZsidIYeGXBpyasitIceGXBtybsi9IQeHXBxycsjNIUeHXB1ydsjd
IYeHXB5yesjtIceHXB9yfsj9IQeIXCBygsgNIkeIXCFyhsgdIoeIXCJyisgt
IseIXCNyjsg9IgeJXCRykshNIkeJXCVylshdIoeJXCZymshtIseJXCdynsh9
IgeKXChyosiNIkeKXClypsidIoeKXCpyqsitIseKXCtyrsi9IgeLXCxyssjN
+h9HS7ha5GyRu0UOF7lc5HSR20WOF7le5HyR+0UOGLlg5ISRG0aOGLli5IyR
O0YOGblk5JSRW0aOGblm5JyRe0YOGrlo5KSRm0aOGrlq5KyRu0YOG7ls5LSR
20aOG7lu5LyR+0YOHLlw5MSRG0eOHLly5MyRO0cOHbl05NSRW0eOHbl25NyR
e0cOHrl45OSRm0eOHrl65OyRu0cOH7l85PSR2/c/jp9w/cj5I/ePHEByAckJ
JDeQHEFyBckZJHeQHEJyCckpJLeQHENyDck5JPeQHERyEclJJDeRHEVyFclZ
JHeRHEZyGclpJLeRHEdyHcl5JPeRHEhyIcmJJDeSHElyJcmZJHeSHEpyKcmp
JLeSHEtyLcm5JPeSHExyMcnJJDeTHE1yNcnZJHeTHE5yOcnpJLeTHE9yPcn5
JPeTHFByQckJJTeUHFFyRckZJXeUHFJySckpJbeUHFNyTck5JfeUHFRyUclJ
JTeVHFVyVclZJXeVHFZyWclpJbeVHFdyXcl5JfeVHFhyYcmJJTeWHFlyZcmZ
JXeWHFpyacmpJbeWHFtybcm5JfeWHFxyccnJJTeXHF1ydcnZJXeXHF5yecnp
JbeXHF9yfcn5JfeXHGBygckJJjeYHGFyhckZJneYHGJyickpJreYHGNyjck5
JveYHGRykclJJjeZHGVylclZJneZHGZymclpJreZHGdyncl5JveZHGhyocmJ
JjeaHGlypcmZJneaHGpyqcmpJreaHGtyrcm5JveaHGxyscnJJjebHG1ytcnZ
JnebHG5yucnpJrebHG9yvcn5JvebHHBywckJJzecHHFyxckZJ3ecHHJyyckp
J7ecHHNyzck5J/ecHHRy0clJJzedHHVy1clZJ3edHHZy2clpJ7edHHdy3cl5
J/edHHhy4cmJJzeeHHly5cmZJ3eeHHpy6cmpJ7eeHHty7cm5J/eeHHxy8cnJ
JzefHH1y9cnZJ3efHH5y+cnpJ7efHH9y/cn5J/efOQDMBWBOAHMDmCPAXAHm
DDB3gDkEzCVgTgFzC5hjwFwD5hww94A5CMxFYE4CcxOYo8BcBeYsMHeBOQzM
ZWBOA3MbmOPAXAfmPDD3gTkQzIVgTgRzI5gjwVwJ5kwwd4I5FMylYE4FcyuY
Y8FcC+ZcMPeCORjMxWBOBnMzmKPBXA3mbDB3gzkczOVgTgdzO5jjwVwP5nww
94M5IMwFYU4Ic0OYI8JcEeaMMHeEOSTMJWFOCXNLmGPCXBPmnDD3hDkozEVh
TgpzU5ijwlwV5qwwd4U5LMxlYU4Lc1uY48JcF+a8MPeFOTDMhWFODHNjmCPD
XBnmzDB3hjk0zKVhTg1za5hjw1wb5tww94Y5OMzFYU4Oc3OYo8NcHebsMHeH
OTzM5WFOD3N7mOPDXB/m/DD3hzlAzAViThBzg5gjxFwh5gwxd4g5RMwlYk4R
c4uYY8Rco//lHEnuEXOQmIvEnCTmJjFHiblKzFli7hJzmJjLxJwm5jYxx4m5
Tsx5Yu4Tc6CYC8WcKOZGMUeKuVLMmWLuFHOomEvFnCrmVjHHirlWzLli7hVz
sJiLxZws5mYxR4u5WszZYu4Wc7iYy8WcLuZ2MceLuV7M+WLuF3PAmAvGnDDm
hv0vR0xyxZgzxtwx5pAxl4w5ZcwtY44Zc82Yc8bcM+agMReNOWnMTWOOGnPV
mLPG3DXmsDGXjTltzG1jjhtz3Zjzxtw35sAxF445ccyNY44cc+WYM8fcOebQ
MZeOOXXMrWOOHXPtmHPH3Dvm4DEXjzl5zM1jjh5z9Zizx9w95vAxl485fczt
Y44fc/2Y88fcP+YAMheQOYHMDWSOIHMFmTPI3EHmEDKXkDmFzC1kjiFzDZlz
yNxD5iAyF5E5icxNZI4icxWZs8jcReYwMpeROY3MbWSOI3MdmfPI3EfmQDIX
kjmRzI1kjiRzJZkzydxJ5lAyl5I5lcytZI4lcy2Zc8ncS+ZgMheTOZnMzWSO
JnM1mbPJ3E3mcDKXkzmdzO1kjidzPZnzydxP5oAyF5Q5ocwNZY4oc0WZM8rc
UeaQMpeUOaXMLWWOKXNNmXPK3FPmoDIXlTmpzE1ljipzVZmzytxV5rAyl5U5
rcxtZY4rc12Z88rcV+bAMheWObHMjWWOLHNlmTPL3Fnm0DKXljm1zK1lji1z
bZlzy9xb5uAyF5c5uczNZY4uc3WZs8vcXebwMpeXOb3M7WWOL3N9mfPL3F/m
ADMXmDnBzA1mjjBzhZkzzNxh5hAzl5g5xcwtZo4xc42Zc8zcY+YgMxeZOcnM
TWaOMnOVmbPM3GXmMDOXmTnNzG1mjjNznZnzzNxn5kAzF5o50cyNZo40c6WZ
M83caeZQM5eaOdXMrWaONXOtmXPN3GvmYDMXmznZzM1mjjZztZmzzdxt5nAz
l5s53cztZo43c72Z883cb+aAMxecOeHMDWeOOHPFmTPO3HHmkDOXnDnlzC1n
jjlzzZlzztxz5qAzF5056cxNZ446c9WZs87cdeawM5edOe3MbWeOO3PdmfPO
3HfmwDMXnjnxzI1njjxz5Zkzz9x55tAzl5459cytZ449c+2Zc8/ce48fDjpD
zbcb40S3jR8Outb5NMGDoT1+OOi/7yMLvof2+OGg/W7USdkyhm38cF+V9ln8
X/Kr0B4/HPThjj4B5ZVt/HDQMxt1qLsT2uOHg243seeMbJZt/HDQ0zPmej0f
2uOH+6L0+7JLGvh42cYPB3097vm7w6A9fjjoJMt29f0M7fHDQUfLEpy1nW0b
Pxx0i4P3ME/axg/3WenQKakvVXVs44eDLrYv54kD0B4/HPSxjgmv5nVt44eD
fnPo3LcV0B4/HPTXZ63zpohpGz/cJ6VX/b0zYgK0xw8HXSZfoTfRvG3jh4Oe
uLZ/x57QHj8c9MnJa2K8gPb44aAjYp7Z0CiWbfxwH5WerR/2OA/t8cNB5/vv
bbXA2Lbxw0GfmvRDb4f2+OGgU/+2K2WLYxs/3Ael+1xK1n4htMcPBz2raL7F
CePaxg8HfbxVk7ejoT1+OOhzIWF1fkF7/HDQX8JfXugazzZ+uPd439PVbfUU
2uOHg24U/37chj628cNBRywbd+EctMcPB9059n+rA+Pbxg8H3aBvk9k7oD1+
uHf4ecnGLcqewDZ+OOjwVK/3LYH2+OGgK+8e8SlpQtv44aCnp2lQagK0xw8H
/WpIp+UxEtnGD/dW6ULxjqXpC+3xw0G//tNmyxtojx8O+vvwOk1aJraNHw76
2qWpqW5Ce/xw0EPSZPxaLYlt/HBRSvdbkuD5EWiPHw762MTGUUWS2sYPB/3Z
142zCdrjh4NOMjR5YKZktvHDQR/+PH3yfGiPH+6N0ik2D/qcMLlt/HDQ+6Ju
dRsL7fHDQd95ss4regrb+OGgM5z7ubEPtMcPB335yYkeUdAeP9xrpZe3TF6t
ta9t/HDQT0a+L3kH2uOHg242um7F2n628cNBd1lWsf0paI8fDvpj8ktLSqW0
jR8uEuM7w8cPO6A9fjjowdamhrlS2cYPB/3hc7xbK6E9fjjo9YUSdUud2jZ+
OGgd+1DqWdAeP9wrpfdsTPksbhrb+OGgD7fJdmQUtMcPBz2oy9udf6A9fjjo
hbE7H+/tbxs/3Eul2wxZ8zoK2uOHg54TZ22Wtmlt44eDnvy1x6D70B4/HHSG
YU5kUDrb+OGgj7xv3+UCtMcP9wLjf9ySWBXT28YPBz1k+ub9B6E9fjjo7LUX
jiuSwTZ+OOjocTt12QLt8cNBp42dpkNARtv44Z5jfM/YM2g5tMcPB73ifbnw
VJls44eDTtL+8JtZ0B4/HPTr8gUqxs9sGz8cdMKrS/eMhfb44Z5hPm3kU8HK
Yhs/HPS2TEMiB0J7/HDQx4Z/XfEV2uOHg667JySkW1bb+OGgfVLFbRMJ7fHD
PVW6wJdtwa2z2cYPBz1rau+R96E9fjjoSaXq7GwQYBs/HHSsWrW9rkB7/HDQ
YxP2Da6W3TZ+uCdKJ7t27OkJaI8fDrruq8CQwBy28cNBd178MeM+aI8fDjp9
1VuRhXLaxg8HfbzkrxNboD1+uMdKFznTZF+OXLbxwz3+N7+rM6uhPX446A/R
3r9Pn9s2fjjoqzWz5VoE7fHDQR+ZEDHKN49t/HCPsL/wnvV5JrTHDwddPdXF
AQny2sYPB50yTbDfRGiPHw76v7Ytr8TMZxs/3EP8+ypHlo2E9vjhoL9knDwh
en7b+OGgfWuenjgQ2uOHg66dPmTVd2iPHw76249Ft3oVsI0f7oHSP3KWyfAB
2uOHg76Xql1o54K28cNB70sX34qE9vjhoCvMDQxrW8g2fjjoQ49U2SfQHj/c
faXd+vW8mxe2jR8OemyDki/uQnv8cNC1yh2+17CIbfxw0L8HPntzHdrjh4M+
1Gxd4rpFbeOHu6d0p+p+9S5Be/xw0C3XFNxQvZht/HDQi68p/7PQHj8c9O68
I9dUKm4bPxz03QwHqp2A9vjh7mI/6LPTu1wJ2/jhoF/U73n/MLTHDwedseWX
M6VK2sYPB514RuDl/dAePxz0wzrNPhTXtvHD3VG6asyaWfdAe/xw0NuSp+hf
pJRt/HDQCaL2P9kB7fHDQX+JKte2YGnb+OGgJ4zcEiMC2uOHu630Il/v7fkC
beOHg57qW33EFmiPHw66+btR7fOUsY0fDnq1V0TwJmiPHw564fEHQ3OVtY0f
7hbGw9JYWzZAe/xw0EO9iv7OUc42fjjoF417NFsP7fHDQX9OuvNO9vK28cNB
v1vu030dtMcPdxPzZe9BabJXsI0fDvr2D/vFWmiPHw6689L1JwIq2sYPB53v
Ub9Da6E9frgb2M9k6XQ1oJJt/HDQbV+Pj74O2uOHg+644G657JVt44eDvrSl
5fJ10B4/HHT3xelS5qhiGz/cdYzXO/7r10N7/HDQr263qJ+zqm38cNAzE0f6
boT2+OGgM0Xf/y1XNdv44aDDkjyO2gTt8cNdU3r0uUZ/8lS3jR8OOs+S7Jm2
Qnv8cND9YzUJzl/DNn446Ccjoo5EQHv8cNBTxjwrXKimbfxwV7E/mFHxxE5o
jx8OOiS9X9eitWzjh4POvrVF7r3QHj8cdKJD/rFL1raNHw562Jkm0Q5Ce/xw
V5TuVss3bmAd2/jhoPtfbpr/KLTHDwf98HxA7/J1beOHgx5zYsyFk9AePxz0
rxIhZarUs40f7rLSwdtiXDoH7fHDQa9Yn6lfzSDb+OGgs61/U/gKtMcPB52i
UINEQfVt44eDLnKxs3sL2uOHu4T3+0+eJE0a2MYPB92qfHjxB9AePxx08dw3
B7VsaBs/HPTTwCM3n0F7/HD//nuna7X2jWzjh7uI8W89vPMG2uOHg254xHdk
t8a28cNBZ7+YvvxnaI8fDnrytmjp+jWxjR/ugtI3fm1J9hva44eDjp43MPPQ
prbxw0FvebK5ptd/tvHDQZdY6MwYA+3xw0HPe1f2Q5xmtvHDncf717Z78FRo
jx8O2mfalB9JmtvGDwfdRa1aPhfa44eDzl9xV/s0LWzjh4Pe+vlMxeXQHj/c
OaWfzXlSOmtL2/jhoHuf9qq3Adrjh4PekSL/8HytbOOHg17r1+fUTmiPHw46
RpsL2Uq2to0f7izen/FlVx6B9vjhoCPT3y5WqY1t/HDQxY/PeH0e2uOHg+7s
HRJRt61t/HDQU0aNn3Mb2uOHO4P9zZWLYc3b2cYPB914QrVNz6E9fjjoaZWd
J52CbeOHg765OlruT9AePxx0eGDJsJD2tvHDncZ8sO148ugdbOOHg647d8G2
0dAePxz03GknOsTtaBs/HHRgsUrFZkB7/HDQOl/mTH6dbOOHO6V0Lt+2AUuh
PX446LZTYlXJ2tk2fjjolwVTjNoE7fHDQXfcOOtWoS628cNBN5ofWvEAtMcP
d1Lp84vfXyrf1TZ+OOjZza/3Pg/t8cNBFxlaIn9QN9v44aBfLM8W9z60xw8H
Pb7X0uhtu9vCh8N+cmZ4vLfQhg+H8bmxbKE+PWzhw2G+6tCv/19ow4fD+9a1
0s3RPW3hw+H5t9tb06eXLXw4pbv+vvYkDNrw4TC/3Zo71b+3LXw4pTus8WkU
Dm34cEoX9CtSIm8fW/hwSv+86VdsD7Thw+F5TN1bp2xfW/hw2A98TBN6Dtrw
4VC/rat8LaifLXw4pXd2KV3yIbThwynd5FXMw+1DbOHDKe11fkXzT9CGD4f3
93xK30H9beHDYTws7PHWGWALHw7zxbu196ZAGz6c0jn6nXvhO9AWPpzSp1/f
ibMC2vDhFB7y3aq5BtnCh8N60unyql3Qhg+H+f3FkVRlB9vCh4POErHhPLTh
w6H+f7mmUcMhtvDh8P49DE/7FNrw4VDfnN5udR1qCx9O6b4tr0f/CW34cKgn
WsZNMWqYLXw47I9Cm1eNP9wWPhzmz0lX586DNnw4pf0LdPHKPMIWPhzq7yJ5
x26BNnw4/D6NM2YtOdIWPhzq4UZVn56CNnw4pdt9W7u73ihb+HB4/p8qrnsE
bfhwSi9IkGVX59G28OGw/0pc/dEPaMOHw/jbfyDD6FBb+HBY368NG5FwjC18
ODyPNHP+LIQ2fDjs95vHmh4w1hY+nNITm90usxPa8OGUVs/ixi83zhY+HP7+
neHfLkEbPpzSA5Zt+fnfeFv4cNjfd82R4g204cMpXe956johE2zhw+HnXx2/
2ploCx8O+32vkBQzoA0fDvNh2dcr0k6yhQ+ndNMWL6pthDZ8OKVnZO2RoMRk
W/hwSufuNOX9aWjDh1M69o/yrxtMsYUPh/G4eG6MF9CGD6f0rvxT8vWeagsf
DutbaPZh1jRb+HBKX+nQK3IqtOHDYX7a2qmr/3Rb+HBKRxXwjb8R2vDhlI57
YtjZEjNs4cMpbZdYvfwstOHDKb2yy7TZjWfawofDfJGv3OpIaMOHQz3W+tiV
kFm28OEwP99K5ucdZgsfDut559KDZ0MbPhzqvV/l/2SebQsfDu9j0xyzd0Ab
PpzS67r/qF5hji18OKWdxJvS3oA2fDilN6YLit9uri18OIyHge99v0EbPhzm
m+gjS4fOs4UPh3pycpKRyebbwodT+pH3mseroA0fDvVt7fJNCy+whQ+H9a7y
u08noQ0fTmnrRvjKhgtt4cPhfbjTv3cktOHD4f0u3q75gEW28OHweR/1bBdn
sS18OKxnG1aMWwBt+HAYrxNjnM65xBY+nNKp207IeBDa8OEwf/lXWVBrqS18
OKUPrArM8wTa8OHw+Z71fdRrmS18OKWzHH+33lluCx8O+60CG2fNhjZ8ODwv
/z3zsq2whQ+n9K3eyffthTZ8OKU3pz/7s/pKW/hwWE9S3Kn7CNrw4bDfrFj5
TM9VtvDhlC63JPV/zmpb+HDYDyRpGncOtOHD4fuYE+tWQLgtfDily6bJfmg/
tOHDKV14/vFjtdbYwofD+2E/eP4U2vDhlG5Rq3+Gfmtt4cOhvuqzYHDsdbbw
4ZQe3Lnal4XQhg+ndKmck8fkXW8LH07pUVvaFT4ObfhwSi/5fMer0QZb+HBK
73/3PioK2vDhUG8tWvtp2EZb+HBKX4yRIGnSTbbw4VA/JspUbw204cMpfezy
u00lN9vCh8P40D2zXoE2fDjUu40i9rfbYgsfDutH+j3dfkMbPhz+/vlj9dSt
tvDhMD+fyhiQaZstfDjUS+tn5NsDbfhwSjeoeqdBzQhb+HBK31/7d+4zaMOH
Q7132frZf7stfDjUy8fe9Y6/wxY+nNLNJp+ItxLa8OGUjlZoytFiO23hw2G9
Pl497BK04cNhva0QM7TdLlv4cFgfTxya/gfa8OGwHtQYum/6blv4cNgfvK3o
lW2PLXw41Idb/IMPQhs+nNKtw+O8CtprCx8OP/9JgtAoaMOHw3zVtUDgyH22
8OGUzttioK/fflv4cErXOPXaZwu04cNhP7hnTLpKB2zhw2E/UrlB7YfQhg+H
9XNis0V9D9rCh8P6FrbM2+eQLXw4rCdDs05dCW34cHj/mn8tUPKwLXw4jIfq
Pt+vQRs+nNLLW4fc6HzEFj4c1te9Ra7aR23hw2E+617v7QJow4fD+7nwUsaC
x2zhw6GearG1/3low4dDvX4jWlTb47bw4ZSennrvwGgnbOHDod4Jiso6G9rw
4bBeLZ79OfdJW/hwSp9LeeTuKWjDh1N6YFT3xy1P2cKHw3gvsMb+DW34cHh/
U3QvP/O0LXw4pWPuO7M85xlb+HCov8sf8D8Jbfhw2M/drbm7xVlb+HBK91s5
qvsvaMOHw/p1tmX5meds4cNhf9kvqnCu87bw4bC/u5Kt0ilow4fD/OXt37fV
BVv4cErvLn/58B9ow4dDvbSjfPbZF23hw6FeGDt8a95LtvDhUM++GdfgHLTh
w+H7jNfGL/iyLXw4zE9pk/5WV2zhwyk9MmjZzwXQhg+H8fYgQTJ8Y8KHw/z2
vm2tq9CGD6f03n2rwrtes4UPh/V2wK00sa/bwodT+mvzGNtWQhs+HPaPyzO0
DbxhCx8O9fSgigXvQxs+HOrTTD0y9L9pCx8O+8kbK3MnvWULHw7v29nXjbZA
Gz4cPm+p8suq37aFD6d06W57vF9DGz6c0uXn1JwUescWPhz2Sz9j5clw1xY+
nNKvL737cBDa8OHwfbfwutT0ni18OMynr6qd/wlt+HDYv6279Crsvi18OMyP
UTPSF3hgCx9O6Vgf5g+4DG34cNhv/Hr7oetDW/hwmK/qTBkd95EtfDjUT3p0
kbXQhg+H/WPM67EqPbaFD4fn9WXkz+fQhg+HerjW7JijntjCh8Ofb5ukQPqn
tvDhsJ8aFmPoIWjDh8N4ftviVbNntvDhUO/+LNb9L7Thw6Ee+Dwj2YLntvDh
lC6avcfdYi9s4cMpHfDx5oHb0IYPp/T2sPOHQl7awodTumrXBo+Tv7KFD4f1
6+yAtDuhDR8Of94qOaR+pC18OKy37Zf/+gpt+HBKz6+7bdas17bw4ZS+kLJn
zYJvbOHDod71fZ7lOrThw2F9XpHQv0+ULXw4zG8p/hZI+tYWPhz+/MX1HbZD
Gz4c9ptZMu8PemcLH07p+gO75v4GbfhwGA8BEw6FvbeFD6d0upnDuxf+YAsf
DvVe8galbkEbPhy+3+QJc/b/aAsfDvvxzxFF/T7ZwofD/JegUtu90IYPp3Sd
Kxc3Nf1sCx9O6ckLa/tG+2ILHw77rVtXli6GNnw4pf9ENqwc+NUWPhzq32KR
8Z9CGz7cv3p43NdR32zhw2F/VUL/yvzdFj4c5pcj8dKchjZ8OKxHef+26PTD
Fj6c0iW/Jzwa76ctfDjsN4fVLrcZ2vDhlJ5a4vCzOr9s4cMpvWd+uxVfoQ0f
TunfPhVHzvltCx8O9Yp3++HF/9jCh1M66e8Lix5AGz4cnmeT4XeH/7WFD4f9
6cJRhTNFc4QPp/T1Ig+2noI2fDjUf8tnVO8c3RE+nNLb6q+NmSCGI3w47O/O
ZHm8Ddrw4TDeByS800A5wodTuvGjzp9+Qxs+nNL/9S8VsMRyhA+n9Kwjk4eX
83KED4f9QbEWP15BGz4c3rcWuydPsh3hw2G927a4XD7HET6c0ot2pvC7CW34
cFjP3maLP8h1hA+H7+/WrQzpYjrCh8P4j5a94Qlow4fD+HuWaX0nb0f4cEpn
TXDRP2EsR/hw2E/HzrFtB7Thw2G/3bhMu6axHeHDYb2cmLyoFccRPhzWq6xb
sodDGz4c5qt9SXSNuI7w4bA/vlax+xdow4fD8/5b88i8eI7w4ZQeeypfgUAf
R/hw2G8e+3r8JbThw+H7G7Go3+T4jvDhlK4+M1/lggkc4cPheU3eWewetOHD
YT72yl9tZEJH+HCoz8avHRyQyBE+HN63XRkuXoY2fDilIzKtKN0/sSN8OLy/
HfNeSZvEET4c9g9pL488BW34cFgfn4wN6p7UET4c5rdqzSqmSOYIH07pbL/q
NzoEbfhwSoeOD5nQPrkjfDilCy44dT9BCkf4cNiPX6xWaze04cMpffVY7Kct
fR3hw6E+9PcOi+3nCB8O+8vhVTpsgzZ8OKwnU282bZrSET6c0qM/RHR3UjnC
h8N6VvnVio3Qhg+ndM0y/X42SO0IH07p7yODu6o0jvDh8Lx2HfBaB234cPj+
x43YXc/fET6c0nFW7poSLa0jfDilz+xoFxoObfhwmA+7TF9YJ50jfDiln/cL
vP4H2vDhlP4U2j/n6vSO8OGwPlctvap2Bkf4cKhP+88v9Qfa8OGwvz069eeq
jI7w4ZQOepDpWu1MjvDhlK40rMXFP9CGD6d0xRYV3qzO7AgfDvV8oftZ6mZx
hA+HendfwOhoWR3hw+F5rSvgtRba8OHw/h2KsSwomyN8OKzPO2a2VAGO8OHw
/VX/FrgB2vDhMB8FZi/bKLsjfDj8+6CibZ0cjvDhsB+smDl8C7Thw+H9vPc9
TrOcjvDh8L7c2DY1di5H+HCYz342L7QT2vDh8D7Esf62zu0IHw77qWuLnyXI
4wgfDvONX6m3+6ENHw717ernyTrldYQPh9+n/NyWKfI5wodTuvvB5uePQxs+
HPYbT3TjXvkd4cP9W59KeKcr4AgfDvNTo2Y3L0AbPhzGY7W1JwcVdIQPh/1R
xsy3Awo5wofD/LL9Zpzb0IYPh3rh8rHmYwo7wofDz6/2+VrBIo7w4ZTO8bd9
p2fQhg+n9Jfd2TPMKOoIHw71cuPAP4HFHOHDKd1/16ZvH6ANHw714oZBiZYU
d4QPh/o06caaNUs4wofD5z1XeWO0ko7w4fB9bArKtRHa8OGw/i6+efE/7Qgf
Du//wOvT45VyhA+H+iZDUL/90IYPh/l4YNPBXUo7wodDPRD8cUXqQEf4cPh5
Z3zfnYc2fDilb4y/23BIGUf4cNhPTS3xPFdZR/hwGH9Hysx4CG34cJgv435p
NbWcI3w4pXvVr18vsLwjfLh//pZuwZ+gDR8OP29x+QXLKzjCh1N6U8iDT/Uq
OsKHU/parNKd3EqO8OHwect2d3ZBGz4cxleyPoc7VHaED4fx17fe4pRVHOHD
Yf/fIMni89CGD6d00017Dg2t6ggfDuO5V3U7XzVH+HBKl1l4pcMzaMOHw/qY
sdbHsOqO8OGUTu51bl7lGo7w4TB/FqzW7g+04cMp/XfHjbqbajrCh1O6Q2iP
1q1qOcKHU5iX0s9KWtsRPhzGQ5wPr05BGz6c0jmPPGw2qI4jfDjUv2e+f8td
1xE+HPanmfWWp9CGD4f6996uSbPrOcKHw/zxucvEqkGO8OEwv/RovSF6fUf4
cEova774wzZow4f7V99mqd++gSN8OKWH7bAepGroCB8O71ehQmMvQxs+HJ53
/VP1Qhs5wodTemXGg2WLN3aED6f0uC1pgz5AGz4c1iufz2NXNnGED6d0ZPUS
Dxs3dYQPp/TtkVbDBP85wodTutbxqp+PQxs+HH5+1jRbBjZzhA+H9eD40Gl5
mzvCh8P+O6LvzJfQhg+H+il+rD0LWzjCh1N636cSVr2WjvDhlH7fP0WX2K0c
4cNh/B5d+usQtOHDYT1/+2Btv9aO8OGUbuR7Y3CuNo7w4bC/bz+p13Now4dT
2v4be+KCto7w4VBP/K53sm47R/hwSicb3yNTnGBH+HD4/BfarToCbfhwmH8+
FKsyoL0jfDil8/l9SZCvgyN8OKVr95nzKxLa8OGwP8+ZK+ayjo7w4f6dV+4t
1LiTI3w4pfN2rjAuUWdH+HBKf6h5PdpZaMOHU/pgta6zR3ZxhA+H8TEzed0S
XR3hw2F9anIz71dow4fDenB9W/6N3Rzhw2G+LrKtYXB3R/hw/+r5u0vS9nCE
D4f6dk7+uHegDR8O+wfvw/Nm9HSED4f5ucL4atV7OcKHw3ifPCtdzN6O8OGw
vvtH+h6GNnw4jL/CEwoO7OMIHw7vS7IRvQv2dYQPh88f/dqN99CGD6f0swJj
mq7t5wgfTumJv5Y6bUMc4cNhvQgLuOLf3xE+HMZ/jSxH7kAbPpzShzovuj5r
gCN8OHwfRcPi1h7oCB8O4z960uC4gxzhwyk9PXa65yehDR8O+501h0JHDnaE
D4f1ItuvqqWGOMKHw3pw92qB39CGD4f6L2G9wJ1DHeHDYf+baniPXsMc4cPh
farT8nju4Y7w4TC+vX+XiII2fDilvWfWuxU+whE+nNK5avSe3XakI3w47Ien
thiQfpQjfDilV0X4D38IbfhweJ+S71q3YLQjfLh/9VmeX41CHeHDKZ0q4eTO
ycc4wodD/dnulnUd2vDhlF7cL+n+6WMd4cPh+w2vOr/WOEf4cEr3aTp8oc94
R/hwSg//ue/oOWjDh8P4emH7TJjgCB9O6UITmg+qPNERPhzej9pXfbwnOcKH
w3hZ0e74CWjDh1N67gf/JaMnO8KHw3y53FlcboojfDis39nTHPGa6ggfDt/3
j26xjkIbPhz2x0NUnxHTHOHDYf3NfdsuM90RPhy+/6F/d6kZjvDhlA551nva
YWjDh8N+/kb5ycNnOsKHw37jfN9NgbMc4cMpvbCsz1cV5ggfDvNLRKLmR6AN
H07ppwvGvx0x2xE+nNL3BgxaUnaOI3w4zC8X3vWz5zrCh8N8kPxVr+PQhg+H
7+d215mh8xzhw+H7nj3udsX5jvDhsB7e0GVjLXCED6f0ndSzLp+BNnw4PK+v
00dNXOgIHw7r+3PdtMYiR/hwSi/pv7hhgsWO8OGw3pfc2/8KtOHDKf324JyD
M5c4wodTesBkHdBgqSN8OLzPRbft9l3mCB8O+6t6f7vcgzZ8ONTv3TNUXLzc
ET4c1sMMOcq3WuEIHw7j10rTPtNKR/hw2G+vjL75FbThw+H5r7qZav0qR/hw
Sj9ZuH5jt9WO8OHw92cd3TZ/uCN8OKX9ngYHfoc2fDilh3RuUmbvGkf4cPi+
2rRrP3StI3w4/H6dp2wru84RPpzSdbLez+C93hE+nNL+xevvPgdt+HBKp6yq
ek/b4AgfDs8j+vO69Tc6wodT+kUM70YpNznCh1O638/uIx9BGz6c0ntnZr66
crMjfDiltwzNXanTFkf4cEqfaz/9SZ6tjvDhsN+MXn/ZN2jDh8N8+23YmH3b
HOHDKV03ut/0ERGO8OGw/l/IcqTSdkf4cFgv/LYkj7/DET6c0vnn7pt+Hdrw
4bAft2vnX7DTET6c0juT9vnZapcjfDilf4zN/Tzbbkf4cEoHpBzz7QO04cMp
fXf8iJy79jjCh1M60Zys44fudYQPh/XeHha34j5H+HCYT6dPifDZ7wgfDutB
zGYjbkAbPhyeZ9ZPfRYdcIQPh/3z/jpT2h10hA+H+WRK6IVchxzhwyndqv3M
/N+hDR8O4y/JyAMHDzvCh8Pv37JRt7FHHOHDYf+XOk2F2kcd4cMpndb3Vhm/
Y47w4TAfZZ7c9im04cNhvfStuHH9cUf4cHgex2Ol7nvCET4c6nuv+1tKnXSE
D/dvfjzZOdYpR/hw2A9MuVT9KrThw2H8zogWtPC0I3w41GdTGo4IPuMIHw77
p9bPr+c96wgfDn/+3bqaf6ANH07pvgm2vT9xzhE+HObn9WrHtPOO8OHwPq9a
tKzpBUf4cEp/ezZ1e5aLjvDhUK9Vf/juE7Thw6G+OzO1xoFLjvDhlE5fbv21
cZcd4cOhPl1dZHjQFUf4cEr/97hEvXRXHeHDYX59dLD6W2jDh1N63qxTXXZf
c4QPp3SaT/9FjL7uCB8O/z4yNF2dG47w4ZS2elTZnuamI3w4rIdDNnV7A234
cHjf4uyvteuWI3w4pWfFH9Bw9G1H+HBY78e8Da1zxxE+HOaPrmnu+d91hA+n
9JtjiRu+hTZ8OKXVuGu/9txzhA+H8bIv+NjY+47w4ZQ+0epaRP0HjvDhUI8N
TXcu40NH+HD4/f3qx/4MbfhwSi8q2r/b4UeO8OHw97+c9nvKY0f4cPjvc67e
2OyJI3w4PA/fQ2NzPnWED6d0+V1Px/2BNnw4fN9+vlvPPnOED4f3sVawmv/c
ET4c6oEu1/t1fOEIHw7rRWjHpMVeOsKHw++/KeedWK8c4cNhPrMyn7gNbfhw
Sk8Ia3x7TaQjfDiMpzFXEg947QgfTukEH2f2qfLGET4c3q+P4dFSRjnCh1N6
cnjSTW+gDR8O31/hJ6H73jrCh8N+/GDS0EnvHOHDYb8UvHN9s/eO8OHw99e9
8Cv3B0f4cEoXX9eyu/roCB9O6YtzQuJdhTZ8OKWXVvC7suKTI3w41IePqx/o
+9kRPhzqjzC/K5W+OMKHw34/bEy8lF8d4cMpvSfhgu5voQ0fTuk4JZr/PvjN
ET6c0rsq39ow/bsjfDjUd919xrb94QgfDvNhpPf4Ij8d4cOh3nt7YVucX47w
4VAv7Ax2HkIbPhz2HyPvDNn62xE+nNLu9FxpQ/84wofDep2uU2Sjv47w4ZTW
vWffyRnNFT4c5rvzez6r6K7w4ZTu1PNegRvQhg+H/d0ar0VrY7jCh1N6xt7C
uYcqV/hw+Dyfhr6qa7nCh1O6ytynp7N6ucKHw/iO1vHqX2jDh8P73s3PuWq7
wofDeNF/moU7rvDhUE/tT/Z4sOsKHw7vX+keE+rGdIUPh/o/deJm2bxd4cMp
nXidV6PosVzhw2E8l6ky6Dq04cP9u496d3JdbFf4cFj//34rPiKOK3w4pX3v
drrVMK4rfDiloxeptzB3PFf4cEqf7rNzvOvjCh8O4+P7giX3oQ0fDu9r+rgP
I+K7wodTuth/cStMTOAKHw7zX/yV11sndIUPh/3rivuTiidyhQ+H/Vno/q6J
E7vCh1N6cMZqIW+gDR9O6RFRU9ceTeIKH07pMzVnOAuSusKHw/M61Hhc72Su
8OGUDox4V7B6clf4cP/60erHyZzCFT4c6vffc2NF93WFD4fPW/pQnlvQhg+H
5xd5adgWP1f4cErH73P15/iUrvDhMB5bXJzfJpUrfDjUfznOtdOpXeHDKX2y
yeXGKdK4wofD+9fjRb9P0IYPp3T450QHzvm7wofD/r1Ds5yr07rCh0N92PTS
8eHpXOHDYb6v331M0/Su8OEwHp6X71k4gyt8OKVfhTUMTZTRFT4c1tvfm46+
hTZ8OOw/V9QNOJ3JFT4c6r1MVfesyOwKHw71R9JFvYZlcYUPh/UnVr36TbO6
wodDfTW/d6si2Vzhw2E9aRdzTpIAV/hw+H3cJN8/QBs+HNZbv2VDz2d3hQ+H
ej1wd961OVzhw2H/k7plvDE5XeHDYf9fZ2miNrlc4cMp/XL08MDA3K7w4ZS+
1CzWvDR5XOHDYf0MLZ3qD7Thw2G+WJXr1O28rvDhUL91ubtwZz5X+HB438bU
WDgrvyt8OPy+q6ac6FXAFT4c5seBq3zrFHSFD6f0593zwvIUcoUPh/1Oit4l
4xd2hQ+H+a16MZ930IYPh/kv8Vfv80Vc4cPh82RYn3N9UVf4cPj3JYIHTSjm
Ch9O6Zwpc33tWNwVPpzSuYd7z6lSwhU+nNL980RrG1DSFT6c0pnfJmsaW7vC
h8N8PLjx4NfQhg+ndJHwS6fOlHKFD4f1s/Bwva60K3w41Cffez2YEOgKH07p
1Ns3h3cu4wofTulHutTC6mVd4cOhHm+XZV+ucq7w4ZSe9re7k6C8K3w4PJ/b
Gfp/hDZ8OLz/lysmv1rBFT6c0jX2P3sYUdEVPhzGU1/ralglV/hwSne8E/4h
pLIrfDjUP8cfFmlSxRU+HMan76Z1Jau6wofDfL4jTeW01Vzhw+H5Di2U0Ku6
K3w4pQ83iWa/gDZ8OPz9eYekO13DFT6c0jci93dYX9MVPpzSPt2P35tSyxU+
HPaXmxcM6FXbFT6c0s3mVy3boI4rfDil3/nfKVS8rit8ODzvvLWC/Ou5wofD
fHh0+yKvIFf4cNDnEyV+BW34cHj/Knbbeq6+K3w4pTNlvzpoSwNX+HCoP3pX
6BnW0BU+nNJN01+ePrCRK3w4pTfnH/igRWNX+HDYT6ytFlShiSt8OIzH8dW/
Z2/qCh8OP+/26GMJ/3OFD6f0gkV/932HNnw4pQc93ffofjNX+HBKd9t2Nvex
5q7w4ZTenTLf2rUtXOHDYb7L/qPmtJau8OGUjvclU7qQVq7w4fB9jT2aunlr
V/hw2F/8vVW+QhtX+HB4/h26zs3Z1hU+nNI/X0xIkbSdK3w4rGdTih79A234
cErHHDZ07rNgV/hw+D5vtp1/rr0rfDjs33Z8ORXRwRU+HObLUgXSL+zoCh8O
60NYjtWjO7nCh8Pzevq8QdfOrvDhUN9Vb1+gQRdX+HCof2LsK1G6qyt8OKVH
Z4nsnq2bK3w4jMeP3y8l6u4KHw714+QPTf9AGz4c5u+8d5O86OEKHw7ric+h
Hxd7usKHw3zYZLX3nl6u8OGwntWaW25Fb1f4cErPybpo/eQ+rvDhMN/7Hyjd
v68rfDis/72UatPPFT4c9ittu7+tEeIKHw7vT6HEbrH+rvDh8L5m/1Ql0wBX
+HD4+ROS7ksw0BU+nNIrFoxu9Afa8OGUXre2SoZXg1zhw6HeUV18rw12hQ+H
5/3+S/FDQ1zhw+H9PPZ6/PqhrvDhlPa6Wt+dO8wVPpzSY7oFbhw93BU+nNIl
Pmwd0XOEK3w4PO8N20Y2H+kKHw6fR1XbUm2UK3w4pdNVHhWn2GhX+HBKt37S
ZnqWUFf4cEo/z/mtfNIxrvDhlM4+uXRmr7Gu8OGUPhZcLf9HaMOHU7pquvRd
Ho5zhQ+H/X6GM1fPj3eFD4fnd6ta8L4JrvDh8P1t3Jpl3URX+HD4fhPZSedN
coUPp/TQvpVzj5vsCh8Oz7f6hL4hU1zhw+F9jXPldfBUV/hw+PxZM09sMM0V
Phzq49RTG1ec7gofDu972xT1C89whQ+H32fwySFZZrrCh8P89GzlteSzXOHD
4X1Iva+Bd5grfDj8/esSef+ENnw41NeJtz6PnO0KH07pU/eWfbgzxxU+HD7v
9LdZz811hQ+ndJKD8ybvn+cKH07pmR+3pts03xU+HOaD3frJkgWu8OEwH62p
cGn6Qlf4cHjeQVffjFrkCh9O6cb13hbot9gVPhzqo5IL13VY4gofTukCG97U
bLrUFT6c0tf143Q1l7nCh1N6+7TQdGWWu8KHQ31S4VmNgitc4cNhf6e81mZd
6QofDvVouzf5Uq1yhQ+ndKnUqyLjr3aFD6f0xovFL3iFu8KHU7pQtu2PvkMb
PpzSS276pYta4wof7t/5Sp8pj9a6wofDfPXlfPbr61zhwymd/0yOb6fXu8KH
Uzry0Lx3Bza4wofD+J2WNmnERlf4cEon/H6iw5pNrvDhlI67MSxq0WZX+HBK
z+4zZ+HMLa7w4ZR+7HN90PitrvDhsJ8rGTR+2DZX+HBKlz6R7kTfCFf4cJif
e5TN02W7K3w4pWPHOnqq9Q5X+HD4fhqumdJ4pyt8OPw+uaKPrr3LFT4c1vum
58Mr7XaFD4d6cmuq36X2uMKHQ70W89vAwntd4cOhnsvXKnvufa7w4ZR+G7tj
rCz7XeHDKX20S7Jk/gdc4cNhv1Oke+3kB13hwyn9p/KwvfEPucKHw3o6umY9
78Ou8OEw/i+8SKmOuMKHw5+PUzPRL2jDh8PPzzSt8OejrvDhMH+4OyZEHXOF
D4f6d+EJnxfHXeHDod66efbQwxOu8OGULhd+Yentk67w4TAfWLe2XD3lCh8O
z/fehw/nT7vCh1M6Ta70zU+dQX0VkuLZHeizZ/79z9X/B38tKr0=
"]]},
Annotation[#, "Charting`Private`Tag#6"]& ],
TagBox[
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJws3HlYTWvcxvHKXmttTcqQoRCRqUmhgXhSGUpCiSQUoaTQIBIakTRQ5ogG
okIUKSUJCRlCQoYMCUmKJjn3eZ79/vNen8sZHNVvr/Ve3/ce4uo9z01GSkrq
oaKU1P//+/69//9HTLb8nrPFP0tE+r294lEOnxud3/m/jYdrfjSBP0sFe5yF
RSOf+5wpFxP159Oq3sCbNctUBsALM+Wn9T4nIp1L2u7vuismcaGPL86A5yq5
HWorE5Myx4NDguDkTd03ucMyektiLsBbq2s9X9wRExN+2N+P8KMNP31nwj6v
vngMOC8ijSG6cXm3xeRs9rmq2XCs9ZHiUfCHnX7TQuEyBX3+8C0xUVs68dJl
uI/czyWy8Pzx0kO/wfPCn5ZvLhWTPXK3Y9QviMj1wlezvt4Uk1vvov7aw9Lt
3d47wf8uz1uzC+63ecbueyViYhjd78U12DPk1AxTeN2KmmlN8C2HQQOybojJ
aZOUS5rZIjJn4pl/g+B3Sh5DneAE3xltMcVi0v+zbmwMHDr9Ny8Nz7vW8rcE
dm87P3LDdTGJ3Je/phVuq/BbUlskJiXuwS+0LoqIhfLU0/Zwx5Tp013ga916
8bcKxWScikJOAmzS8HGjIez57fHQu/CPvlf+nr4mJqk3DsZ2wT53Ig4MgF8f
XNKlfwl//3Rby6gCMVHxHua5CtasURS68sVktmX9iyPwqsobr7zhHarnpz+E
D/qsvvXuqpgU/fTLEeWIiAH3t8QObr09UcMY7v0k6GlpnpjoHZOOWwv7jKhr
N4TdfW93nYC/zjIed+aKmJy02uP5DN4Y7RWsBler21XL5orIBsPw99GXxaTX
n34zpsAJ+zYvkIat79fk+MAdDdZvfXLFJCw5ReM0PHD/7y2fcsSkYJNH3Cv4
6dON2o5wi63eP6XLIuLUce9n+SUx0db87WkJT7f/VTYZXtmZX70JjtGpy7lw
UUyOPQ6ekQVHVZ3OGQY/Pz099z3cmKRfdiBbTHpsUxjW94qIPH4W0igLz5j/
JM4aTi7bP2brBTHZPubQv23whLI1m3+eF5M86aVrL8H5w/+9WgH/fD7sZR18
XXe2XdU5MRmdVT9jYJ6IjDNyeG0Nu4adz50Lu8T2DizKEpMji/yHRcA/d0Vo
GcCVepP2XoW/+6f/TMsUE3lBRuoHfDV9890BsOXr22s1roqImt+f3OgMMQm6
uOflAnic1sDLMnDuLruZUXDo0C93/c+KScPS/pevwx/OLmyqPyMmIya8GdYC
x6u5ay+Fl8qn7h2VLyIjy/pueZIuJgffe0gtgQ/wrjXT4YdX9Lz2wgajLe0L
TotJ95jfL2/BGbsKX+vBZm4FMztgxcDyzamnxGTzxJDLugUiUmLvPmYAnK08
Y/gKOHZtwo/oNDH5+llh30H4sJrN7W6wRuETqfvw0rw92QGpYrI4/pCX9DV8
vx6xv/A9RUziPZa+Gg/Xqx4vcYXvk+FWHnDQXo8vz5PFhOv79fIxeNXCS0Nt
4Mnfzw9/Ajff2uR946SYbCzx3ycUisgDwysVhvC5Q5OkJ8EdorXmmSfEpM5b
xnsd/HJnwt2hsPq0O69SYK1Bum4Hk8TEUS3a6gXMqRv2UoTjmuyuKBThr/9y
pjL0uJjcvdNfcyoc9HxHetsx3LPjb/b5w30ty+O84Yl+qdJnYe2YDXs+JuKe
Wa/xfgOf7Bl41AnOGDL2da/rInJB633ho6O4Z39+W82Am0xSm6fDAx8UXNkC
LzhSbFp4BPcsJUTzAqydMe7wODh684z4j7DqvY7uZw/jns1RlBlQLCIai3rv
GQL/06z0ng0n5wRqHDyEe/b30OsQeM5k3fuK8LonS60vw6b2WpHhB8UkPX14
3le4csG6RZ0HcM+2fdVUv4H/3vRWUx94gMOFeHt4/dkb4+r3455pbZTZBSsX
lk92gXfLmK67Bu8xV15clYB7ViVT8xPueSw2yhbuzLpjrVkiIiP0pj+8FY97
Fh6dtwjOWKw/YjK81sl+RAxcHWEbl7MP92zsgIQS2KLnUUVtuEZ4K9MKP3Pt
czxlL+5ZTeo6rZu4B6+uTFWDbS+tqVkGv/0Q2rYvDvcscuysBPj7G58SOfj6
sj95ZbCNQURSaCzu2YRrI7rgdIsrsR0xYjJWITRBvxSfB5uFeB/YvXZGt1Xw
eeP1Z75G457lKa4/Aq+ub3qyHK6OqaypgMf/2qX0ag/u2crDs0S3RGRTvsEy
e3jWpGVXjeAfZ77fuBeFe9ZTc+Ra+OyoHCNL+Frd14QTcP+kHcXXduOeFV7o
9gzu9Hd1ngDrJGxcL3tbRLz6msufi8Q9W2P6ZjJcW6/5YAR83KybjQ+s6SSX
nLQL96xv2dVT8MLH3yP7w0oN0SNfwU1Xy8P37sQ9u2m/X+mOiNzednKfHBx8
eIDIEv672/tS2A7cs3Vv12+Ce1nr1f2NEJOmaWlvMuF3I9/rbIRHD/S0eQ/H
x4XsbAwXk+W/xuarlInIuZ+KLe7wkbI/I61hxdww39ow3LPj1/Zvg99bv+Od
YXn/UNEl+KL60Ixnobhns2ZuqINdTlqsmAMHDe3xVu2uiKhPmaZ7NwT3rLXS
Zi68xW2YggX848Hh/HB4Qdirv9eCcc9Sl426Cn+R9ZQ2gpcFah5ogItWP+yb
vR33bO43kUa5iBQqCGZa8KMR2RsWwIM9FILStuGedW18uxve0PC2XB2eWmk6
+zp8RG6b9pGtuGdnuhU0w8/1P57oA1/cXjZq1D0RyX2qNCo2CPfMIeaAM6y2
8t8NWXiY9nxuLzzNIcs7fAvuWTdVn1vwjX6qulJwwou3b9vhAHVz6cBA3LNz
abN17+MevNX41LJZTPgIz4Ll8IN7V1+vgycv1h99EH63kKv7ugn3TL/1wD24
T5sUtwo+Jy7kpB+IyJ8hZ8e9D8A9qwn1GQ+7z5De6AwPyZn5zh1Ofid1r2oj
7tnuHrbHYN3lpwzs4b0uTwseww1TmzIr/HHPDI+MFirw9f9TY2INd1N0OTgR
HvHbo/qWH+7ZB01+HSy6vC9qKux79ZtPCvzqvMPcQl/cs9jsd1WwvtOFkSbw
x5UBtgoPReSN9omeuT64Z6aTr5nB8ic0eujDDr1EY/xhE+0Jg7I24J59KTt4
Bp5o/WzKaPh2UQz/Bh7vK+2bth73LGG+b69H+PMaknN1KGzkqfp+Omxzv6HX
8XW4Z1Pf2W6BHX6e3aYKp/c7de08PFZc//eAN+5Zg+eYj3ByVFp0b3hAqf6h
/o9FpLStZmycF+7ZkVZ+NixTHvtZAd69vtA3BO6/Je9c5FoxuTk97H0uPGCX
Q6QAdw60mvMVdvdy2xjmKSbjm3sUDn4iIgWna/2l4bV3n46xh1VzHuzcukZM
0pKOHNoJv1UaltnhgXvm7yJcg68Yv6sNgPvajPD7CZ/M7Kb92x33TOP7++GV
uB/1O3f6wDvbsucsgqeu8/rduBr3rCKgMBqOKbjg7wW3pU7WKoHVbOd0/7YK
92yL6PAfOOTU9Cx32GPeXUHrqYicsUxw+7wS92xkrN8y+GH6BF03+GXX/Np4
eJv9KLlaN9yzp6pzy+ADtzzalsGzzr4r/AtbBre21azAPQs+paX/TERk+Yfy
zvC1BWsPr4SvPGsY+3K5mPzWNhAfgdf5zXN3hHVEbX4VcNqK1uznrmKyqrqw
tttz/DyOqFF0gI+fD5trBH+fIh1U6SImVRFWRZ5wgP7Sv/NgJWcl7ROwb0hL
zKNlYjLT4Nnhp3DdxeJxc+Dg7kfFslUiMsa6+OuDpWJy9Y2L/2T4w72fl2zg
ppwRHzbAsoVzYu8tEZMxUd/nnvr/15NfBlnDy10vFr38/9dFsUF3ncXkqNEm
baUXIrJ8xZqYmXCl4pQjFrCm9ZqLdxaLicJHUfdN8MvJe75Mhy3z7/pnwgtu
PRh720lMtsbFfngHF6/WjpoG565ymKdSLSLRmWmtpYtwz0zVrlvB4WpGGy3h
Eb3fa2+D80zfCKWOuGf1p45chGMOHTpjAR+6vrZ73f+/fmXF0psLcc/2G2xU
e4mfn2GTNS1g2bVtH+bArm4a/0oW4J6ZF80Lhx9zPevN4cD+4dfz4IAY4XOJ
A+7ZDyudBnhflPRvc/hbqdLRoa9wz3f8Vbk5H/fs6LPuC+A0ubaZFrDzhqMb
d8PJyT+jb9rjns1w/VgEq7388NECfjBopF0z/ML04exSO9yzlu/XR77GfVlw
ocwSnlJ+UccZvpYT7nBrHu7ZiU1H4+DWWquWafD5jVNkb8FHvbtSb8/FPbPh
Atr///WPiatnwEOGlX/UqRGR1EpN07I5uGftsXbL4aiy/RpW8N6HDsUH4Np5
X1XLbcWkPE1N9x6s/W+I5iy4W9D7o1JvRGSSs9HU+7PFZJLdadnxsE7nmHWz
Yd9RXgHusPea9nMVNmKS+c/gUyKcZ3JCei788Wmb3WO4Z/tAt8ezxGRQRlEx
/1ZE7ht7VdvBDiHhuhPh3ZExLk+txSRmoXWiN2wctK3dAb6toyyXAvdMnpha
ZSUmUtzzgCo4cU+xyyLY6OXRT/LvRCTrgaLeq5lisv6Cq70Z7NaqrrQETt8x
8oYfrJvYIv12hpi8d27QPQOX2kZyrvCAcZcSa2Cd5FcDPkwXEzvZzXK93uP9
ZHS92Up499spm6bDcpvPb66bhnuWy30OhMXDtUs94M6ocvvz8Jci5yHfLXHP
lsfd+ACPfTMlxhv2Ml6g178Wz2t9Hyk2WeCe9Rh4zAbe2KWY5Au/+fheLgRu
Gfln6h9z3LOC05ty4WqtHX82wXP2en2uhzWSCq51TsU9Wz1u/uAPeF7un5Cw
DS6e3H7DDrbSUdwmA7f1vq63E070H7453ExM9L+GHyuATXZVRYhhj2Jr+Z/w
/r/DUncTMUk+oLx5+Ed8nq8RP1WEX659/tkRfumxXWXvFDHpbZE4PxrWjI90
7wPPGrC85Abcsm3Yg4OTxSS8ceTYP/CE29YWavC1Ww3HxnzCferWVX7cFPfs
6CX5ZfDY+0ZuGrCOz+bN8bBxUVuPU5Nwz2aSujuwjc/ke6Ph44N5h79wRajo
cNZE3LOW8pKxn0XEY/fMTfqw8r24sSvh3sPlPHJNcM9OLjh+GJb7Ns3TBA4J
GKhQAb8MbN9WaIx7Nrt2c7c6fL6t00idCv8all5nCB9xK3p5ywj3rMPLwRNW
bi3XsIZXPBp3Mwl2vzktqMIQ9+xU+9incOIq7To7+GnQ9ePdv+B9aWvQiqoJ
uGf2EQqT4bZT45oWw9NGzwrcAEdsnxP3bjzumVTPL2lwftoDs5Xw5WfPHV7C
0nkZ3b6Owz3LSLzZo15EFBzqnnnDI0OX61vA1Wrb8psNcM8cRyUFwOcyvC5s
gg/p/lDIhPulXrrSpY97xuUEvoN/pM5+FArLvtr8pc9XEbGzNekQw+bZZIEV
nGnmNyF6LO7ZTr50K5w18G9IL/jSknv6F+G5YRVvD+rhno3bm/QZfqFSbzsI
Hi63UFHtGz7v/K0eJuvinr0buGUOLDutwWUUvP9y7Zcw+KTmE9E5HdyzPekL
8uCuq7+vjIOFFd6l3+E7qQ5br2rjnpmMNxj6Hd8/uxrtCRyg1JHkABfL3ph0
Swv37NN1xd3whfI742fBXwoithTBMetkyOMxuGf7ZtX/gtclejothBe591w4
sgF/Pr9FO2tG455NqSpdDP9QLytdAZf3OWYQB6sW5/b+Ogr37NvyE6Xw8i3l
vuvhSTdG9WiHp7aKPv0ZiXt28McWnR/4+axetnornOmVU+8Ky5e96hDBnywC
Fx6AZ3v4J+0egXumanarHK5cMcahJ7zgJz9OqlFENi9tUzukiXt2+96JcfBK
6ZrmwfCdxL093GGppmev04bjnvkuDEqEO6vePdeGja0GfX0Ez13S+f7SMNwz
9Q8L+Z8iMnn0sH8T4TO/02+ZwDM/OmiVaOCe3fMe5/3/rxvt9bCCVZPHn0yG
de89yXs0FPdsU0ePKtjXqv8ARzjKtjhIvgnfD4uX7X47BPds+I6vBC7KSFNY
Df/tmOXoB1d++JL0Qx337HHP2+nw0nMjLDfCXqerxtXAfS87t3cNxj3beuxk
z1/4vEnbdT0CfmO/Qmk6PH10+gFFuN+Y0VsD4chvedv2D8I9k278eg7eeygv
YBC863mO4wd4/evUkLSBuGeZgbf7NYtI8IotiTpwe6jZeBvY9aVJWa4a7tki
ITkYbm2o4abAa/TuK+XCnrNW2t1WxT3j922th3VOPLhgC796tfDboBYRaTzc
Z0jVANyzi4MW2cFZn41OLINtdn24vQNOGT9B/0t/3LOlZ8YXwA4GcpXr4cLx
65Ib4aiYnIj2frhnchOUh//Gz1ebvlUorPu+Y6sj3Dk4eJA8vOpK8bc98KCL
id0S+opJUvSORTfgfa4RbQPhqhU2d37DgTVGUqdUcM8m9pow5g/u4fPsvnrw
TOUXyUth/78/p+T1wT37fEw5Hh4s0xwwFc6/tmLbHXj5/twb5b1xz/aN/t4J
X1ljOHA+rOXRuGhsK96/DHx31vTCPSO5d9zggiQP0Wo4UWXLhMNw+op+cT97
4p59M0t5AGvoB+oEwoolQs9ubXj/zY99JYKnHbq/zRAemuNwJFpZTLZ57/u+
BhY9uuvRD75s6eiUBI8pqbc6qSQmjaqDyyphrymXJmrBI5s+TOjejufNtmGm
uT3ExOXOmRTT9v+/X0xsCXzo2LqeG2DTjqb1dxXF5LHvhO1p8LGz1qn2sKx1
5/dq2Gzt1C81CrhnQ2449ejA909Lpak7HPhnR5k5PLldKvmXPO7ZfRvDANhw
7M1+W+Hvyb1SM+Dzc9SOi+Hhm1/0fAcP7iFM2CcnJkvmHN/ep1NEpmiEvB4I
79d0a5gJy1nsTjgtKyYVnaMXb4VvjFRfYgALTxrLsuFPOycbFnYXE5Kea/gZ
Nlb7oD4TDti2JVX1L/76w4qqlWIxuTB/aq85cHlB/vCl8Jcx4uAw+JXJF1Iv
iMlQmQcNV+DS+/GefvCiqn2Lv8P7dApOS8H7shzvDunC+4SKc8tuHvcsbLCR
A7xqit+8vrDI6WNqJPzUVeb6SQ73bOzZXkVwu4nMZB3YT1gf/AvWCdlwL0+E
e/Z6wo8R//B582vOGkv408XOxYvh9TOODHjUDfcs8sbdWHizqW31YnjBsp1G
pXDEHo8zdTJiEjthdlobbNhcH+kL35Hv3VtHiiPe2g8CpWDp2hfBrvDcFuWg
KGncs7zjP/bDU8WXovvBG2LcnMvhuqHZ51OkcM/cxpT/g7VkZGv14NqJP43G
SXNk3PK84df+CUS15+W01bBHt8KAmbB93ZbeifCmpD6vnnYJJKpwasgjeFbr
NVtXuDRe3MjJcESx7NKThr8C+evxwNkE1nr0Z1UgPMEsvtwLtqsIkxfDXn0X
GSfDG0Ici+M7BXLq++BTz+HcdJ+IIfCbko+95btxJEb0yCmrQyD9Dp8NIXDG
PG+zifCcdesbfeG/drMM77QLZNc0wyXp8IU7bqbz4WK1v+WvYeP1eXbv2wTS
3nTDuKeIIxaKlpu9YYOynaemwTeX8Rc6WwWy5vjsPoHwl1Edf3bBKX69Q8/B
GmOG2PaFX1lXN9bCQzT9c1P+CKTP0KQl/TiOPH31R1sftml1uzcL9lJOySn6
LZCIB2NMgmGniAAbG7gw5eepHNi6a0NLdYtA/my+3Kce1pkUl7ka1p0bFDqI
54het0d+v5sFsnqE+c95cLGK3uwwOOmveOkOeLdJxoSe8IsnD+7lw0H65rpJ
vwSifCbepPH/v/5Gk6EObLV90elhAnzuypyCJoGEOKirOMKjCvdusoLztT6F
7oHfZG/NrvopkF8yGT+LYQW7zR0rYa0X65f+hvutCLVvaRSI2znD+6PFHEk7
e+BaKJwY/tdkKXz0x6UJPeFnTiWn98EDf1cVJf0QiKL+LpU7cGS4tKMuPF1s
G9YJh67QkilsEMi2mt5Net058tlxQf4s+Mql6qVu8FOt7WEvvwukMTLp/iE4
LSXF2QMe5bJy4gP4984b09q+CcTFUCtdRpYjiSeeT9kJH1ZoUjGEL+S+m9EX
flx7OWwNvCO2xiXtq0DkrgY1HYez/5RHjofNY82XVcLdck6V3KwXyJaV3R+I
5TiyM85b3h6+NKlioikc4zDErfaLQL73TEhfD5+8f/X+Bnj4l0V90/7/668b
T5OBlxSph1fDVm1HHsTVCWR/wqcmRXn8eU99s3IIXLEmY5k5fNpNuseFzwIR
T93wYCMcriN1m8Ckn9GkDPjaqhfRDz8JZFPD3/S3cOSryJXL4As3S/r2UeCI
68Kesxs/CqT+8K7wmXBH2lrL7fDQ9ba/gmDL+MOzlGCn6X1csuF13/YvT/og
kH0DXz74BH8JXBapB9/7lTRJVZEjDj1arl+vFYjo7soztnCSzzxhLmyapNUv
DK7z83d+914gfv5N4VfgmNolJevhrFlXfn2Dx0Z2N5aBPw3d6jKkB/77DH0L
974TyOA284r5cPerR+004AUV3U0j///1N9tbL74VSGxqxZlCuNfGQZkW8J3A
hH6/YBVbn/VP3whEep5TxAgljlydEGS5EjYZOaTZCTb/azzqT41ANnR9comF
9TecUtsJn63MqLgJW7iVDO4P157ZYNoG+6Tt1j/zWiBqwUZntZU50sJ12U+E
7Rd09XOFTez77bj3SiB7tG9G7IcbXaruOMOl3SKb78IyUpMG/HgpkK4Xtq7/
4IR/JHA7POF8n4cGPTkiq//xqzLsHfHSdDXctVrTM7ka92zxibNHYWt/mc5x
8Fv9Vf0fwZzWxiO3XuCeddfewfXiyJbFIVYL4blvmpqN4UnVQ7rXV+Ge5Vxx
9YIVAuyeB8I3dm99eBJuFPfJUYDbXSwmP4c1l604efw57pmRbIZcb3julONj
4TWKD/sTOPVc8tmSZ7hnHxJ2+MIJtjG358Ovrzq1nIYHc1K/Pj/FPYsbsvw1
fCbll/ZmePaqzw+V+3DkuczqAHk4wjRz8jQ4pHnR42OVAinq5ZOxGb45++7E
sfCfL0YDzsHfP128VPJEIHrXu3bUwpF7+5g6wKv332zpq8KRFSO+V9Y9FsgJ
z8jls+AtgUZbAuEXU+c82g4rubXoK8I9+6tMyYH3Xx3SlvQI9+zHy4wv8I15
+Q8M4NDSEwMG9eXINtH1i7ce4p4dWbVzHtySpn3aEW5er/07Ag5Tlsn4VoF7
NuPX8ny4THVi0TbYbVDeox/wocRn73rCic1bpwzrh6+P9+NeaQ9wz+5aZC6E
56/Wmm8MK56QVd0DK7m+T713H/ds48OdxXDTuCZuGbzdZv/vFrglz9Hv1z3c
M43FK0b3xz24q9IcAf9sG/J4CbxkyoiQAfCoh5+n7IOfNu0cnFUuENe0zMzb
cGyh8T0z+PAWH9VOOH2L4c6ndwXyZJ7xLr0BHFkvbLdzh+VG/fu9AvYzVtb5
WyYQi383VxyCA7/X9Y2DtzyNfHwfDu0SKQ+Hc87OITKqHCmdvrx/3h3cs2CV
rAlwTor0WBtYc+Er1TVwZ+PrBe9u457pnNx1HN4u/r3HDz4gWv3nCbz09vQn
3eGKam03sRq+H7s/GnHsFu7ZhV+PJ8ElGTG79WGyI4+sh09GBXfdKsU9c96W
lQpHR6Rsd4KzDSzVqv//6zf+Vm68iXvWXS5ScSBHLpn6ZYfBGm8f/pkK98gd
5Nofdsrd77YRzitsVM8qEUh81OInZ+GH4780TIXvuQ41ewtntHH3nt8QCGdc
l9V7EEde1llc8YRNe2SpzYQ13ydflIb9P/pEBsHRN9UL9xfjnuUbt16Arb3z
no+BP8f9c/sEVxSvkSq+jnu2uvTJgMH4fj8y3sgBXjh5t5ktLP+697avRbhn
veeeC4WvuwlPt8Nl9SoDr8DjVeRMVGDp4leR3+BfDwZmnS3EPTtwslVdnSOF
60zHmsEb1q5eOR+OfbWq5Nk13DNzncpd8NFfh1d4wrX9m80KYZsDlb1lYLXG
vHNNsGV6z8oDBQKZf2vbwBFD8PWRszupDe85arnbCc44vm9bSb5Abm2Qa4uB
/Wc8XuMId814tPImPLlOftWPqwIxHHygshUudDFbHw57tyyeqj2UI58OrI1U
hU+XDz3vAr9ZG5N9IQ/37ETdwP2wcDvly3S4f0DW7rtwS8RZ3ZoruGezfdu6
4E1xJ8J84chhJqsMNPDzfDesTha+0f6vchUcpWLndOKyQDoelk49Ct9zlH1t
CBuc2n3+Idxt0+m1D3IF4hk0dxA3DJ8XjmMU3OAUu75RxnCfN7H5HTm4Z6Ne
t62FFzU+C9gL95FKXnUSXr2hw2IUPPvZ6qfP4C6rzsHXLwlkR4aOudxwjigv
e959AVwU0nx+Cnz/QKRMw0WBtC68OsgXTqjqJRsO6+lujzoNS3dfr64Gu3PT
2l/B73okWV7Mxj17KbdaWZMjppXHNlnB1RcePbWE55iuKXh3Afds5wHzzXCs
fjfFTbD1EucLWXDqkRVeSnDoOI3BtfC6ZXtenzovkALZL1F9R+Dz0z3QaQrc
/Dar3RrOT9Sqe3ZOINqXfVdvh+U+Hwv1gt32mDy7BF/QfqjNw8eWS1l8gY8v
KvyUmIV7ZnzrwsCRHGlzWJU1Hu6hFDV4HqwqXxZ2PxP37NPcPRHwgeXv3N3g
7QV9O67C46dnOf/NwD3b+3r1D7g5SXtZAvxzdfIzjVG4l07O67Xh0VPcLRbC
lUsnxpWexT3ro5sdBf87VFrkDB/52jy4GHZqbutsOYN7Vnx1Twv8y/HZjGhY
/uD2jlGj8f2UuzBZE7bwmua+BFZo3ipflC6QIAv553vh8/+mhS2AcwY8trgN
P7qZJdt4WiANjQeyO+AdupeO74Q1bzur643hiJrWfPMh8NJEjegVcO9TMS15
p3DPfL50HISH7nHJnQc/nHnO/T48rvxO+Nc03DN1v+fSWnj/mV2yPAw2+21i
OQHuL7KdMxDedE/qogf84IW7dW4q7tnJW+rH4RnXlOfbwvUBUdFP4C1HLdbW
peCe2c7rFLQ5Eu8mFR8MLx7ez2MS/JM3LxsAx3e8fr4OHuYtq3ApWSD3HyVb
psKtUfZLbWDutPvFF7CH7eDrn04KZPJW3SGKOhw5m7padzvsb98SPRUetk0n
sz9Mezh4XbmX8cUTAuvh4KWbR1TOgmkPB/8OdAj6lCSwHk4X7y/X28Zth2kP
B08w6tHRH6Y9HNzwJL7i4nGB9XCwd9jObBuY9nBwiUld8udjAuvh9PD8W3ch
ORimPRzcZ2vtBVWY9nCwTsPmBzmJAuvh4Lmj/dtsYdrDwXuGPdGvPyqwHm4s
7ndFzOYwmPZwcILamYeDYNrDwRH/Bo/POyKwHg6u8vhxyg6mPRycNFdlVMNh
gfVw+hwZfmrvlZ0w7eHg2iWuDhow7eHgXZ6hMoWHBNbDwe0lvwoWwrSHg20c
L4T/OiiwHs4A90v96uJomPZw8G9F+amjYNrDwYH9UsffPCCwHg420w81XArT
Hg5eNjdlevt+gfVw4/D1XMOvTIBpDwcr+J3aqwfTHg6+tyL8fnmCwHo4eIbe
MZVVMO3hxnPk8P0fa2Vg2sPBigYBTxLjBdbDwRoLxk83hmkPB+/RG15WuU9g
PRw8NtfScR1Me7gJHBn5Jv6PHEx7OPjaSaWUU3sF1sPB3q25S8xh2sPBjc/D
R7yJE1gPBw8zDuzaDNMezhD//t4JtSow7eHgCS6PnmXHCqyHg1/206maDdMe
Di42SP9cHyOwHg6+e4ZwO2DawxnheXxjk54GTHs4uDyuwKMoWmA9HBzWfDTb
CaY9HPzhYJy4dY/Aejj4TsBBz3iY9nDGeN+IPlejB9MeDj7wpHLJ/SiB9XDw
RHP+uztMezi46rnZLh6mPRw8PSrcIHm3wHo4E3z+OVV8nQLTHg4WmQ3MfhUp
sB4OljFaG7EJpj0cPG7StdUqMO3hYK+Zco4Xdwmsh5vIkStO8xfMgWkPN/H/
55dDy7/vFFgPB+/b/jQoEqY9HKwdJaSNgGkPB3+O1n51c4fAerhJeL4Jt1R3
hWkPB7estdnwL0JgPRz8xsL88VGY9nBwP/FwYgLTHs4Un7c5jfnPwwXWw8F3
rFIs/WDaw8Erbpm+7gnTHg4+qJkfcj5MYD0c3OQ+YMJsmPZwk/H9F+P452uo
wHo4eEaC/61dMO3h4IWB3skjYNrDwTlkanRpiMB6OPjDh28Ry2Haw03B89Sq
tXukYdrDwTfvFJ84HiywHg72F9eVmMK0h4M7NWt+vdwusB4Ofjjs5NjNMO3h
CD5fZfSD+sG0h4OnF+9+lrtNYD0c/Mwl03Q+THs4OOpjfPavrQLr4eAXNmT8
Xpj2cGZ4PziaWaoH0x4O/v64enlFkMB6OHj3r9IeXjDt4WAPqbVl8jDt4eAf
Hfdjz24RWA83FZ+XdZ/crGDaw8EbynJmfAkUWA8H65wwMt4J0x4O7u6z1nAE
THs42HnqPPNbmwXWw5nj+aLnx8VuMO3h4OufNcJEMO3h4A2l8nnJmwTWw8Hv
ziV2TIVpDwc7nq20fh8gsB7OgiP2BefSg2Haw8FBn7X6DIFpDwefH2sVfX2j
wHo4uO0412cZTHs4ON7QOf2fv8B6OEv8ef2dbX0cpj0cnNRa1T4Zpj0cHKjd
drnGT2A93P8+mRmyFaY93DTcC+fmRYNg2sPBZW7lpNBXYD0cLF2sN24JTHs4
eKz/0PFdPgLr4eBpUcfMj8G0h5vOkcWyyUsnw7SHg6//0d5Vs0FgPRz83cn0
+laY9nDw3skVosEw7eHgnafeORStF1gPN4Mjr49tyF0K0x4OLtfariEF0x4O
LnIUH0taJ7AeDp6r013TDKY9HDz74vb8d94C6+FmcuTcT88lITDt4eDEpnJF
DZj2cPCGoiP3SrwE1sPBuS7VB1bAtIeDh9SGr+Ng2sNZ4fPG5qhD2lqB9XCw
8VlVq+kw7eHgqbyMdZ2nwHo4WNvdxnEXTHs4+GhNh+9omPZw1hxxWy93rHyN
wHo4eLfW5kpPmPZwMFGd1k8Rpj0c/HHGWvdzHgLr4WC54u+358C0h5vFEZ+Y
UoMmd4H1cLDs9aaMfTDt4eAfS3wMxsO0h4O9AyxvP1stsB4O5vqvWh0A0x7O
Bj8fNs9UBsC0h4PnDI17nL9KYD0c/Dkl4YgzTHs4eOH7d+v/rRRYDzcb7491
PvNPwLSHg/eXzJxmDtMeDr4a4mLx0U1gPRzsaZBnuwOmPRx8r3b26lEw7eFs
OTL6pHp0+QqB9XAwF6RVvBamPRwsF7pOWgmmPRysUlI/O3u5wHo4WH/WoXR7
mPZwc/B5p71Z+Y+rwHo4ONN/d8QhmPZwcHfDcvEkmPZw8PqthgdrXATWw8HP
Fj8YFwzTHm4ufv7f76nRgGkPB1sP9k24tUxgPRw8atg2R3eY9nDwMenM0fIw
7eHgiDsd4nNLBdbDzePIl13uzXNh2sPBXQ7N35qXCKyHg0eZHW46ANMe7v9f
d3TkJsK0h4MnX9QdXuMssB7ODvd4ieq8YJj2cPBXrwFRw2Daw8HFLaOf3F4s
sB4OruSsR6yBaQ8Hl18I2KkI0x7OHs//8tm/LzgJrIeD60e2rJ8P0x4OnjaA
tLcuElgPBzf+io05CtMeDvYr+ziWwLSHm8+RmKxJ72odBdbDwSMu70vcAdMe
Drb/U7dyDEx7ONgx1MS0YqHAejj4jHeEug9MezgHfD4+vKvUF6Y9HPwsn1PM
XyCwHg4OtBzfbylMezi4PWSBbjeY9nAL8M/b5WF3ykFgPRzcw9szzBqmPRxc
PcPpxo/5Auvh4Hqt8QrxMO3hYKuxrSuMYNrDLcT7pufJslf2Auvh4J7NYycG
w7SHg/3epOQNh2kPB6tbtlnctRNYDwfLTNJ+7QXTHs4R9+fl5JBeMO3hYAUT
rXFX5gmsh4P/eP9qWgzTHg4+HL+3UBqmPRx8p0g4kDZXYD3cIg6/z7lbrGHa
w8GNuzy9GucIrIeDvR0Xrk2AaQ8Hh8X23GQC0x4Orp1+KO6NrcB6OCf8PB+s
zw2DaQ8Hax0RfRkF0x4OXub+cUTFbIH1cLCX2m4fX5j2cPC3+7/K+8O0h1vM
kSMHBo4tshFYDwe77+OTV8C0h4N9XmYMkYVpDwdLRSpmnpslsB4O3pk3ynI+
THs4Z3x9wzq/tFsLrIeDjfjwI0kw7eFgLcdix2kw7eHg8wfPDftmJbAeDu73
1qYzDqY93BKO1FkdfmsI0x4Ovt+899HrmQLr4eDUtvEVoTDt4WB/v+AXo2Da
wy3lyMYwn8aKGQLr4WCxuWxvf5j2cPCV++YWajDt4eCpZoOCb0wXWA8HR189
cHc1THu4ZRzJcshS7wHTHg7+oL8sNGeawHo4ONHzbJMTTHs4eMOQaC8ZmPZw
8Ehv/s9pS4H1cC4cueTTM8oWpj0crG9zXvu3hcB6OPhH/5qXR2Haw8GurYf2
m8O0h4N1hffO9eYC6+Fc8X7qdmlsHEx7ONh8bI+eRjDt4eALkY1dNVMF1sPB
JbEOreEw7eHgDtcpXVow7eGW489rSLpSpZnAejj4Rn2cbiBMezhY7+2fRUNh
2sPBYUNe7C0jAuvhYLUKg+frYNrDrcCvd+dH9oNpDwev/2kTXjRFYD0cfPtU
9x8rYdrDwftsDN0UYdrDwT1FTz/nTBZYD+eG77dvb/2dYdrDwQ0jHXtyMO3h
4MTqiVczTAXWw8EnNXZ42cO0h4N7axrrdk4SWA+3EvdENKczGaY9HOz3tuyp
NUx7ONjrdUr+r4kC6+HgTwPfZB6BaQ+38v//+5J/hjlMe7hVHJnV4n75q4nA
ejj4xOPcB/tg2sPB07c7NU2EaQ8HvxniMPSDscB6uNUcMXyZsiQKpj0cPOOh
5alxMO3h/v/14Yadr4wE1sPB87v8ncNh2sPBg7Z3K9eGaQ/njvfPimqLZ4YC
6+HgbUodd7fCtIeDv6x2dR4B0x4OTvur2FkxQWA9HCzf3JUWANMezgPPX+v1
lgyBaQ8H80dPDLk7XmA9HDz00JyfG2Daw8G/oyfeV4VpDwdfTF6Wc3OcwHq4
Nfh5+HstfS1Mezg4uGTuGRWY9nDwA9UBl4sMBNbDwZu0+zxcDdMeDo4abNai
DNMezpMjpv2PaubrC6yHg7+ZDVuxAqY9HDyi+HmmAkx7ODi18FK3y2MF1sPB
M13z3JbBtIdbi+fXyton3WHaw8GrJ+nPvqgnsB4ODi05WbkYpj0c3G2vwSoe
pj0cfPLhe+68rsB6OC/8809nnXeEaQ8Hd5+asKobTHs4eMjt+NGZOgLr4eD2
ZWfbHGDaw8EjjJ9XSsG0h/PG72eTSsEZbYH1cPAp61Xn7GHaw8EdL25ndWkJ
rIeDU2ZPuHoapj3cOnweV55/NA+mPRz8KH58S+cYgfVw8Ln8G8NOwbSHg/f7
OCybC9MeDk783HCqY7TAerj1+O8xj+xIhWkPB8+8oOk0B6Y9HPzb+cat9lEC
6+HgZ75Ok1Nh2sPBz4c0FtvCtIfbgOfPuK1z20cKrIeDqxpE31Ng2sPBe1YF
x9vCtIeDn4xomt4+QmA9HOy9eL6QCtMezgc/L/rpj21h2sPBx599TW/XFFgP
Bx/wV92TCtMeDj43ZcKWOTDt4eCwpSYbO4YLrIfz5cjbbppb02Daw8GXFv2J
nQvTHg5W35txrnOYwHo4eG2VefUpmPZwsOLifCU7mPZwfhxJtla269IQWA8H
Nz81P5EO0x4O/j1qboc9THs4+K6/oYsUTHs4+PLX5sdnhwqsh/PnyLgrO+Ys
gGkPB7+Ra3ghA9MeDg5T0fTOGiKwHg5WEesoLYJpDwdfVhJd42Daw23E5/ey
NL8L6gLr4WD/kb1MnGHaw8HpB2fIdodpDwf3eW/x6dJggfVwcNZ4/sEymPZw
AXg/vxlZLA/THg7uef3h9SuDBNbDwYmOz8pXwLSHg5/eOPReCaY93Cb8/rX7
c9cGCqyHg5PK5xm4w7SHg2dUWKztA9MeDr7t8T27WE1gPRwc99BK5AXTHm4z
nrcNnFwGwLSHg8+Xqt29pSqwHg6+eXXPZB+Y9nDwCcuMwsEw7eHg2EP+VvcG
CKyHC8R9rK9/FwDTHg4+6SGED4dpDwdr2941eNxfYD0cfLh8bMNWmPZwsLj3
pEtjYNrDbeHI9cWfw6v6CayHg8dVj10eDtMeDhYV95+lD9MeDv5tmUje9BVY
Dwf/TbxKomDawwXh86TLe5YxTHs4+OuR/OWfVATWw8GRGUci9sG0h4Oz3RRz
CEx7OHjUX+Uf3/sIrIfbip+H0ynjjsC0h4Objt0MnwHTHg5O67PufUtvgfVw
sKd5qlUyTHs4+M0S18I5MO3htuF55ViqaVcvgfVwsNhk7Z2zMO3h4DurLi9x
hGkPB09fGiIlwLSHg38tuJd5qafAerjtHHHbtW+lK0x7ONhlzLPRSjDt4eAn
fnvbrykLrIf730m3nq6BaQ8HJ39YV9Afpj1cML4/NsVk3VaS9HBw7EH1DD8l
SQ8Hc5uH5mgoSXo4uNVhX9mjHpIeLoQj21ev/7Kth6SHg19+vtpbp4ekh4P9
Fb2sXylKejj4fZ9deyIVJT0c/MZQ9qWRoqSHC+WIQ9YPg88Kkh4OXnjR8GCC
gqSHg4cFvxUsFCQ9HDxkXl1Ik7ykh4PfLrPpfkJe0sOFcWRgncIRW3lJDwcX
Dh1p1CUn6eHgSuvDbzPkJD0cfOCYa7yTnKSHg70cttnJykl6uHA8P2U1DMyT
lfRwcF5t1q9VspIeDr6rV1ipIivp4WDNxwOKS7tLejhYJCq54ttd0sNF4OdZ
Jidfo7ukh4NbZX+UPRZLejh4jqN3bbBY0sPBmaPHiceKJT0cPKBgotFbQdLD
7cD7uVWYT4wg6eHgQb3lr04WJD0cfHT+I7kGXtLDwa2zHq9O5CU9HNzDSOHR
LF7Sw+3kyGf77RadnKSHg7PfjSo5y0l6OPiumtjGiZP0cHCuRf/3spykh4OH
HXQKuSqS9HC7OPJ9/n1tD5Gkh4NVrnl+6C+S9HDwPXmjtLJukh4OXhmm7bOp
m6SHi+TIquXW1qO6SXo4OPBLjM4LGUkPB290aFPbJSPp4WCn+nAVYxlJDwfP
+2ig+kVa0sPtxvvFDukxh6QlPRzcrPzdcqa0pIeDS282r2mTkvRw8O+3Konp
UpIeDg49NfeFo5Skh4vC54FjsrqslKSHgwOMZH2u/uNZDwefCQ976AHTHg6u
CFEyVoVpDwfnrs/IKO/iWQ+3B9//8Q5jtsC0h4OfaynkaMG0h4ODgx7MfP2X
Zz0cfO/OwS97YNrDwY5zPeInw7SHi8Z/n6OZ1Y9OnvVwcNxwNbkkmPZw8Jw/
rc/mwLSHgzf1fJYpDdMeDg6+eiEmu4NnPVwMvp8NIrcsh2kPB5cVOfv2hmkP
B99IGb2xtJ1nPRwsq/kjzB+mPRz8aUd64giY9nCx+HlQXFhc1cazHg62/Nf6
YxdMezhY41jkqIkw7eHgOXpyXt9aedbDwe/bA64lwrSHi8P7nPnjvrYw7eFg
99l9gqRg2sPBS1zJ9wt/eNbDwfk3565eDtMeDl6TP72hN0x7uL14/4hS33br
N896ONhwa/WAAJj2cHD7M5/iUTDt4WDH1/UbXrbwrIfbxxHlKlPdPTDt4WBB
cc3vyTDt4WDrW+vuNDbzrIeD+82wST0J0x4OfljdFWUP0x4uHs/rt0K38TDt
4eBVc6u3XPnFsx4OfnNTKtwDpj0cHLC65YAaTHu4+P9/vnJzHjTxrIdLwNfH
ZWrNdpj2cPCPaQeUDWDaw8FlWy/afvzJsx4O9pubcPAATHs4uFOY+G0mTHu4
/fj++nrSqrORZz0cHGNZfjELpj0cHLQ0e4QLTHs4WD7UIa0XTHs4uG97ju6t
Hzzr4Q7g+UixoiQApj0cXCWb5DoGpj0c3Nd4hHxNA896OPhtrev1WJj2cPCb
+XO3mcO0hzuI54UXjTN+f+dZDwdz+VMGpsO0h4MXWkzqdIJpDwebFH/4qAjT
Hg4eFWRYXfyNZz3cIbzvlei/8IVpDwd3vq18PwKmPRycra72p/orz3o4uE8F
rxIN0x4O3mS0b4oZTHu4w/j3pxf5NNfzrIf7316R2adg2sPBMyt/diyCaQ8H
DxvZbKsI0x7uCJ7PL8dkFX/hWQ8Hz39wo68fTHs4eF3+7t0jYdrDwTL36rq/
quNZDwc/t6naGwPTHu4ofl6jF2qaw7SHg+e8XnXz92ee9XDw0h2itWdg2sPB
O15qqS+BaQ8Hu49881oZpj1cIu5VQf+00k886+HglM/VAZtg2sPBPVrVHbRh
2sPB803rTd995FkPB3/kx+slwLSHO4af55R/WjNh2sPBoW4zxv39wLMeDp5+
WGHaBZj2cPCNvTaubjDt4WCT4/yu/jDt4Y7jfigZXr1fy7MeDpaZ8LolGKY9
HHzO5c/ECTDt4WClD6FR9e951sPBkxSDPx+DaQ+XhJ+Xsd9n2cG0h4NHHL9V
IMC0h4M/n5YzLHjHsx4O9k+6mr8Opj0cXPj8kdVwmPZwJ/D8kmT74cVbnvVw
8G8b/Z3RMO3h4OixARPMYdrDwbrHBv/484ZnPRy8/5NmdgZMe7iTHDnrHLXN
BaY9HBzsMHuBCkx7ONhu2Brj8hqe9XDwrgHvhm+HaQ8HZ0dlqY2HaQ+XzJHd
Dx4NrH/Nsx4ObjWYOeo4THs4uLtyryn2MO3h/v/1PO2l3WHaw6VwZHTogV2F
r3jWw8HaxbMLfWDaw8F5d+b+HQnTHg7Objg2reYlz3o4WHPnuMP7YNrDpXJk
Vr1S6wyY9nBwhIf+sq5qnvVwsMuSA48vwrSHg+NVJ9u6w7SHg6Vbhz0bBNMe
Lg3PDzOtVlW+4FkPB79emSETCdMeDq5NnXl6Ckx7OHi2s/rCliqe9XBwZa1O
z7Mw7eFO4fs71ufZMpj2cPCLvG8pKjDt4eCEyweD7j3nWQ8H1731WxYC0x4O
dtoTYmME0x7uNN7Xel+zaHjGsx4OPvxAY1oKTHs42LpXztxFMO3h4HoT71VK
MO3h4MeJc3bcesqzHi6dI3viF1zYAtMeDi7fGPJRH6Y9HOyRVKHxpZJnPRy8
fpWp53GY9nBwT827hfNh2sOdwfv2eF9VeZj2cHDBD+OQG0941sPBfzP7/wqA
aQ8Hz7ir7KUL0x4OTj6m/uvjY571cGc5MjncIuQoTHs42L8qUNUOpj0cXNF0
s7A7THs4uENnkOf1Rzzr4TLw9fgcrrERpj0c7BLQ/kEbpj0c/Gji5vMfHvKs
h4O37+kWcQSmPRzcdCfebR5Me7hMfD7N1LLtDtMeDlbwvDP1egXPejg4Yfcq
shGmPRx8QiSeoQPTHg7ebXDa8eMDnvVwWfh+8J3mdxSmPRw8cfi7w3Yw24fD
++4J/7uyMNuH48j9aZzoxn1esg/HEYMNu6dvgtk+HD4vg4UEPZjtw3Gk6+HG
b5/v8ZJ9OI4cLKq2OQ6zfTiOFJ/RyXOA2T4cR7Y2rtdRhNk+HP7+hpOZpeW8
ZB+OI8dE1ycEwWwfDj8PMbfLxsFsHw6f/z8ur/x2l5fsw+HrGxKjkAKzfTh8
vp2aVegEs304jly89j2gF8z24Tjybth60/IyXrIPh+etSU/lQmG2D4fPl+X9
PpjAbB8O/70dRrea7vCSfTiOTHUdn30GZvtw+P20yZ12hdk+HO7zkPxTA2C2
D8eRW8ZmFx7f5iX7cPh6phy9GQmzfTh8fa6Xv5sKs304joz7eU/ccYuX7MPh
83L/MeOLMNuHw9dXeYrvGpjtw3HE+2bGFQ2Y7cPh/VzpE/+qlJfsw+H+Lfyy
JB5m+3Acaey8dH0WzPbhOKLjMl2Lg9k+HD7vPh87ce0mL9mHw+//Z566P8z2
4fD9Xbs/XQdm+3AcaRs0btLnEl6yD4d7IcRWHYfZPhzet6TSty6E2T4cR/55
Bukow2wfDvf3vFxd2Q1esg/HERvdeWdDYLYPx5FLs2wDJsJsHw7vI57Sts3F
vGQfDr/f5pW6mTDbh8O9mL61/0qY7cPh877MUmEwzPbh8Pt5ly9bdZ2X7MNx
5GpTjXIczPbh8PtxzRxqBbN9OPx87R9u2g1m+3Acafhl6VJQxEv24Tii9VY+
xg9m+3B4/i4OuKUDs304vD937hDqCnnJPhx+vlqN5p2A2T4c7qdqZNoimO3D
4Xnk3iZRb5jtw3GkaB3vef8aL9mHw/Oit87rCJjtw+H5XK9xAYHZPhxHnvW3
etVWwEv24fB5uM/E4yLM9uE48qHbdem1MNuHw+/vSdVJTZjtw3Gkv0eozdt8
XrIPh3uvWyh9GGb7cPg82r2jyA5m+3B4Pvv0OkIBZvtweP5KL1pw+yov2Yfj
SM3EMfrBMNuHw/O4MFhlIsz24Thi5XeoW0seL9mHw/Pv94PtWTDbh8Pz00vV
jtUw24fjyJNUdU4DZvtw+HpfSe33+gov2YfD80tg+vgDMNuH48iURaMXz4XZ
Phw+zws1o+Rgtg+H99GeiaWll3nJPhy+X4p2i7fDbB8Ozzv6P+1NYLYPh69X
ZfmZ5lxesg+He6I8QPYczPbh8DxqX73BHWb7cLivYrmPGjDbh8Pz+6Ezy2py
eMk+HO7/+ssfD8JsHw7vg126vnYw24fjyNiMnvKKMNuH48idj86Zdy7xkn04
jgzop7QwFGb7cHi+PDdCfjLM9uFw7/snl7Ve5CX7cPh6F2+PvQizfTiOvOpT
tMwLZvtwuPehi01GwWwfDn/+GxcM/JDNS/bh8Pm0JKv7cZjtw3Fk7eml/xxh
tg/HkVPF7l29YbYPh8+DfuX8wwu8ZB+OI1tUQ/rthtk+HEeuGe0xmAazfTj8
fNXUL5CG2T4c3l+3HAovOM9L9uFwD4MPFGyE2T4cnsecajv1YbYPx5HczYHT
Gs7xkn04jtjOXnIoHWb7cPjnW0a2rIDZPhxHFj36u0gdZvtweP9YdrnsZRYv
2YfD5+3yHLMDMNuHw/OA1e8b82C2D8eRzIgAG0WY7cPh+3OHybuyTF6yD4ef
hyKTreEw24fDz3fixmFmMNuHw/P7vh9POjN4yT4cnl96nYi6ArN9OI4MiYmc
7QuzfTh8Xvqf6a8Hs304jnia/vv+9Swv2YfjiJf9jvJTMNuH48h4HbPs5TDb
h8P7iemYk4Nhtg+H3/8v8yMvz/CSfTjc75u7Eg/AbB8O939ox2k7mO3D4f0k
eP+1HjDbh8M/327Ry/J0XrIPh89LeUuZnTDbh+OIz+D5+hYw24fD+7L0rjVS
MNuHw/P4sDeZBad5yT4cns+65rcFwGwfjiN8t28242G2D8eRuWnHz/48xUv2
4TgyyNm7ZxbM9uHw+znqGOIBs304vG9ULe7QhNk+HEeMd2wMqk3jJftwHNk7
8LQ4CWb7cPh8Vv5+dDHM9uHwefTcwqQ/zPbhODL8U+bbp6m8ZB+OI3EXNWP3
wmwfDs+jOZkzbGG2D4evp6uZrDzM9uFwn8e+rbyTwkv24fD+dXDn6XCY7cPh
fbKHcfhUmO3DceSMXKPHv2Resg/Hkc1chmMBzPbhOCLvu2buJpjtw3Hk+wOt
eRNgtg+H54s9DU6/TvKSfTiO5Iw853UeZvtwuG9910auhdk+HH7/jzXPjYbZ
Phz+fB5Xv/p8gpfsw+F5KmZHr1SY7cPhXoaMsXOF2T4cPj+Glx4ZDLN9ODyf
/Jj3/VUSL9mHw/ON05Pph2G2D4fPh3cWZxfAbB8O9/Fvat8+MNuH48hpzZao
x8d5yT4cRw5V6cnFwmwfDu/PexbstYHZPhxHVheuGioHs304jgz7vDT/zjFe
sg+HP+/gyc4RMNuHw/txdxmxBcz24TgS3nY6Xxpm+3AcCbs3NqAokZfsw+Hn
seuwaRDM9uE48q17rdxEmO3DcSR1jbi29Sgv2YfjiOHx7iW5MNuHw/OG+sez
vjDbh+OIr+ehRH2Y7cNx5HnXsIONR3jJPhxHQuwjjmTBbB8Oz5/1+ac8YbYP
xxFF05sFo2G2D4d7czexuu4wL9mHw/1SnC59Cmb7cBwZurNQzw1m+3AcWX5J
xl0DZvtw+LxR7nnm3SFesg+H91m1r7+Ow2wfDs/z9lHTlsBsHw4/70bNJ9Rg
tg+H51/LIfzLg7xkH44jZ9uVfQ7BbB8Oz6/Pb9YtgNk+HEfeLDJapQKzfTjc
w25rGioP8JJ9OI6ozHPaug9m+3AcEUqFvvNgtg+H+//K64oSzPbh8HnbL8a1
Yj8v2YfjiFHbyj7RMNuHw+d1V/PDWTDbh8N9OWOYIAezfTiO2AVqu95N4CX7
cHgf/lVpuAtm+3D4fN6npTIDZvtwHIl5rf+Xh9k+HEduzv30rTSel+zDcWTk
BsuPYTDbh8P75fXZn8xhtg+He1so1SgDs304/Lw3OMrc2MdL9uE48vXxwoHB
MNuHw+fP9w5CYLYPx5GWYrO1//bykn04jox5PPJkIcz24Tiy5sS5N0Ew24fD
53125XBTmO3DceTprv2+nXG8ZB8O33/pv8rzYbYPh6///voxgTDbh+PIlyeb
4k1gtg+HP8+Px7n2WF6yD4fP3zlO2/Jgtg+H59WDZ6Q3wWwfDp/3U6OijGC2
D8cRyyddg1tjeMk+HEfmV0gVXIbZPhxH5Apil22E2T4c3m8GZSoYwmwfDj+/
W+xLfkfzkn043Dun8OBcmO3D4b/HbPIMf5jtw3Hk8qWgvhNgtg/HkXSTqT9a
9vCSfTiOyC6KrMiB2T4cR1Ycsr/iB7N9OI6s23Y8fTzM9uE40mufe3JLFC/Z
h+OIq9OF1ByY7cPhfXap33k/mO3DcWTCiEsl42G2D4fnOWPPNy27eck+HEcG
Dz7aLRdm+3C4l0un6vnDbB8O73Mhzm4TYLYPx5GlSt9O/o7kJftweD7f+60u
F2b7cPjvi3U23AizfTg8P8WbRhvCbB8On2+au7//2cVL9uE48rrCYv4VmO3D
cWTVAPfSAJjtw3EkOOa3qTHM9uHwPnnla2HbTl6yD4fnP/XpM67CbB+OI6Vz
hOrNMNuHw/1+Mtp3Isz24fA+YHBepXMHL9mHw73tSCgugNk+HD7fc6t9g2C2
D8cRv4YtepNhtg+H7yfdwOauCF6yD4fnOa7yehHM9uHw/d4enrAdZvtwHOl2
NGaDGcz24fD3+/5YIAOzfTh8viunWJaE85J9ONyXv2cnhsFsH44jDrc4E0uY
7cNxxLT1HOFhtg+H+6uebns7jJfsw+Hn9e6PlTthtg+H5/PwkIiZMNuHw+d3
zdIsWZjtw3Fko0tETXkoL9mHw9cvsVllD8z24fB+o56+YDbM9uE4MjngZFIP
mO3DcUTK4M3PhyG8ZB8O729vnK33wmwfDvdbbmCmHcz24f7//2dV7dsHZvtw
/3/9Fux6FsxL9uHwfj2iottBmO3DcWRDfXCEI8z24fB+3rZWWRVm+3D4fv4Q
l/JqOy/Zh8Pnz8RvU47BbB8O/77owNqlMNuHw/OK5+SYITDbh8Pnz2oD89pt
vGQfDu9TSo7/UmC2D4f36z+ZJSthtg/HkT0ZerEjYbYPh7//xpsV9Vt5yT4c
Pt/K8swyYLYPh+ddu2uaXjDbh+NIeVNdLz2Y7cNxJM1oYvemIF6yD4d7dDmb
vwSzfTj8fErPlveH2T4cRzadlhtgBLN9OHw+kXrd9i28ZB8O71uL6mwKYLYP
h+fP3SLfrTDbh8Pnt5vpSQKzfTg83wXGVcnAbB8O98j1n0ppIC/Zh+NIYEa4
8w6Y7cNx5ErD0IyZMNuH48jLgqcy8jDbh+OI1tmjLg8285J9OI5ozPa/Ewuz
fTj8fJu4GNrBbB+OI/dEi7P6wGwfjiMLp7ppV23iJftweP7fGXjpMMz24fDv
W5No7gyzfTi8L4SUVQ+G2T4cfr5cuza9D+Al+3AcyTphMiQVZvtw+Lx4uuXh
Kpjtw+H3l1CyYzTM9uE4st5fYfr3jbxkH44jM5UcFc/DbB/u/+e1lNcbYLYP
xxGdsh+XxsNsHw7vmypG8a3+vGQfDs/fAVsC82G2D4f3yx35Hlthtg/HEb2X
v1zMYLYPh/d92WEuIpjtw+H575zV6tt+vGQfDs87y1ZujITZPhxHgnL9om1g
tg+H90GrjZlKMNuHw9cz173yiS8v2YfDvy/OutsBmO3D4XnPT9VkEcz24fA+
1/k8YCDM9uE4Elu0reitDy/Zh8PP30JlxRSY7cNxpNJl94pVMNuH48gAv283
RsNsHw7PW1oGoxo28JJ9OPw8aCw5cAFm+3B4/2heo+AHs304/PuNnXYbwWwf
Dp830aOVO9fzkn04PC9FVx0rgtk+HEeKKpePC4XZPhxHpv29+2gazPbh8Hmd
LL9RFmb7cBwZtWLEsAfreMk+HN4Hq/u/iIPZPhy+PsnvE+bDbB8O923x9kX9
YbYPx5HuST81X3vzkn04fD/Kj+9Igtk+HN5vpsx8vgJm+3B4H3yqlT8SZvtw
HDHwrEn75sVL9uE4YnZi8eHzMNuHw/tdz7QEX5jtw3FEd0neQSOY7cNxxHFo
QnLnWl6yD4ef37+Guddhtg+Hvz466WEYzPbh8M/3ud80A2b7cBzJsL6mpgCz
fTh8PuZ6zX7kyUv24fD8Yfd2RwLM9uFwT4uVyhxhtg/HkU9JXcqDYLYPh8+D
uNOu79fwkn04PO/oK+SnwWwfjiMHh49RXQOzfTh8XspKh+rCbB8O79/Be5p+
efCSfTh8fmhVuF+B2T4c7sHZm3VbYLYPh69Hkqe3Gcz24fC8f7b0LwezfTjc
d+8H++6685J9ONzr6PCxMTDbh+PI9vQvz+xgtg+HnzfXttB+MNuHw/uK80Wj
16v/a+qsw7LK2rdt7P3sbWHM2D12YGAgKrpEEAQVFURRsVGxFRtbsbu7u5PX
7sYccwzGFrsD87tmr/v6Hd/7zxzn6wQ8sffaa133ebnED4fXq3KWT8vA2g+H
69HifHvag7UfDr9v8cujSoC1Hw7fr5GFm7zt4BI/HF7nwLzldoG1Hw7vc6G9
mQeCtR8O35O4T7+rgbUfDp/TZZfepQRrPxx+7/G1X5xu7xI/nEu9ztzy5SSw
9sO5VFBi+k8NwdoPh+v46qZmNrD2w2Hd8sE7991Il/jh8Ne+u6suB2s/nEs9
unK6bQew9sNhXbe16/SSYO2Hc6lq21edftfOJX44l9oypLvrf2Dth3Opo/vO
BA0Caz8crlvpd8ytAdZ+OJcKyFf8lQus/XC4bs90r32urUv8cC61NtP+jdPA
2g/nUodqXM3aGKz9cPhen+49PhdY++Fc6ny9hcaDNi7xw7lUs5jao9eAtR/O
pb58Gpi+K1j74fA9b196qQdY++Fcak7vyEpfW7vED4fnltM5bx4Aaz+cS6VN
02DoSLD2w+E56lHKUrXB2g+H7/UPj0duYO2Hc6llP+8su9rKJX44/B5TknWY
D9Z+OHwvIhaWawXWfjiXquK2xSoM1n44vL51PR++aOkSPxze52PlTm4Daz8c
nrtzrdjaD6z9cPheJhu13Bus/XAudSnHtQUpwdoP51K5s8xaeKaFS/xw+H0W
HV05Baz9cPjeNG2+sxFY++Hw+UhqFZ8TrP1w+PkKX3x2P8IlfjiXqjxhVfq1
YO2Hw+f86oOq3cDaD4fXZ3Nsz/Jg7YfDOv34xE3fmrvED4fP8dHPbw+DtR/O
pZqEHa0yBqz9cC51rsTrSXXB2g/nUvfe9H/6B1j74bDuDW4dcKuZS/xwLuX7
ddXWpWDth/svt+CXrwNY++HwPb1VbY47WPvh8Dp2m5r5Y1OX+OHwe6f0WrAX
rP1wuI77eRYdDtZ+OHwOHo7b799U8nBga1LpJm5NJQ8Hvvum8Per4ZKHA5fZ
123VgnDJw6XDOmyx2bhNuOThwL/8n6cvFi55OHBAx5yX3jSRPBx42+Y5c+Ka
SB4OnCM+ov3gJpKHc8PP2bVLVd8mkocDd6h1NHuaJpKHAydztfh1ubHk4cBm
RLXncxtLHg4c+KP13ZaNJQ+XHp+DmaduFG4seTjwnRtd/3kVJnk48LG+IQ92
hkkeDlygQL/3MWGShwMfnXwjVc0wycNlcKm5naOLpg6TPBz4Qufa9S43kjwc
+ECNJjFzG0keDvx2yeItLRtJHg6czyvni8KNJA+XEf+ew+fcX4dKHg7cJHFb
v12hkocDn2p35vSgUMnDgc1nGfP7hkoeDny46PhhaUIlD5cJv++NMk//DpE8
HLjxeqPR/BDJw4FHhhpnW4dIHg58dnypWsVCJA/3B36f5CPOvG0oeThwm24/
Q3Y3lDwceGzsksdDG0oeDtznR/sh/g0lDweeOLZhnvQNJQ/3J65H/7Y6cb2B
5OHAR+OmRi9uIHk48KLj94q2byB5OHDuQ8GP3RtIHg48v/mdtZ/qSx4uM74f
IbHRB+pLHg78qGltv9j6kocDNypWJE/d+pKHA7v1zf3rz/qShwM3+1r88Z1g
ycNlcak9HepdWRkseTjwzZjRp7sESx4OPPvl5ePlgyUPBzZ6lT79o57k4cCt
jy/6+3g9ycNlxfdhYc5HE+tJHg78ZNuaH6H1JA8HHnlQ5cpdT/Jw4J8DH/s8
rit5OPC4pTN7bKorebhsLjU5sc6qPnUlDwdekTbdfe+6kocDTz15pYCrruTh
wPUuLel6oY7k4cDWo+4HZ9eRPFx2l8qy3ydLyzqShwPbf2TtU6SO5OHAc1e8
uPUmSPJw4Liih/x3B0keDjw0Yuq+YUGSh8uB69PPiIq1gyQPB449Vnh3xiDJ
w4E/dn6mbgVKHg7cZ/vKS8sDJQ+XE9//kMYdOgdKHg5cLHUys3yg5OHAWWcu
WvejtuThwBM2lWp0orbk4cAt/thuTa4tebhc+P9HFD4SVlvycOBeu8cPz1tb
8nDgJr3uBiQGSB4O/LRr7qzbAiQPB37esfbLAQGSh8uN9zd/q9M+AZKHAw9s
1GpDmgDJw4FnHQuYddVf8nBgv+LZRi/ylzwcOCjg/OD2/pKHy+NSC+60H1Ta
X/Jw4KarHw7/WkvycOC77XwmH6kleTjw+hvDl42vJXk4cMzBpftCakkeLq9L
Vfpn0Z1ctSQPB/7+tJ/xxE/ycOD0G9zLbfGTPBz43YMDHfv7SR4OXK9+kVU1
/CQPlw8/586Oian9JA8HLnxxmMdVX8nDgd+36TZyka/k4cC3ypS53d5X8nDg
Ed+Oe5XxlTxcftxfhpdYklRT8nDgmWPbpDlWU/Jw4CqXOw6ZWFPycOAceby/
NqopeThwfNmE/nlrSh7uL1ynLgYme+YjeTjw993DJ2/3kTwceMX24QUG+Uge
DtxlaO1Dfj6ShwM/fnCjdXofycMVwOdmaYk0/9SQPBw41+Ca+5bXkDwc+FWV
PL261JA8HHjOsr2lK9aQPFxBl1rcK+vH30rycOC90eUOnVGShwNfiko3bYaS
PBz4e/aVURFK8nDgkbU/BxRRkocrhOvZgRSl31WXPBw4vurpnPuqSx4OnHmi
X/rY6pKHA1/uOSBVcHXJw4Gr72yTOnt1ycMVxn8/e7JMD6tJHg5cJKp+vk3V
JA8HzhbVsEK/apKHA6+9ZzSoUU3ycGC3Oe2j01STPFwRl9oa0nfhNW/Jw4GL
JnicW+IteTiw+jU/RSdvycOBP8Zsql7eW/Jw4B55o0b+qip5uKJYJ247d/50
VcnDgaOSrueZUVXycOCKR0b3jagqeThw58u3rhapKnk4cMkPl73eV5E8XDG8
Xm86rdpfRfJw4EtTV2YdU0XycMX+ux8PntqgiuThwJmffkyfq4rk4cBNyqSa
/aSy5OGK43pfa89f2ypLHg48833KuJjKkocD/y9ZYnCtypKHA9ep0u5thsqS
hwO36dpvzm0vycOVwPesTT6/1V6ShwMHPI5I6uEleThwmaOldlbxkjwc+OTx
aX1cXpKHK4n3bU+s9+VKkocD1+mcKu3CSpKHA99Zk/N++0qShwO3qLJvf9lK
kocDL37/ZPEPT8nDueN6P3/RmFOekocDxyRL6DvdU/Jw4DXvVneJ8JQ8HHhz
lS8di3pKHg7cYOP5zh8qSh6uFO7LGYv1OVhR8nDgHl527LiKkocDd3wftSC0
ouThwB9S192dt6Lk4cDnG2y9/byC5OFKu1TCrOlmXAXJw4F9V7+vMLyC5OHA
QQ0vdqlTQfJw4F5RRdZnrSB5OHDUvqRXD8pLHq4MPm/Z/CptLi95OPCgYHvc
gPKShwO/Ketzz7e85OHACVPeeWcoL3k48DuvzMtvl5M8XFmX+p1sY9o15SQP
B84Yt3Nwr3KShwO3LV7qk3c5ycOBW5bOGp2qnOThwCtmd/ty1UPycPjrr7Ll
Riz1kDzc//dX/v/8+/jP8d/Dfy//O/zv8ufgz8Wfkz83fw/+Xvw9+XvzdeDr
wteJrxtfR76ufJ35uvN94PvC94nvG99Hvq98n/m+83PAzwU/J/zc8HPEzxU/
Z/zc8XPIzyU/p/zc8nPMzzU/5/zc83vA7wW/J/ze8HvE7xW/Z/ze8XvI7yW/
p/ze8nvM7zW/5/ze8zrA6wKvE7xu8DrC6wqvM7zu8DrE6xKvU7xu8TrG6xqv
c7zu8TrI6yKvk7xu8jrK6yqvs7zu8jrM6zKv07xu8zrO6zqv87zu8z7A+wLv
E7xv8D7C+wrvM7zv8D7E+xLvU7xv8T7G+xrvc7zv8T7I+yLvk7xv8j7K+yrv
s7zv8j7M+zLv07xv8z7O+zrv87zvcx3AdQHXCVw3cB3BdQXXGVx3cB3CdQnX
KVy3cB3DdQ3XOVz3cB3EdRHXSVw3cR3FdRXXWVx3cR3GdRnXaVy3cR3HdR3X
eVz3cR3IdSHXiVw3ch3JdSXXmVx3ch3KdSnXqVy3ch3LdS3XuVz3ch3MdTHX
yVw3cx3NdTXX2Vx3cx3OdTnX6Vy3cx3PdT3X+Vz38zmAzwV8TuBzA58j+FzB
5ww+d/A5hM8lfE7hcwufY/hcw+ccPvfwOYjPRXxO4nMTn6P4XMXnLD538TmM
z2V8TuNzG5/j+FzH5zw+9/E5kM+FfE7kcyOfI/lcyedMPnfyOZTPpXxO5XMr
n2P5XMvnXD738jmYz8V8TuZzM5+j+VzN52w+d/M5nM/lfE7nczuf4/lcz+d8
PvdzH4D7Atwn4L4B9xG4r8B9Bu47cB+C+xLcp+C+BfcxuK/BfQ7ue3AfhPsi
3Cfhvgn3Ubivwn0W7rtwH4b7Mtyn4b4N93G4r8N9Hu77cB+I+0LcJ+K+EfeR
uK/EfSbuO3EfivtS3KfivhX3sbivxX0u7ntxH4z7Ytwn474Z99G4r8Z9Nu67
cR+O+3Lcp+O+HffxuK/HfT7u+3EfkPuC3CfkviH3EbmvyH1G7jtyH5L7ktyn
5L4l9zG5r8l9Tu57ch+U+6LcJ+W+KfdRua/KfVbuu3Iflvuy3Kflvi33cbmv
y31e7vtyH5j7wtwn5r4x95G5r8x9Zu47cx+a+9Lcp+a+Nfexua/NfW7ue3Mf
nPvi3Cfnvjn30bmvzn127rtzH5778tyn57499/G5r899fu778xyA5wI8J+C5
Ac8ReK7AcwaeO/AcgucSPKfguQXPMXiuwXMOnnvwHITnIjwn4bkJz1F4rsJz
Fp678ByG5zI8p+G5Dc9xeK7Dcx6e+/AciOdCPCfiuRHPkXiuxHMmnjvxHIrn
Ujyn4rkVz7F4rsVzLp578RyM52I8J+O5Gc/ReK7Gczaeu/EcjudyPKfjuR3P
8Xiux3M+nvvxHJDngjwn5LkhzxF5rshzRp478hyS55I8p+S5Jc8xea7Jc06e
e/IclOeiPCfluSnPUXmuynNWnrvyHJbnsjyn5bktz3F5rstzXp778hyY58I8
J+a5Mc+Rea7Mc2aeO/McmufSPKfmuTXPsXmuzXNunnvzHJzn4jwn57k5z9F5
rs5zdp678xye5/I8p+e5Pc/xea7Pc36e+zMHwFwAcwLMDTBHwFwBcwbMHTCH
wFwCcwrMLTDHwFwDcw7MPTAHwVwEcxLMTTBHwVwFcxbMXTCHwVwGcxrMbTDH
wVwHcx7MfTAHwlwIcyLMjTBHwlwJcybMnTCHwlwKcyrMrTDHwlwLcy7MvTAH
w1wMczLMzTBHw1wNczbM3TCHw1wOczrM7TDHw1wPcz7M/TAHxFwQc0LMDTFH
xFwRc0bMHTGHxFwSc0rMLTHHxFwTc07MPTEHxVwUc1LMTTFHxVwVc1bMXTGH
xVwWc1rMbTHHxVwXc17MfTEHxlwYc2LMjTFHxlwZc2bMnTGHxlwac2rMrTHH
xlwbc27MvTEHx1wcc3LMzTFHx1wdc3bM3TGHx1wec3rM7THHx1wfc37M/TEH
yFwgc4LMDTJHyFwhc4bMHTKHyFwic4rMLTLHyFwjc47MPTIHyVwkc5LMTTJH
yVwlc5bMXTKHyVwmc5rMbTLHyVwnc57MfTIHylwoc6LMjTJHylwpc6bMnTKH
ylwqc6rMrTLHylwrc67MvTIHy1wsc7LMzTJHy1wtc7bM3TKHy1wuc7rM7TLH
y1wvc77M/TIHzFwwc8LMDTNHzFwxc8bMHTOHzFwyc8rMLTPHzFwzc87MPTMH
zVw0c9LMTTNHzVw1c9bMXTOHzVw2c9rMbTPHzVw3c97MfTMHzlw4c+LMjTNH
zlw5c+bMnTOHzlw6c+rMrTPHzlw7c+7MvTMHz1w8c/LMzTNHz1w9c/bM3TOH
z1w+c/rM7TPHz1w/c/7M/XMOgHMBnBPg3ADnCDhXwDkDzh1wDoFzCZxT4NwC
5xg418A5B849cA6CcxGck+DcBOcoOFfBOQvOXXAOg3MZnNPg3AbnODjXwTkP
zn1wDoRzIZwT4dwI50g4V8I5E86dcA6FcymcU+HcCudYONfCORfOvXAOhnMx
nJPh3AznaDhXwzkbzt1wDodzOZzT4dwO53g418M5H879cA6Ic0GcE+LcEOeI
OFfEOSPOHXEOiXNJnFPi3BLnmDjXxDknzj1xDopzUZyT4twU56g4V8U5K85d
cQ6Lc1mc0+LcFue4ONfFOS/OfXEOjHNhnBPj3BjnyDhXxjkzzp1xDo1zaZxT
49wa59g418Y5N869cQ6Oc3Gck+PcHOfoOFfHOTvO3XEOj3N5nNPj3B7n+DjX
xzk/zv1xDpBzgZwT5Nwg5wg5V8g5Q84dcg6Rc4mcU+TcIucYOdfIOUfOPXIO
knORnJPk3CTnKDlXyTlLzl1yDpNzmZzT5Nwm5zg518k5T859cg6Uc6GcE+Xc
KOdIOVfKOVPOnXIOlXOpnFPl3CrnWDnXyjlXzr1yDpZzsZyT5dws52g5V8s5
W87dcg6Xc7mc0+XcLud4OdfLOV/O/XIOmHPBnBPm3DDniDlXzDljzh1zDplz
yZxT5twy55g518w5Z849cw6ac9Gck+bcNOeoOVfNOWvOXXMOm3PZnNPm3Dbn
uDnXzTlvzn1zDpxz4ZwT59w458g5V845c86dcw6dc+mcU+fcOufYOdfOOXfO
vXMOnnPxnJPn3Dzn6DlXzzl7zt1zDp9z+ZzT59w+5/g51885f8790wNALwA9
AfQG0CNArwA9A/QO0ENALwE9BfQW0GNArwE9B/Qe0INALwI9CfQm0KNArwI9
C/Qu0MNALwM9DfQ20ONArwM9D/Q+0ANBLwQ9EfRG0CNBrwQ9E/RO0ENBLwU9
FfRW0GNBrwU9F/Re0INBLwY9GfRm0KNBrwY9G/Ru0MNBLwc9HfR20ONBrwc9
H/R+0ANCLwg9IfSG0CNCrwg9I/SO0ENCLwk9JfSW0GNCrwk9J/Se0INCLwo9
KfSm0KNCrwo9K/Su0MNCLws9LfS20ONCrws9L/S+0ANDLww9MfTG0CNDrww9
M/TO0ENDLw09NfTW0GNDrw09N/Te0INDLw49OfTm0KNDrw49O/Tu0MNDLw89
PfT20ONDrw89P/T+0ANELxA9QfQG0SNErxA9Q/QO0UNELxE9RfQW0WNErxE9
R/Qe0YNELxI9SfQm0aNErxI9S/Qu0cNELxM9TfQ20eNErxM9T/Q+0QNFLxQ9
UfRG0SNFrxQ9U/RO0UNFLxU9VfRW0WNFrxU9V/Re0YNFLxY9WfRm0aNFrxY9
W/Ru0cNFLxc9XfR20eNFrxc9X/R+0QNGLxg9YfSG0SNGrxg9Y/SO0UNGLxk9
ZfSW0WNGrxk9Z/Se0YNGLxo9afSm0aNGrxo9a/Su0cNGLxs9bfS20eNGrxs9
b/S+0QNHLxw9cfTG0SNHrxw9c/TO0UNHLx09dfTW0WNHrx09d/Te0YNHLx49
efTm0aNHrx49e/Tu0cNHLx89ffT20eNHrx89f/T+0QNILyA9gfQG0iNIryA9
g/QO0kNILyE9hfQW0mNIryE9h/Qe0oNILyI9ifQm0qNIryI9i/Qu0sNILyM9
jfQ20uNIryM9j/Q+0gNJLyQ9kfRG0iNJryQ9k/RO0kNJLyU9lfRW0mNJryU9
l/Re0oNJLyY9mfRm0qNJryY9m/Ru0sNJLyc9nfR20uNJryc9n/R+0gNKLyg9
ofSG0iNKryg9o/SO0kNKLyk9pfSW0mNKryk9p/Se0oNKLyo9qfSm0qNKryo9
q/Su0sNKLys9rfS20uNKrys9r/S+0gNLLyw9sfTG0iNLryw9s/TO0kNLLy09
tfTW0mNLry09t/Te0oNLLy49ufTm0qNLry49u/Tu0sNLLy89vfT20uNLry89
v/T+0gNMLzA9wfQG0yNMrzA9w/QO00NMLzE9xfQW02NMrzE9x/Qe04NMLzI9
yfQm06NMrzI9y/Qu08NMLzM9zfQ20+NMrzM9z/Q+0wNNLzQ90fRG0yNNrzQ9
0/RO00NNLzU91fRW02NNrzU91/Re04NNLzY92fRm06NNrzY92/Ru08NNLzc9
3fR20+NNrzc93/R+0wNOLzg94fSG0yNOrzg94/SO00NOLzk95fSW/5/HXLzm
9JzTe04POr3o9KTTm06POr3q9KzTu04PO73s9LTT206PO73u9LzT+04PPL3w
9MTTG0+PPL3y9MzTO08PPb309NTTW0+PPb329NzTe08PPr349OTTm0+PPr36
9OzTu08PP7389PTT20+PP73+9PzT+88eAPYCsCeAvQHsEWCvAHsG2DvAHgL2
ErCngL0F7DFgrwF7Dth7wB4E9iKwJ4G9CexRYK8CexbYu8AeBvYysKeBvQ3s
cWCvA3se2PvAHgj2QrAngr0R7JFgrwR7Jtg7wR4K9lKwp4K9FeyxYK8Fey7Y
e8EeDPZisCeDvRns0WCvBns22LvBHg72crCng70d7PFgrwd7Ptj7wR4Q9oKw
J4S9IewRYa8Ie0bYO8IeEvaSsKeEvSXsMWGvCXtO2HvCHhT2orAnhb0p7FFh
rwp7Vti7wh4W9rKwp4W9LexxYa8Le17Y+8IeGPbCsCeGvTHskWGvDHtm2DvD
Hhr20rCnhr017LFhrw17bth7wx4c9uKwJ4e9OezRYa8Oe3bYu8MeHvbysKeH
vT3s8WGvD3t+2PvDHiD2ArEniL1B7BFirxB7htg7xB4i9hKxp4i9RewxYq8R
e47Ye8QeJPYisSeJvUnsUWKvEnuW2LvEHib2MrGnib1N7HFirxN7ntj7xB4o
9kKxJ4q9UeyRYq8Ue6bYO8UeKvZSsaeKvVXssWKvFXuu2HvFHiz2YrEni71Z
7NFirxZ7tti7xR4u9nKxp4u9XezxYq8Xe77Y+8UeMPaCsSeMvWHsEWOv2P/1
jEnvGHvI2EvGnjL2lrHHjL1m7Dlj7xl70NiLxp409qaxR429auxZY+8ae9jY
y8aeNva2sceNvW7seWPvG3vg2AvHnjj2xrFHjr1y7Jlj7xx76NhLx5469tax
x469duy5Y+8de/DYi8eePPbmsUePvXrs2WPvHnv42MvHnj729rHHj71+7Plj
7x97ANkLyJ5A9gayR5C9guwZZO8gewjZS8ieQvYWsseQvYbsOWTvIXsQ2YvI
nkT2JrJHkb2K7Flk7yJ7GNnLyJ5G9jayx5G9jux5ZO8jeyDZC8meSPZGskeS
vZLsmWTvJHso2UvJnkr2VrLHkr2W7Llk7yV7MNmLyZ5M9mayR5O9muzZZO8m
ezjZy8meTvZ2sseTvZ7s+WTvJ3tA2QvKnlD2hrJHlL2i7Bll7yh7SNlLyp5S
9payx5S9puw5Ze8pe1DZi8qeVPamskeVvarsWWXvKntY2cvKnlb2trLHlb2u
7Hll7yt7YNkLy55Y9sayR5a9suyZZe8se2jZS8ueWvbWsseWvbbsuWXvLXtw
2YvLnlz25rJHl7267Nll7y57eNnLy55e9vayx5e9vuz5Ze8ve4DZC8yeYPYG
s0eYvcLsGWbvMHuI2UvMnmL2FrPHmL3G7Dlm7zF7kNmLzJ5k9iazR5m9yuxZ
Zu8ye5jZy8yeZvY2s8eZvc7seWbvM3ug2QvNnmj2RrNHmr3S7Jlm7zR7qNlL
zZ5q9lazx5q91uy5Zu81e7DZi82ebPZms0ebvdrs2WbvNnu42cvNnm72drPH
m73e7Plm7zd7wNkLzp5w9oazR5y94uwZZ+84e8jZS86ecvaWs8ecvebsOWfv
OXvQ2YvOnnT2prNHnb3q7Fln7zp72NnLzp529razx5297ux5Z+87e+DZC8+e
ePbGs0eevfLsmWfvPHvo2UvPnnr21rPHnr327Lln772ThwMXitxZdhrYycOB
S1sPIp6DnTxca1O1+Tpvdk1fS+fhwG+yJ9xeCHbycGCPulvdP4OdPBx4Z3Sm
icF+ls7DgYt2d31ZC3bycK1M1Sv/5G4palk6Dwde1GXD+2ZgJw8HfuTRauQu
sJOHA28O25wvvb+l83DgyXvnnO0IdvJwLU3lUyPP8KNgJw8H3n2+pm+uAEvn
4cB2zdR/9gU7eThwv1HRby+CnTwcuG+f4f8Uq23pPFwLXE+SKlwcCXbycODz
H6dfvgt28nDgxMD59zwDLZ2HA2e7V/fHNLCTh4vA/XvuloIvwU4eDlwy/Eh4
rSBL5+HAlVyxC5aCnTwceP2oH8++gZ08HHjsnmJ+jepYOg/X3FTJxrtt2gJ2
8nDg6Nsb86eua+k8HDhqhmtFO7CThwMvmJO77CGwk4cDvzz/IT57PUvn4Zrh
+5RrQnRvsJOHA7eKelzkItjJw4FLLjCeFQu2dB4O3GXu87hRYCcPB37oP2/a
v2AnD9cUn9+pmQZUrm/pPBy4e3iTrrPATh4O/HZcl25vwU4eDjw8VYNBQQ0s
nYcDnz5kzVkNdvJw4Vhfzpx+MHlDS+fhwF+6f3jfHOzk4cDpKpcsvxvs5OHA
XrerjfgjxNJ5OHCKqu53u4GdPFwTrD/8knzPgp08HLjPvyv3FAq1dB4OnOlj
2SrDwU4eDlyhy/Izd8BOHg4cWPZru0qNLJ2Ha2yq5yUrpJsJdvJw4FsBzY6+
ATt5OHD67l1GBYVZOg8HXj+uU8gasJOHA38b0bh0ysaWzsOF4fndr0K2lmAn
Dwe+vs902wd28nDgR5fOZsjaxNJ5OPD67qPzRYOdPFwjU4WPrOx9Eezk4cCh
XxLblwi3dB4OXOR/MxaNATt5OPCUzVXvPwQ7eThwnzOPy6qmls7DheL9+jB1
ykKwk4cD18qhvn0FO3k48POin3o2ambpPBx4UNrtn7eBnTwcOH5b/7FuzS2d
hwvB860ZVKQz2MnDgY98Kn7lFNjJw4FfdMsxsWCEpfNw4H9a5Gw4HOzk4cDV
dpQulAB28nANTfUrPNys0sLSeThwsRrz388BO3m4//487OPLj2AnDwd+Ni7q
Y4OWls7DgUef/m5vATt5uAamWpx8U/G0rSydhwMXKzg0PArs5OHAQXl7zzoJ
dvJw4PAHkxIKtLZ0Hg58vfmF8sPBTh6uPq7/QzznJoCdPBw4lWe8XbWNpfNw
4E19J4yeB3bycOA57gMzfgE7eTiwR51560LbWjoPF4z157Hn9baDnTwcOM3I
HskztLN0Hg5sDi55pCvYycOBiy/PNzke7OThwOce1utYLNLSebh6+D6X2xM8
Buzk4cB7R7T2fQx28nDg2cdq16rZ3tJ5OHDaxOhGy8BOHg7c5MH9nr/BTh6u
rqmerpy1IKKDpfNw4Pp/Tft7H9jJw4Ej6l7PkqOjpfNwYDN7h479wU4erg6u
F/39Tl0HO3k48JsW0eUqRFk6DwdOffj9xhlgJw8Hjp5yotx7sJOHA6c58upU
/U6WzsMFmepxQNeoLWAnDwdWOWtlc+ts6TwceELJgVe7gJ08HDiyZ5rF8WAn
DwdemPC9d/Euls7DBeL5Nqpu+Diwk4cD+7hSBCWCnTwc2GtDzkD/rpbOw4Hn
110Ythrs5OHA+R/G9jC7WToPV9tUca1vzWkHdvJw4F6HFpw7BnbycOBF7+Pd
CnS3dB4OvOVdlxYjwE4eDlxvx7B998FOHi7AVA1KpSpco4el83DgQ+H24qVg
Jw8Hji85rECynpbOw4HvLu4V1xLs5OHAY9fcDzsEdvJw/qaaXu2ikbeXpfNw
4FfNvA8PATt5OPDhL+7jEsBOHg7cPPWKltWiLZ2HA9eauLjmYrCTh6tlqrJ9
/6rwC+zk4cDJj5Qp36K3pfNw4DOR8eog2MnDgeMjPjbN08fSeThwzPJNI4aA
nTycH9g96X8JYCcPB1769ea3an0tnYcDv/pZL2gJ2MnDgWd6Rqz7DXbycL6m
SlpiZm7Vz9J5OPDWsoGTD4OdPBx48NOSmfP3t3QeDhy6f8u64WAnDwcO33A1
6AHYycPVNNX9LYu++wywdB4O3OtE2j0rwE4eDnz4aYFRxkBL5+HA2zI9bh4J
dvJw4AifhjVPgp08nA+uF9FdPYvEWDoPBy61rJLXWLCThwP3OrMr4BnYycOB
tyY+iQwcZOk8HPjN9/NTN4CdPFwNU3VK1vVM2sGWzsOBJ3w4kb4b2MnDgV/9
favtRbCThwO3WLjpRJkhls7Dgf+pqypMBzt5OIXnpcczt38AO3k48PXWm7wb
DbV0Hg7sf2TC9Tiwk4cDL0nhMTjbMEvn4cCXCi4vOxDs5OGqm+pH4YQPt8FO
Hg7c10485j3c0nk48PHTR5YtATt5OPDCDl0nJR9h6Twc+NGjl6Pbgp08XDVT
7VI+k0+AnTwcuElM9xVFRlo6DwcOmNX35Diwk4cDl50S/uUF2MnDgd9H5ahY
b5Sl83DepppbeN+IrWAnDwdud9L7bqZYS+fhwKcDV/r1ATt5OHDHXW/33QA7
eThwNruQqjza0nm4qnhe8q3590Kwk4cDf+pat9dvsJOHAx+P9cvXZoyl83Dg
p5Pd7xwHO3m4KrgeTbRWFxlr6TwceMawa4PHg508HDio+7y2r8BOHg68u1mj
xvXHWToPB+5WO034DrCTh6tsqvJVD3TMMt7SeThwikpdRw8AO3k4sFEj9/Y7
YCcPB57d7OKL6hMsnYcD+0+MLbcC7OThvEx180aNca6Jls7DgavUdL2KAjt5
OPCcK1dbnAc7eThwzclbEspMsnQeDny6/9wuM8FOHq4S3t+50+yvYCcPBx71
ceH2ZpMtnYcDx0/b3+kQ2MnDgVP3e1+mwBRL5+HAZ9crcwzYycN5Yv1Rbt3T
52AnDwe+na3UzXpTLZ2HA1dsffn6drCThwMX+HPWwyzTLJ2HAxf0ivk1EOzk
4SpivXQjtsi/YCcPB+7+Na5FzemWzsOBDyzPsHIN2MnDgYv+O/NLmhmWzsOB
y8b5hfcAO3m4CqaaVKbQmatgJw8HLtC4gr/XTEvn4cBu5fpfWQR28nDg+eff
dE0xy9J5OHBAmcVZOoCdPFx53P/bxZ6PBzt5OHC6Pmuml5lt6TwcuGBnV/tZ
YCcPB27VYKX/N7CThytnqhoeIz1bzrF0Hg4ck21VheNgJw8H/uyW1qfYXEvn
4cDn8u1tPhns5OHAdcO3xX4AO3k4D6x/j33Y32SepfNw4HFdRqY4CHbycOCH
LdqEFZhviR8Oz6drpu8eC9Z+OFzvG2Qp9hqs/XD4vHV6syZkgSV+OKzvfuet
sAes/XCmmpVr/aU8Cy3xw5mq8MUpA0eBtR8Or3fBKx7PwdoPh/tp8b5JwYss
8cPh+vt64IVdYO2HM1XmIQ+35VxsiR8O68XEbSuGg7UfDs/flRNXPAVrPxw+
D6PGbq+7xBI/nKleX5l5cQdY++HweauU/nv2pZb44fD9PJxUfhhY++Hw+saE
DX4C1n44U7UcWORqnWWW+OFM1SO+m9cOsPbD4f0cWmpT9uWW+OFMtWFVx9LD
wNoPh/tBcN7DT8DaD2eqrxNDW9ZdYYkfDv9899TpdoK1H85U71w1z+RYaYkf
DvfTyGQzh4O1Hw7r/4W+XRPB2g+Hz9+BjI2CV1nihzPVhX+iguLA2g9nquxG
cP3cqy3xw+HnqXes7Siw9sPhehR/OvYFWPvhTPXXpNZxDddY4ocz1Z9rpnza
A9Z+OFPlKtmoZv61lvjhTDWm9M4lY8HaD/ff/tLm1G/B2g+H++XvWqMar7PE
D4fvw8chaQ+BtR/OVFZckxWF11vihzPVh/DrAZPB2g9nqmYfk358Ams/nKl+
zztxKGKDJX44PO+0rDLtBFj74bDebRbR032jJX44U31c6t5qFlj74f6bZ90c
8ROs/XC4Pra9HxW5yRI/nKlypj0z6jxY++GwfgnrsLnCZkv8cLi/Nj34ZBFY
++GwvnC/5O7aYokfDuvjp4tHdgNrP5yp9i0qmXgdrP1wWG9ExTSrvtUSPxw+
T60m3V0D1n44U61a0K5bhm2W+OFMNdUjpdsAsPbDYb3v3Xn/fbD2w5nK++ri
AYHbLfHDYX2UfqnfDrD2w2H9l6pnvlw7LPHD4ft584/UsWDthzPV+TnjU7wG
az+cqTK2upGq8U5L/HB4vgv8kfcwWPvhcL/t9d232C5L/HCmavr2ev/pYO2H
w/f136n7voO1H85Uf4SXSBcZZ4kfzlQpB6ztegGs/XC4foWnvuv5P0v8cFjv
ZAlptgys/XC4/50dlZh6tyV+OFMNmLZsVG+w9sPhfj56Q+kEsPbD4fN0auUz
/z2W+OFw/+86Zfs2sPbDmerJnK7jc+61xA9nqoOta/SMBWs/HJ5/E9N2eAPW
fjisjwL+7hy+zxI/nKk2Lpkx9BhY++FwfUgTstx9vyV+OFP5rct0dQ5Y++Fw
PZ5z9c8UByzxw2E99WF+uy5g7YfD+3unw7HrYO2Hw8/Tw7tsjYOW+OHwfbiQ
e/MGsPbD4fObJU3lLIcs8cNhvRtpXRsG1n44PD/e/XPoC7D2w2F9s6BCpbDD
lvjhTHXxSOdkR8DaD/ff+mXPjRJHLPHDmWry8XwHZ4O1Hw7X7wcrdiQ/aokf
DvfvRN/dXcDaD4fXI8k8dwOs/XBYb1Z49trnmCV+OFPtOfg232aw9sOZKn1c
njbZj1vihzPVTu8+20eBtR8O1/N+nzO+BWs/HH6e0SuHNTthiR/OVMsnDv91
Eqz9cPj7N06Z4HHSEj8c1gepLhdZDNZ+OLw/p/yvpDpliR/OVMPsz5P6gLUf
Duvht3cb3wdrPxzWsyuTl6172hI/nKlO+LfNvges/XCmGvnLyFjojCV+ONyf
XyVmnQbWfjhT9fHKWOonWPvhTNXTGhYSddYSP5yp1g3yHHsNrP1weP8Pep2r
EW+JH85U196PzbsZrP1weD6oXmREjnOW+OFMFXg2y8fRYO2Hw+d/T3ifD2Dt
h8N6uvx7s9V5S/xwpsrQ5sGqc2DthzNVo44lG3ldsMQPh+tl97//WA3WfjhT
zVt0/X6mi5b44fC8mLPKoaFg7YfDejBjio0vwdoPh//+ave14Zcs8cOZaqhx
eMdJsPbDmepow30Xyl22xA+H7/Pe/ElLwdoPh58v8pOH29+W+OFwf4upNCgG
rP1wWP8XeXU1Eaz9cKYaPz2zd9gVS/xweJ56smPnMbD2w+HzXu9slbJXLfHD
mWrEx6Z/LwZrP5ypbqTo2D/tNUv8cKZav/KD+0Cw9sOZKq+Z7MNTsPbD4XoZ
POVUo+uW+OFwfd6yYsMxsPbD4fvRoPqSsjcs8cOBW7VbvgSs/XD4PNqZd6W7
aYkfDve//iE3YsDaD2eqqrfyp3oO1n44/P7NRwQ2+ccSPxzen5L9FpwEaz8c
vq99U/wof8sSPxyuzx0Ld1kB1n44rMc9Hr/IeNsSPxx+/t8qZhhY++HwvJGs
ao43YO2Hw8/X+ubpiDuW+OFMVTk025hzYO2Hw/tr/gqtctcSP5ypoldP8FgP
1n44U/lGHsubPcESP5ypPHqtyTUWrP1weN746VXsC1j74Uy1t+Jgv/b/WuKH
M1WW4Oie18DaD4f7Rb88m3zvWeKHM9Xaf4d93QHWfjjcP/cuDClw3xI/HP7c
s/fB6WDth8P6fnwqrxQPLPHDmWrKwxbHeoK1H85UiX36RtwHaz8c1rfRDa0G
Dy3xw5kqLP2nw4fB2g9nqmcxrcaXeWSJHw7365ez2y4Faz8crvcz59fJ8NgS
P5ypvq/u6jcMrP1wpmrTJFO9t2Dth8Pn98749q2eWOKHw/NKh38mXwJrP5yp
YkslO6WeWuKHw+8XmTz9NrD2w2H96/Nv+/yJkocDByYtuDAtUfJwaUw19rBX
rRTPJA8HXn5+7/lezyQPB54Slj/y4TPJw/3390/rnjb0ueThwCl3rTl2/Lnk
4VKbavuX+PEVXkgeDjxmakLr1S8kDwfeFnc/IOtLycOBFy27UX3sS8nDgT+P
PVor6aXk4VKZavXKlRGdXkkeDnyt5LBRt19JHg78NLzxvjqvJQ8HHtmuZIqD
ryUPZ+P1i00eXvqN5OHAuT/fPLT0jeThwAvf7KyY6a3k4cCrN8w5MPKt5OHA
2dqNDP30VvJwFr6PIQO/t38neTjwv9uHbL/5TvJw4GIHpw8IfC95OPCRLbvr
738vebj/+Oh7z1IfJA/nMtVgj5qll36QPBx4QuWNFTN9lDwc+EiWMvVGfZQ8
HLhMyst9Pn+UPBy4VNVpmzp+kjycie/7r16fbn2SPBy42ej+det+ljwcuFvG
lbsOfZY8HPjanS/uHl8kDwfOX7hv3Movkocz8HxbIn9w1q+ShwM/K/b9y7iv
kocDH2/l2vbjq+ThwL5ufgO7J0keDuzVc0/IgyTJw6XE+3860rvRN8nDgX+G
1PE8/U3ycOCNDbvXqPJd8nDgKcblZpu/Sx4OHLcuenT+H5KHS2GqXiPCj8z8
IXk4cMjFUWntn5KHA5e8/KVDzE/Jw4Hdzuy88vqn5OHAdb4eCG7zS/JwybFe
XJr5zrVfkocDd0p5sH/t35KHA5dvu6fQgd+ShwOXTJH6YZlktvjhcL34a/vW
lWDthzOVj71zcrbktvjh8Pz6KePgiWDth8Pzp/uFmGQpbPHDmcrz4/PxvcHa
D2eo0ZM6rU8Eaz+coQZ6B99qntIWP5yhegYsyHEZrP1whkr3oX5nP8MWP5yh
So3odW4PWPvhDPWtcopqpUxb/HCGutYmxeHlYO2HM1SH6n0aZnXZ4ocz1Jws
EZ8mgLUfzlAzSu1fm8yyxQ9nqBPnZ3bpA9Z+OEPdqfxMPQdrP5yh4vfvK9TS
tsUPZ6ij891yXgVrP5yhvHI9ylc7lS1+OEM9GVvN8yBY++Hw9xfN16Jcalv8
cIZK4zth1lqw9sMZqnqBEXdzp7HFD2eovOmtijPA2g9nqK31cy2x09rihzOU
Z9nj2YaAtR/OUNW+JVvxAaz9cIaa/umqd1Q6W/xwhqrR1edZAlj74Qy1eEPQ
qlA3W/xwhvL+/r7nWbD2wxnq6+rKwSq9LX44QyUmFfSOA2s/nKG6Vd9ZpWQG
W/xwhipx7HngcrD2wxnKuHy2U7aMtvjhDPXXrrAFk8HaD2eo9/um3jEy2eKH
M1QBj5hSMWDthzPUunbZpr0Daz+cofYv7WR0/MMWP5yhbpTrPTYBrP1whtrd
2TN3oz9t8cMZqu3suKPxYO2Hw+uZ4mN/n8y2+OEM1ffnu+p7wNoPh/fvxvas
ZbLY4oczVExCpWRrwNoPh89Lm9FJubPa4oczVJ4di1LOAms/nKF+5B2eJ202
W/xwhgpJ8ggcCdZ+OENNnLJr9Dew9sMZKqxcmqs9s9vihzPUygoVPZ6BtR/O
UJufVlrWKoctfjhDvZ2fOf9NsPbD4fuw7MK24Jy2+OEM1aVO+5BTYO2Hw/v3
OsGsnssWP5yh2tyufCYOrP1whhrebtCiUrlt8cPh+3d31YjVYO2Hw+dn3p7+
efLY4ocz1PiXe4bOBms/nKH8i6+b45bXFj/cf5+XcYdHg7UfzlBZ/xfx7RdY
++EM1XJLEb9++Wzxwxnq6qNnS9+AtR/OUIc2rk7XMb8tfjhDbWreasI9sPbD
Gap3YPYc4X/Z4oczVOlzV/ZcBms/HD7/laZ3Cixgix/OULUfh5U8BtZ+OPx5
8YK/qxS0xQ9nqAYtfjzYCdZ+OLx/N+/fcC9kix/OUMneX7+7Gqz9cIZqnzzh
Y97CtvjhcP1qmZRrHlj74fD7tCsRlqmILX44Q9Xr1HfpBLD2wxkq7Zk7342i
tvjhDNXvVquOQ8DaD2con6/Gky9g7YfD53dQfO+exWzxwxkq55G4P1+AtR/O
UG/ynTnRrrgtfjhDbflsjE0Aaz+coXos6tKsSQlb/HCGmtIjhfobrP1whtoW
f7pCnZK2+OEMdST10aonwdoPZ6hP496GKndb/HCGOr0qbMhesPbDGerX3s+7
y5eyxQ9nqOWFrxhbwNoPZ6jUtV63LlbaFj+coS71Dby0Aqz9cIb6J8vz4Dxl
bPHD4f0YdfHeXLD2w+Hzn/vniD/K2uKHw+ehRp+Kk8HaD4fvV3Dl77aHLX44
vB6r6l0eCdZ+OENlW7Vz9y+w9sPh9dnYbduAcrb44Qx1K9fQfR/B2g+H+01Y
4vXu5W3xwxkq+Z6NKV+AtR/OUPtWX6jRvoItfjjcz4bVn3YfrP1whkpaU/59
84q2+OEM9XHI4HY3wdoPZ6hFHdwTQzxt8cMZKup4rcEXwdoPZ6iMX+MLBFWy
xQ9nqAWRh26fBGs/HK4XPQqs8vGyxQ9nqNsx34YeBGs/HO4nL2t1qVzZFj+c
of4slKZTHFj74QzVaULtAR5VbPHDGeriSGP+ZrD2wxmqbnS1c8Wr2uKHw/Xw
UFL6NWDthzNU2fOVIgt42+KHw/U05a/4JWDthzNUxVNBvrmq2eKHw+dnaMEL
c8HaD2eowjPHR2WubosfDj9/p2FZpoO1H85QvTrb19yULX44Q83+WXDVBLD2
wxmq8ribo+0atvjh8Hr2LTQwFqz9cIYKLOU2NIWPLX44XH+yz5o1FKz9cLi/
LN1/4AdY++Hw/pcc82VATVv8cPh5i37x+QLWfjh8P3+5Le3ta4sfzlAbs152
ew/Wfji8Hv9Wn9LdzxY/nKGeHYrI/wqs/XCGsgu5n+hUyxY/HN6fgVsHJoK1
Hw6fp+LPa7T3t8UPh+v5ijs5HoG1Hw7rkeDxZpsAW/xwuN4t+pT8Hlj74QwV
+TVfhha1bfHD4ftywa3MHbD2w+H1mXSkddNAW/xwhsq0osqqm2Dth8P7O3jo
t7AgW/xwhpowfkrra2DthzPUea9ut0Lq2OKHwz//LXfk32DthzPUnsrLkjeo
a4sfzlDdO3/bchGs/XD4fX6U6FGvni1+OENVjajkcx6s/XCGcv+dv3CdYFv8
cIZ62PBFzniw9sPhfnlmdoHA+rb44Qy16mph7zNg7YfD/ebxoo4BDWzxwxlq
Yfdfq06BtR8Of/4w8FOthrb44Qx1YFds2Emw9sMZ6nXjbWf8Qmzxw+F65H2p
3gmw9sMZKtftR499Q23xwxlqxYp3k4+DtR/OUKvTJNX2bWSLHw7XlzE/sxwH
az8c1gsTk3+uGWaLH85Q/adYT4+BtR/OUH+bmZ7XbGyLHw7358gCv4+BtR8O
n/eC1Qr7NrHFD4fXe3e7lsfB2g+H6/m8eet9w23xw+HPvf+1ToC1H85Qsbkq
9fNraosfzlCTN63+egKs/XC43nd0n1irmS1+OEM1Pnmh7Cmw9sPh+1lt0jP/
5rb44fD9Deq84zRY++Fwf2rXeUrtCFv8cLjeG1MHnwVrP5yhHq24PTiohS1+
OPz5wfpTz4G1Hw5/fu7dzrotbfHDYf0YdOTFBbD2w2G9ueNI+fqtbPHD4f4/
4tOUy2Dth8Pr6dHyZ8PWtvjhDPWqevLBV8HaD4frU5EEt7A2tvjh8H61+7r9
Blj74XB/7NMwKrytLX44rB+vvy57G6z9cPh5XZfSRrSzxQ9nKL/hX5MSwNoP
h+eJk52SWkXa4ocz1NDQYmkegrUfDve7dRVLR7a3xQ9nqPV+syKfgrUfzlAj
1vhvjupgix8On7fg+qlegrUfDu/v/m19u3W0xQ+H9UGPbp/fgrUfDve752PH
RkfZ4ofD/XdTSvfPYO2Hw+/jdf9h/062+OEMdS9DwU3fwdoPh/XErgtjh3S2
xQ+H9fXah32Td7HFD4f7U7fIfqPA2g9nqBzjwsZbXW3xwxkq+6A9W8aDtR/O
UCnipz5N180WPxyuX0kJZaeBtR8O35+Jqyf/2d0WPxyun/bzn3PA2g+H+9u7
DUNz9rDFD4f70fnXfywBaz8cfr/8u/b+1dMWP5yhKvRO3ns1WPvhDFUl6Hr1
4r1s8cPh++NeMc9msPbDYf21rEB6j2hb/HCG+td9WaY4sPbDGcqj2bailXvb
4ofD89/WsAYHwdoPh+eZ/82Y6NPHFj+coYp87nTrJFj74Qz1x5eEykF9bfHD
4fri837TRbD2w+H63XZNudB+tvjh8HrcT3buJlj74fB6ByTvF9HfFj+cob7k
31D+AVj74QyVOSmZ2WGALX44Q91vYia+AGs/nKEunNt7t8dAW/xweL3uFXjy
Caz9cPi+5KuZPCbGFj8cnkez5SydbJAtfjhD1Qrb3D0WrP1w+Dy2/3009WBb
/HCGiruWodhUsPbD4fnL4/GyzENs8cNhvZJmqPsCsPbD4X7++l58vqG2+OHw
feyUbvBqsPbDGepgOqtGyWG2+OGw/u94Ket2sPbD4X6aukvySsNt8cPh+jTq
zs8DYO2HM9SgyILpfEfY4oczVL7qtUqfBWs/nKFaL/dtV3+kLX44Q+3I99fG
62DthzPUg6D7rohRtvjhDOUWN6r3Q7D2w+F6/s7tU1SsLX44Q82cNmLsW7D2
w+H1L/qgVL/Rtvjh8P4HlUn8CdZ+OEP9nNB956gxtvjhDHVq6PIZacba4ofD
8+/e+NjpYO2HM1STv1+Nzz7OFj8crrfN0qxYCtZ+ONwfnxe+UGS8LX44PH9n
rZl2C1j74fD80rdNRMUJtvjh8P1cOubIAbD2wxlqQ7Fdlfwm2uKHw/Vj/auj
58DaD2eoAfvKtQqdZIsfDt+vD+My3AFrP5yhOj5/f6XtZFv8cIba6tVz/Quw
9sNhvTzQmhk9xRY/HJ7ffXdP/Q7Wfjh8n8uNXjpyqi1+OFyv/40+lmaaLX44
XJ8ejUyaAdZ+OENdu7PbJ9d0W/xwhrreJvOSlWDthzOUb6aFbu4zbPHDYT03
OnjaLrD2w2G91tyjSLWZtvjh8H0t43/pJFj74bCeWTx1YvAsW/xwhppUM2Pz
m2Dth8N6/GB8tdazbfHD4fl4w9Hyz8HaD4f747qv3tFzbPHD4fmvcY+mP8Da
D2co79CS42Pn2uKHM1T9aqXPu82zxQ+H7/+umAJzwdoPh/Vp0z8n5Z9vix8O
1+dz31NtAGs/HNZLG8vPL7/AFj8cvg8LjngfBGs/HD5PlVd99F9oix8Oz3cl
Hxy8DNZ+OFwPMsUsbLbIFj8c/n1Tek16DNZ+OKyX/eKndV9six/OUINvjFmX
BNZ+OPy+z9ZfHbnEFj+cocx8nn+4LbXFD2eoknlKR84Faz8c/v6xs87+tcwW
P5yhvhtda24Caz8crleeuy96LrfFD4fnpZMDuh8Faz+coTo02flX3RW2+OHw
80zv9OwGWPvhDPU855JjbVba4ofD+m5B6LZXYO2HM1TLPZO2919lix/OUPNz
1T2VcrUtfjhDTe06681ksPbDGepYaFSJHGts8cPhehATP3AVWPvh8Hkad/Bu
mbW2+OEMVa64X+h+sPbDYT3gapPgv84WP5yhip7JOugKWPvhcP3IFeXecr0t
fjisfzY0ef8crP1whhr517OzfTfY4oczVPmSuf+XYqMtfjhcj/t8iZsM1n44
Q+1dN/Bsjk22+OHwfeq77t1qsPbDGerduNEly222xQ+H6+HUP2MOgbUfDv/+
SmF3g7bY4ocz1OHS9UJugrUfDs8nhX7fabfVFj8cnu/OdB74Dqz9cPj8npld
Ysg2W/xwWM9eH/E29XZb/HCGervU48wcsPbDYT1/c+2ugjts8cNhfVMqcdc2
sPbDGco/9MOZajtt8cMZqtn3c+/iwdoPh+vBtX7u4bts8cMZKvfsz4OegLUf
Dp+v10H3ouNs8cMZataMgY2T/88WPxzuR56xDyaDtR8Oz3eTuw3PtdsWP5yh
XtTxKr8erP1whooukvjNc48tfjg8T18ZfO0EWPvh8P6bP4+F7LXFD2eoudEd
T94Haz8cPr9Xj97pvs8WPxyu5wlu1i+w9sPh8+of7Ddxvy1+OPz3To+ek+OA
LX44XJ+z7v65Fqz9cFjPvH7cz/OgLX44/PMp/3CdBGs/HK6HGX3Whh6yxQ9n
qKSLfVo8BGs/HNYXSVuL9jpsix8Onzf/z67kR2zxw+H16h2QNAWs/XC4XlVZ
/zvPUVv8cIY6GZYnx2aw9sMZqsuINQHex2zxwxkq28CACefA2g+H+8G3lA+a
HbfFD4fP18E7dV6AtR/OUA1jr8UPPGGLHw7rmzTvWqQ+aYsfzlBn0nm45oO1
Hw7f16AFR4qdssUPh8/XiNLT9oC1H85Ql3u96137tC1+OEMNufWwyz9g7YfD
53VAqgFRZ2zxwxmqQYbIeUlg7YfD/bNF0vlxZ23xwxlqYOEzWXLE2+KHw/qv
6I3o9WDth8Pzc6HCjyufs8UPh9//3u5O8eBBn+sP+o/Pn/vvf7b6f7g23TY=
"]]},
Annotation[#, "Charting`Private`Tag#7"]& ],
TagBox[
{RGBColor[1, 0.75, 0], PointSize[
NCache[
Rational[1, 360], 0.002777777777777778]], AbsoluteThickness[2],
LineBox[CompressedData["
1:eJx1nXlYTu3+vgs960kKDcpMyhyiNJiWyEwKyZCiEIkyppDMEpW5JENkCElC
SWlQxoQGhcyZSeax32U969rffezj+O1/3uPcvF49w73Wuu/zc10tp8xxmlpD
TU3tq1JN7d8/b1z/9z+lqFXob26ephB3xexN/cf9drTs9Y9bnWonBIKX+Lw4
OhU8u96Aie3Ap/sdN4oCf0n4nFJyTSm+azhvTT54yFqLFmvAppXWn2tcUIh6
G2uFWYAn5f6dbAWue85D8fSqUtwRnXPT+9+vV49cEwG+OTek116w5rhrOiJY
OXhkfCH4c9qtPe+vKEWxeYOGmukK8W1LD5vd4MVf7q3pBW4ZtOzeUHDitX2f
/cB3rxmv+XlZKb7eN31KHNineoTNEbCxv1lBGXh0/RpfxoInjPjUq26GQjT8
YZuiAG8xSYnvBx594vvq5DyleP3nsob+4EttbSd4gmvd6r/2GNjC/a+1HrjX
odpfHoHXDevfPCtXKS5YWjDF4KJCTHleW8cPfGLU9oLB4LJWjhotwBXtJvZe
BtatNtC4eUkpNlczPnYKvGeOi/Yy8NjiFw1fgIt9DJuZgcOPHV/bOFMhGlc5
Wt3PUYpXVsz74gDW+KIYtwGsPs7GYxXYaI7lSluwbefqgnOZ/16/+8mvspXi
XI1Lvd+B98T/rNwJjr8XcqxllkI87RZmMQj8NHFkI2dwj9mRy79lKcUm6xqs
CwH3LjAsigOPnnT/Szr4/jLNrs7gjRb7PT6Bh8zz2aEBvlTb61abbPx94+w0
kjOV4t9HZn0mgp/qrgv0BHc/++lYOPjVyZ4/9cBzNqY0ugT2D3ALzr6oFA95
BK37Abae8aHePPAjG/uvZjkK8fnCN4eNwUb1tDyngJ12Ow2+naEUHSsKbm0H
zyhuVRUMXp+2vc81cPsmk2LNwVmbJx6vBh/3UnN9nK4Uf3oZN7a4pBCbntFs
HgHu1uflOi9wxl//VyJ4lsGJr9Hgdz2Hp1VeUIoH3szzvAU29F69Yy/4QabN
bY1chZizskXgSLDBzuo+tuDw4KbT1cAjZl86Phts7hY44WSaUlzTf0PjWLCv
oY2LOzijkeP6ErDZwTGu9cDfKht808pTiG41C2ZePK8Uu+Td9xTB+maHlvuC
vXbvvz0fPLtpWUwL8L55XuIR8JGb0y8VpCrF0sGdTjwAG/Rx+LwcrNvic2Pd
y/j7Tg/rYA4e8jVl/QBwp35tvB+nKMWV14O+BYDf5RskRYDP77efmgD+qzG+
ph34s7/Wnafgls+qJlSdU4odHW6JRlfw9536MG0/eKrpjhPDwDqrm7UeBY75
NbFJMPhyn4QdNcHFt4xDksHzI8Lrnz6rFOsefvntFdhuYeYWT/DAZSemNruK
9/u12MwAvHz0/DtO4PmvtRMvnVGK59rb9l0LPjy3zbCF4I9qagnnwdFBoR9a
g9uVXGpSCa7S7rmrJFkpTjm+IcTkmkJ0bWTpsA4ctdLxuws4ft9CLRvwnXGG
0zaC0/dW33x1GutZlwd3MsGb9G9GR4H7K2L7fgW3//nUbyh4yX2vhPbX8X0d
0cvhd5JSTD7VqakbeH7dMovj4HfrPodsAZ+wSTGeBG7tlvo9D1xwtdSoLniS
5fJpv8HOF20NL57CeqY1oLDLDYVYYnivqR/45mMtu6ng3/kpHY3BynO3EiLB
a58W9buTqBT7btrRNB/sMKqTxyrwYk/XDTXy8fo1yQqxBJ+ybfWjO9ijZ3hq
xUmsZ/VeTfMG30jcUbUD3OrFicI94ISAkq6DwRMuzLcrBDtuGxH4M0Epbt1i
e1J5E++f2u9r8eDrM9Sa9QKPTyk3cQVriLkb/MAZGV9W64B7NQj9cRBcVl/8
kHFCKS586zi9DOxxIs3dD3wiy7BIp0AhmmydWWYMfrHzgV0/cHXmoImFx7Ge
zYk9uQj8rrtzxWqwi/2MZsfAvz9G+FuBwxt3Dn0Edqz6qfvqGNazj59/6N9S
iKZW4clRYPXLqdMHg69ljHQfBraNWV60FHxkQw+9v/FYz+YP6HcK3CPKIT8B
HD+kTmIF2PDNhojJ4GctbjdrfFshPlv6YaIeuMm3HaEOYA+nxV0uHVWKY264
/lwJnunVts4i8MbYVl7n/v3+jF8f2oJzF78qegsudKm6V3YE65lDQr+Wd7D+
dNMqCAVbtV6QOAYc6mB/vTd4zm/b5iHg3ON7CioPK8XDt9U2poMnjmj4YD/4
0eHcn1XgDPPEj6PBDYNCvdoU4vPlMk1HADuOcSqeAG6UbdUt5ZBSDOlg1D8c
7DHXxN0bnKVenpgDNpreYVtT8K+S2OY//v3+/UNv34zDenZixkazIvz3TFYZ
rgDPWtX512Tw2/d3PC3AB8Z/8doOfl3DNrXiINazLueLr4I3TU42jAQ3EIL7
V4Pb1LFfOhQ84sGAU92K8XrWevn6zwGluDapTgsvcOmQ3e4nwRnrb2+MBv99
7FE+BfzdbeevAnD7a7aeBuAu3SfN0ChRiI2VLavyYpXijDomJTbg2CiDdQHg
fU9e9Z8NPrLKsLUZuOxcwqn94E6XTa8/3I/1LGxBixJw/+l9AjaDh07tsUnr
rkJs4OnRxR68sof67z7giovh77/tU4pp9fNmzAdrLs89fRT8+UVoyWHwu9ia
K13BZulO9g/A+p0HjqsHnrrVKKl+Kf48k3Cr7L1Yz2aWtxgAjl39oOlCcLF4
YFMAOMi5U5124LqGM3+fAK+ODK5xfw/Ws3edZz4FH3IsVgsDL8/+UmJYhtc3
uINgB06JPG8/DDzLbLnBlxisZ3OCk5aD3cfe6XAY3H7AwJbJYJ2aJkMmgKc0
0Q57BS7u5uerA95Vdft303tYf9+lxGTuxnp2eedMJ3B01z+F88F19ky6uwac
K9jqtQX3X2Ay4Dx4iu+ccfeileLSoa+TPoB7+EYf2gRObnmypcl9hdhd6+Kf
vuD33xaEuYCH2pdO+LIL61l+jz+h4HXGLzIPg90OqHtngvUOvew8EbwjIO/u
F3CbkvsH64ILRm4c0P4BXs+zWa2yo7CetRl1ehK479DIIwvBff8YGW8Bd9jp
ZtUevPhOeVgeeOp+/RsPIrGeHTnw5xd4x+yzMyPAb4Jmencpx+utPrCePbiV
c5dST/Bnt6wL33cqxYkdvw6IBJdvajvvGHhrjbTTN8C9t/h3cQffuBtsXOOh
Quw4N/GLHlgjYWB4d/CdLrez8nYoxd6rtf/OBC8sLN0RCF444Y73HvCsKXnz
O4MTzCNL74BNH0WOe7od65ngNlD5COvbqJEDdoBblJsk9wTXzHxlOxTscvq1
sR94buepVtXblGJEyMnwg2DrA5k9ksBX3Bf+LQV3Nv07cDq4hlXPWTqP8Xqf
azixMdhWu0aZHXizh57/za1Kcd7TvIGLwMZmr3etBMenbEyOB3dqvDvPCvws
bFSrR2B1iw6/3mzBejatYYT+E4X4Y+mW7nvBY3o+/DsIvKG6cPFo8Cbdg7OW
gvtlvM9RgnNfzixLBGdmPzS8sFkpVqd3GVQBTtc7NNcPbLXta3Kjpwqx1pl+
RaZgX++0Vg5g/8TTfcoisJ71XRGxElxf+0fiJvBjw0HVZ8EPb9bt2A/c8L22
z9t//7769+PfwpWiU86dshbPFOKFQyetjoFDoiIHjQG7XLO+4g7O9nU7sx7c
a17YFAPwrwGmJungirikmlfDlKJF0zcRVeDnPgeOLQPP+nSyuvVz3E/edHft
Bj54ZaHPBHB04QuDl5uwnu3peS/s36+vtC6OBjdYWGNwDjj2uWOMI3jEsMtn
voPL1LvNVoDXGm8yMatQiLsfldmf34j17PuozZPBhiGDTH3B3/Mbqm0Hr1ME
1jEFmx986HMVPHCS36/SUKxngQfv/QVfjGxftQm839F7cLcXCnFB5sHKfuCy
NuZnp4OrHzz++n2DUtT7+9UkGqz1/UGtE+ChhWmbC8CuRpGNPMCrjq5Q03ip
EPMH6lobgdOWD5ptAx4RNsj1RohS/OKsc98H/PibbcgKsJlZ4eD94AMhL9Ot
wNNqRp0tBueNHPnr7XqsZ6VuplqvFGLYKL8++8ElCaZb+oAnRA/ZMBZcd80b
tfngaIt75XXAgyYmzj4MLjM1ts1ah/Ws66L798GnFzfbvQicouw1pP5rhfjA
5qZgBv5YXuOcPbiZb7eAJ2uxniVfNg0Aj2095PMOsMeGTVtOgJdN0104HLxr
8mj1p+Ddthuqa4ALrRrNMXyD6+uxpPBza7Ce6Ty6PxQ8MS+k3Wyw/bODQ5aD
g7bWvdoKvDTV+9xp8L5mfeeWrlaKZ8LNW78C2/g2Mw4Dv5/2bUvTtwqxaEtc
aX9wm14X1J3ARlvv7vy5CuuZ3so5a8AXApPcToJ3vhr0IBUcMaZ7p2ngggyd
oR/AgR3dazUBa24vPNfqHd5PrS5Pbq3EejYrqrULOOzPgby14AA7962h4Ert
9NO9wKeMWtfIBBcODDjyaQXWs/dv5nwBh565e/AIuNWlxAft3ivE4Kl3j7iB
J+5aNHQSuLO7f7IBeKtfr5TN4A6nzl6+Foz1bGDNNnngJtO3PQ0GK5pd2foL
nBVST2EN7v15U40uHxTix7Ztu7xfrhQXXR3t6wneMvze5APghL2NyneCj9Rq
t2s8+OXCR0NvgAeNr3e/HrjF8LgU9Uq8/+PDTfKClOK4VrPadAdX1D88fyk4
4of5tpngJaHO17uBr978VmMP+EZxVIfXy7CexV3wvQOe8Gfe5r3gHktWlgsf
8frWeaw2FjzPafCwnuD99R8v1AYfa1s31RecbzTvc/ZSrGd/C9scBDfqvH1x
ALhpUdS2UvDCyYMV5uAx8e41daoU4ou0DVEvlmA9C27tZwdeO2Ji9xhw7ti3
5Qv/cavU0tHgarNTw+LBnQYfWKUFtq7ln/oQXHK9oVVWINazsl5t9T/henK+
4Ud/8JGTNbcPAtcxiT3VGfx4zZWaS8HpusmBFQFKsZFrmF8iOG3biGG7wU7d
xjx8Ds5PnW0yGrxBs/HwRp9xfQnTr6UFzn74KHUEOMO4z5vMxUrxd3Jc25Xg
6OB3pf5gi9BZ28+CQ1KbFXQG+0zpWustOP3erRsV/ljPrL/7tfiiEFd80riz
G1yuk/5wNNimXurD0eAGz1cOXw8eK777pAV2OD/4/AWw9+aYutmLsJ5F1G1X
BdY3uNE1AHxxetH21l/x85UscjUHf++1q9YEcPMXu8NeLsR6pj95bhjYfHTv
K3vAM163fpQNtjFzqT0WvP/i2+HfwYOCXzvpgO9tP3W+4zeFuNzt8/5LC7Ce
+fi3mwxuWjL/5xLwsH69d2wD+3ybOc4CvKphLY2r4KKbRRlv5ivFCx+uzP0L
vj3ntFks+MulsEddvyvETxUasePBnaLHjJgOftj/SnNd8LS5jdN2gZ0i/8Re
macU9wx63K4A3Ozzvs7B4JJmh3bU+oHvy9TkLGtwvS+zNGzAC353d62ci/Xs
Wtd5PuB6V02rD4GD931/tA9sWr78sBs4ZVH6iGJw5aCB4wzBVcNXpdX+iefZ
Rv71b/phPTMZ0r4P2MBT99YasMfPujvngZ0tDXb2Bu8qKNI4DG65J2jaV1+s
Z3G75t3/x6dG9jwB1l46+XG9X7i/DFrbcBrYflQbB3twcYNWf5uCl7V7l7YY
PCzE+HXRHKxn1afanwAveb3qwUbwhyL/nU/AgYMG37UHtznWW2H4G9+P5Nll
f2YrRfcVteYPBSfafX6aDN7pcvVxEHileulnH/CtTuEOp8HjazbRbg3W1HC+
8BKcOi6tY7mPUrS717hD0z8KsWeDlFHbwQGJj3c6gsOG1F8xApy09pBiDdhf
mXNWAX7j6jM/FXxrcsHn9FlK0cSi25P34BAvS5tF4Im1fzi0+ov1plPVqs7g
bY/SL4wFD87VuPvCG+vZmVUdQsFRfed03QtWbBwSeRH8/JTZVhdwb496whfw
qo7in3rgRTbF89tV43764kGfKzOV4sm60U9cwXtWuD4PBr98PnnkZrC4apqn
LbhlWpv0XHDQ3YzXVTOwnm1+1+EXuM1mL/948GavpMjOaoKon+Om7Qm+2nux
4AnuGXzgSBNwTYM+C3aCD923HF7khfXsTa2n18ELXul+3wien3l1pLq6IN5L
tT06AHxsR3i6JdjE85hH9XQl7lOcO84En/w+zeQcuGn/JlEx4M8bZrz1BTs3
eiLcAS81TzrfDryp8tACoYYgvv1tt/nJNKWYl+vztAf4u7qR7y5wdXQ3R1+w
z2jzMaPB1vN+pB8Ad1Ju6qsN9h2c0bEU3NXczDJ3Ktaz5qujtGsK4rqn2l2C
wI+/DFHagR27de5qDW50vd7CheDLFuE9PnoqxVH7i58eBff43XnYUfAG/2jH
h2CdGG1PD3DOiCkZerUEMbVT25VNwL9N2poNAhdkLTtS5KEULX+9i1oC/jy7
XskmsM+tJGUi+PHA+1qDwHGHFi98Dvaa8nigOrh8aZ9nDTUEcc6dZhtSpyhF
w9EaTiPAHxO2FM0DO7S/lrECXF2nTxsz8Dq1CLOz4Kzq5ssrJmM9K3be9Qa8
YLfloz3gH8eaaLZQCKL3r2UDx4HNVz5ZOBpcp/OvZF3wzHGHn60DFw8/0uG6
O9azzrOdLoAn+Kw7vBp8T8Pi4kdw/9gdHfuA9e7/MGst4PXSKD773Q3r2amM
XePBY47YDTkFXr1utWYYuMfB+0+9wRcmDV2UDVavG7vKFPzVov7zb+ALv7d2
fDgJ65lWiVNHpSBGrkq8txM8/XH0RXdwcdq3CCfwnrNTOm0DXzs/zaEO+O7G
ttFXwE92/NHLdcV65vle8y949/TzD4PAg21PL+qqKYhb+u45ZQMOrhfwfBrY
r+fh0E8TlWJqRZ9Ru8DfZxf5HAdXpWlk3gTXqDR1ng7usOVap1q1BTGgeKd9
S7DHjIhoa/BUG7Oe9yYoxeg+Y2v7gO93fmKzDVxo0NR/H7jOrTO9HcDab588
LwLbWBwdogm2zzo8qraWIGb4nnfNHo/1bOfszN5grZhXi5aCz8y26DwPvP9O
t0gr8If+P6MPgVu2i8z8OE4ptm18sfZ9cPczRh/jwe4fV/vXq4Pv3+bENtPA
kXlDK/qDHYunTG0BvrW7/ujFYJPIDkfLXJRi7fklmcfBbT7V/roVbDdkd+cn
4EW/qwc5gANbeOxuoC2I9jc0YzXBSV/bag0Fly1tUytnrFJ8e/29fxB4c2uX
WcvAJrGnK5LAjx9G3bMGuy4OGP0S7JD13vGTM9YzBzGriY4gBlY43TwOzjdV
dHEEG03NHeUFVvy+tns1+IPzoIfG4D63I7RSwY8LS/wejMF6dnjs4vfgJ9/m
ae0En1zW9IVxXUH8fbfxMSfwy9FPR48FO0Tkj9IGt+xwJGsDuL7thhqXRyvF
8epzulwEb3w78twK8OYSi5jPYNOsZgt6ga8d/6nVrp4gjij8ZP19FNazVRcX
u4K39bxZMwncc/yaFxHgaP2TRT7g+V2GjckFN1q47URb8HGFbvZP8IOAZZue
OmE9u1/SpXN9QczrOXNBDLhZ0u4YD3BB0ViPcWDn9R51doIV7gNc9MFhbu0C
roM3fbEYfdMR65nlhxdquoK496Tx2BCwWp3kMZbgDfE6k+3B1k8CsmeAk9W+
+6mB/c6J5jHg7VcfrD8/EuvZJsWe2+D0VhmHF4KfeF6vI+gJYmHrXfnm4EY9
Ngf0AG9+7/vrrQPWs/ouL+eAr2zr0/kweMOLps4HwG5Wipke4JwLT7Pvgh3f
Z8c3A//ZcsRcW18QE4oWfS4dgfVs5pw9fcH7lC37bwPPFi21F4I99qdHjQTH
NfgVcBQ8ON3huxb44duLL8vB5xfdmZg3HOtZ9hpnPQNBtHw96PIK8MjIYTkD
wcPME2x7g9fN0e26BHzES+P0j2FKMdP+7p6TYM1jQyySwT8ax2g/B9sZLjvv
C+5a5RHYsIEg9s6NGdwRPPNyu1fDwb8K48tfDFWKsTEfnFeAw9wOBMSC781P
zjkDNl2xtqkbWH9oYNc34D8uo/MagYe17Lu3uaEgzlar7V88BOvZN4XOaPDT
rYc6bwZfuHE9cB34QdeO74eDv8ZufpUG/vR1e5ImuHOAy9iP4Nt/KoIuDcZ6
NrLZJVMjQezl2XhUMHhv62ddx4NrD+xm1gt89/eRvZvAbbPNdH4MUor178zR
yQZHfdH8eho8+Ijlkm9g/1+5z3zBK4J+verQENeDjx5lHcGpYzLHuoMHf31Y
/HKgUvzUYe2lreBSU9uyA+AONYZ3uwLWjfF75g72vKu77w940ZLVX5qAo0/c
1enaSBAPlM/XLh2gFItWxSyZBh70pHfHbWDtCZ6vo8DtDz5xdAQPMG/vchNs
au+2TBu8TKi8VLOxIHZ4lJR4xV4pnn2Q3M0a3HfrwzerwR+SAvfNAq8KetzR
Dtw2pG/dfeA2F8/N/9sf65m7sLQI7DffMzsVHNn9xmvNJoJ4MfWp0SLw7Tpb
XHqDVydaLugGrv3UJXcueOiicXc/9FOK/VKaWRwCJ7QfYXcMHBj2bN898NTX
ukle4NNTj9at11QQrYri2puC3/bwXdofXLO25pHHdkrRVLf7G39wxiHrTjFg
15e/XI6DF9ywSB0P3p6emfsYbB/1e5ghOH/rWosGzfDnm4VV3OmrFAXv4fuH
gFvEvVkTDu7TV69eELikVf1Ow8H+hqVLk8DquX/vaYJPvot58wLcHs/zuaJS
fJXtOa5Jc9wffOk0bCW4ZVT7vJHgBtlzdETweN9Ki9Vgt24LSn73wXo24Mz+
FPDJab0PpYCvNVlS7z24xtKrSxeCa37qu8y4hSB6bjea0A3c84rw1hn843ab
PpW9leKCPTfGbQD/dPrW7jj4+IIteRngs93XNJ4Jrhg6zvIzeGvMHb024GbG
zWPbtsT1Lb5c91kvpTj2+7N6ruCEJXFG+8Bh+UeXRYBbWbQ3nQS+fMD37SWw
cZWXdWOwWmD38T/By0omO93tqRRtHH/ndTIWxKYa+vO2gf3aZFl6gP/sWhbl
BD76Z23sDrDZhb2X64Kf3Ble/zq4ZP3iP9d7KMXGR/WC1Frh/WyltAkBj1pe
+tYCvPfo0MCB4FDnPeNngAP79supBc7pOPXybvAAzfd6WbZYz2p06H4bvK3V
0JlBYMvSyliFCa4fp8bl9QTPTjhTvwd4cbFRh582SvHQ6iVBc8D7T63ddhb8
cILdu1jwIq+DigVgo67KCXfB3xr6LesKHqnMv1zHFNf/V69+f7BWiuvLt3Tv
C/b6rrPiODjz9LgDC8A5Mx5qe4N/hjTXPQo+6DZ+b1tw18nPg8pN/12fl9lU
WClFb6v4d7qtBTFtyrDSWHCstt+EgWCt5MygyeD7T7tfCQTrNSjv2Bysn/q7
+0nwtsN7H93vrhSHh2cdeAb2DlPuigKvnrZOt2EbQVz5Tn+iCzi954jlw8GP
nue0agD+qqv/Phgcs8uw6o4l1rNXpRPOgF+b18mLAE/P2HPlNbj29X37HcB7
t021at5WEF02lqzSBt/17nBwFNg+8pjPNQusZ3YfddeBx+q1cF0PHmJ0dnka
uF1z81EDwSveL3lfCfZ5VO6gAT6fYzfRtJ0gvgpoOyq7G9azKOXVceAAXW3X
YHBHv3yrTWDdaxt8+oA9B249mAVOvRy76k9Xpbi76Xi9b+CwzqP3nwcXfWoe
3KE9Xu9W0bmLwTpXn793A++/EvDRCjxgb/zEreB19h+Mv5orxaCFflcvg1+f
/z7+NPjsMCvrP2BHx+2Rc8GVxn8OmnfA97F9XnkXcNsfWXrTwHneIe0/dFGK
k2+uC44Cj7F9uOQ4OPLgiA/54NepOUXe4NuB+q41O+LzqWtr2R5c26nsqhW4
wbTeu152xnrWdq/1LHBZWYFwCLzk79S4vWD17ZUBU8GnCzvoF3X8d38c/bkV
+N3Rj8GaZvh8zC+c/6QT1rPgsx96gc2ebv+1Fzxp7FLXueBks6fr3MDbzfpd
iwP/WHyuSTPwzZqaNvfAie8Mzt43w3pWlh9Xt5Mgnjjxc+wusHhyq35/8J0n
U6vHgf3XjF/hD25y0vm4EThxYovKY+CdPa9PLumI9axrhetjsM+JS022g401
j10z6Iy/bwe78tHg8Q/9bIaATe+JcXrgLclWh5aBLz65OP92B6xnG/7oJ/37
9RmZgyPAtaZkr3gBfr61r+lIcE/r9ZWNuwji4VBRqAteoOMwaSS4w6ILH260
x3r2TP/6KnC/wLPloeCK1DKbFHBJhlnhUHDziL2H3oFfeDcvqA0eO32agbG5
IK6J23D7SjulGN6r40pn8MPtfvfWgS/rVVWGgLt6FrweCFZ/fXZSBrjQ8pCa
ALa5uPT6J3CXbl+a5LZVinO397Nt21UQc1em9FkNPjpL8/BEcCeHT179wU/t
bhpEgPUu7NtZE9y44baVl8BWX7Lzs9ooxdEfxn/8AZ7bfJzWCnDopRZunbph
vfdwH9EXfGlXxfUp4K+v7u5QA//xO2a7AzyhLPNFRmul2H3Q3MPXwDqujXoH
gWc3s26gZiGITlGPo3qDD33+s9ICvCK1wd8/pljPrmZ/9ALrVJybfgFstG+9
227wYvu8kiXgkYscbtwCT1LvO6IneP1wgx4KS0H0tTO99stEKWa1unfYFjzX
fN6I8+CfP/Y2mAO2+9bubgC4W8G0VbHgW2mDvGzB3nEdq0rAbeLz//5opRQP
LKlyq9NdEN3fpO5KAd93OndDBCfE1emzGGzQblmPBeCJiuyX1uDh1f2OHAHn
dnuw87uxUlxTpGlYDp7sMt7hHDg9/uYqXSt83nfb1PEHfwveVjUA7GEWcNMK
3NllgnsguLl548hvLZWiV6eW+QngpNuNZ5wF7631osczsHrPwD6LwKVlx44Y
WeN5e7t1Eytw/cS5hsPBZ7VHVX9tgfVsrfXqYPCwq1dengGvcP1blQz+8nXX
3YXg891y3F+D/164nN8d/FkzJL+ZDZ5nBztc+9oc69kjh56jwIU5nfLPgKee
MTi6Fhw3blrJQvDu0HuGaeCKrl8quoOLp+xbXQkeEVj2+2szrGc20z+Z2Api
vKtBw7PggXXNJo8DP6t1sMcicNDzqvyN4Kpd6zytwOfOn+uZBX4xPGPLt6ZY
zyKWHf0Kfmk/6MpZcDuv/kYdeuDznmCs4Q+e3Lv2GjewQfLwgdbgKP2CT1vA
P1ZcDvveBOvZ622TL4PH999cfg6slTnh5m/wDZOj3RY3kX24nnjedqgbZtNE
9uHAuz5erPzRWPbhwOst011SG8s+HDh+oCIvoLHsw/XC+zF6Z48ejWUfDrx3
zbwzvxrJPhw4SWuHVVoj2YcDB9StkbGkkezDgYelJw3r1Uj24Xrj/qZ//KM/
DWUfDlyY/yIgvaHsw4EPrPdqHNRQ9uHAJ/d1zOrTUPbhwGn9us1Rayj7cH3w
PBQdaJxpJPtw4KGlte4HG8k+HPhi6/xddkayDwdudKp4ck0j2YcDrzvctFOO
oezDiXi+tdqvttpQ9uHAVzd4lNobyj4ceOYd93MKQ9mHA5/pEbk7r4Hsw4EH
V2mtX9dA9uH6Yv0zORcwuIHsw4FN1XfPrd1A9uHAeskpvtcMZB8OvGW29oJQ
A9mHAx+fsCNouIHsw9lh/TjqHK5jIPtw4P7rhxy6qS/7cOA+refmhOvLPhz4
dsL1F476sg8Hnjd6XH09fdmH64frjZ1h30I92YcDGx/RWLRNT/bhwOvOtEpy
1pN9OPDxSN8vhnqyDwf2C37Tq1RX9uH6C2J+9JbQKF3ZhwPfauT1eIKu7MOB
Y9p79WyqK/tw4Dm/Nu8ury/7cODNaS9q7a0v+3D2uJ7tnjp3cn3ZhwMH3NCq
MK4v+3DgIUtK3Z7Vk3048IrSGw8P1pN9uAGCWK7/cur0erIPBzaf1KaqbT3Z
hwNPeR6y6nVd2YcD+5TVb3qsruzDgaf5nD/vU1f24QYK4sL8Ne6d68o+HPie
2TytjzqyDwd+eT4o7ZSO7MOBNY/Ez5uvI/tw4AumX7t015F9uEGCGDll0udv
2rIPBx4U/vRCirbsw4FDH67aGKgt+3CD/u0H9/XopS37cOB+cUZ9quvIPtxg
3M8GabbMrCP7cGD/3nqaK+vIPhz4rZ7lt/51ZB8O3N989htFHdmHA5fmXXh+
WUv24Ybg+6LZqiJES/bhwKGtd78dpiX7cOCrjh1+6GjJPhx4Vdp1rVu1ZR8O
vHzncpMttWUfbijWH8MB/cbUln04cK53Ey/D2rIPB9bMq7GlVFP24cDBE75n
79KUfTiw+4TfP101ZR9uGJ7Hv2tbt9CUfThwxLSOgU+Usg8HTi52zjmglH04
cEVgqN50pezDgXPXXfdqp5R9uOG4v+7SIOeNIPtw4CUHvExPCLIPB642yg71
FWQfDrz+osnProLsw43A9TU/1OeLQvbhwH/m/6w4q5B9OHDfl7OmBShkHw7c
b8LTNz0Vsg8HnqbuuqhaQ/bhHATRRKdUmaUh+3DgOsnOe1dpyD4cOKddUa+B
GrIPBxb2jnqsqSH7cOC4obdCrteSfbiRuN9yH24bVkv24cBxunkfHGvJPhy4
wfZe8fq1ZB8OXN3s5KySmrIPB97zuKlFVE3Zh3PE51V3jbprTdmHA099/qKw
eU3ZhwMvCLM78aSG7MOB69hv23iwhuzDgYtsH871qiH7cE54/w42n9ShhuzD
gRukjnF4ry77cGCH48sHJKrLPhxYPL2n33x12YcDV9c8NcBKXfbhRgliyq0z
Dj/VZB8OnOR0fNIFNdmHA9unbZ23XE324cAP+s3a1E9N9uHA6s27JSjUZB9u
NK4vK18WXakWVD4c2DtuQ42NYMmHA7dOb2w5Eiz5cODxajt99MCSDwf+tr86
vvivoPLhxghirfuOlZFgyYcb8+/13WjrCpZ8OPCvV6dCWoAlHw48ucPFR0//
CCofDtzp/umeh8CSD+csiHe7hsfMBEs+HPjlVEdFJ7Dkw4Gr47/N+/hbUPlw
4Ns9Vrw4DZZ8uLGC2HFYpbs/WPLhwB/0+j7qAZZ8OLDe1XlTq38JKh8OHHtw
bWUWWPLhwDkPAoPXgCUfzkUQjx1xMBoClnw4cLxYI1kbLPlwYNOyzWNv/RRU
Phx463E1tW1gyYcDr60acsIFLPlw4/Dfe+Q7pQlY8uHABxP8mjz6Iah8OPCk
HcPux4IlHw58+qba/ulgyYf79++Hb/TpAJZ8uPH4/OhW9f7wXVD5cODEULMG
SWDJhwN3t+7zaSFY8uHALYe3LrYFSz4cuLzmk/S/3wSVDzdBEN9s9TueBZZ8
OPAD68J9a8CSDwee3FYzeghY8uHAVtF1o3XAkg8HtrxRse/2V0Hlw03E/cTn
jce3gyUfDrxgSK2M8WDJhwPfUg4ubgaWfDhwiNeET0++CCofDlyx37bBIbDk
w7kKYq+Pz3t7gyUfDqy2caJPZ7Dkw4FPJeze9+mzoPLhwJWbD987C5Z8OPBM
3yWNl4AlH24S7meDjSaLYMmHA/dXX3KsFljy4cBz28b9ufxJUPlw4ADz7aM3
giUfzg3sPDTRESz5cOCDt3L0GoAlHw484IH6krIqQeXDgc8nqb+OAUs+HHhx
WLarB1jy4dwFUTt+QEkbsOTDgQ36hji//SiofDjwkNCN906CJR8OvCjPYdoC
sOTDgYPMCr7agCUfbjK+vz+0N/6tFFQ+3OR/+wXKdtlgyYcDF51Iv7oWLPlw
4Ds6XeYOA0s+HHhS5oTm9cGSDzcF9wvqfW8XfRBUPhz4ktbDkCiw5MOBjzey
HOwGlnw4sO1MO20TsOTDgdt0V5S8fC+ofDgPrL+pQXHHwZIPB17Z9UTgXLDk
w4HvloU7W4ElHw487kNrq9/vBJUPB+5ybE7TTLDkw3kKYvTwmZprwJIPB66q
2+DXELDkw4FjOs+tqguWfDhwi1dLPxS+FVQ+HFhnsXVVJFjy4aYKon6TfT8n
gSUfDvxV56zSBCz5cOANmxY3efVGUPlw4IslLyxPgCUfDhzZRn3MPLDkw03D
/dv5nMXWYMmHAyffND/w57Wg8uHA3vsHFmaBJR8OfNxXo/Y6sOTDgd8vmmk/
HCz5cNPxuf6yYI0uWPLhwNvbtLlR8kpQ+XDg4UOXNtwNlnw4cEzMIu8pYMmH
8xJELzeD7DZgyYcD7742psW7l4LKhwMPbGm98hRY8uHAq2POv1kElnw4cGjw
w3G9wJIPNwPvmzL2Rg2w5MOBredqDLz8QlD5cOCk3xq5G8GSDweOq4gdMgos
+XDgU7PLC43Akg83UxDD75z2LK8QVD4cWHt065+xYMmH+8edu26bAZZ8OPC6
2BLLzmDJhwOHVRrc//xcUPlw3vg+jnm7NhUs+XDgl/XG2ywHSz4cOHfKpEp7
sOTDge1Dvh/TAks+HPhpbps5t54JKh9uFt4nlzfdd4AlHw5cstSulitY8uHA
WxZ1LDEGSz4c2Hr14YSXTwWVDwc+WZG88QRY8uF88Hx8b5TffLDkw/n8Oz8J
Hm8Llnw4sPeK3oPVwJIPB65OWt8r94mg8uHAtgFTrELBkg83G98Dg8vdncCS
Dwf2y03pYQSWfDjwmhvdB5Q/FlQ+HHihd2/nA2DJhwMrHt/0ngmWfLg5eB/n
vF7TBSz5cOAg542Hvj4SVD4ceMLdszfSwJIPB86wnPFjBVjy4XzxOU3Y234w
WPLhwJ/Wuk6uC5Z8OPC06pjdRQ8FlQ8HPjDW8+EusOTDga1uH2s9BSz5cH6C
mHpy0by2YMmHAz+2yLn0vlxQ+XDgRXsjmiaDJR8O7GL5MCAQLPlw4EDLYw/6
giUfbq4gvn7yzV4Jlnw4cE5QZlL+A0Hlw4H7jlC22QaWfDjw8fBreyaAJR8O
7LW+djNjsOTDzcP7EpCz7+V9QeXDgbMPfW+fAJZ8OPAWp7iUBWDJhwMbpF8f
3hMs+XDgBmbeL2qAJR9uPj6XT5avuXJPUPlwYLuW2h3CwZIPB17UsW6RM1jy
4cDiwDWrmoIlHw5877SfzbMyQeXDLcD6dK7g01Gw5MOBH2/bn+QHlnw4cJfw
Cn9rsOTDgRu+2dWvulRQ+XDgAa8z9XLBkg+3ENf3W2NfhYIlHw68+NnEnFFg
yYcD955ecKARWPLhwDm7E0Me3xVUPhy4xfXqBYfBkg+3CD9v99Rpc8CSDwdu
1vLRxO5gyYcDjyvwdflTIqh8OHD0Ou9xOWDJhwPP2HTTbQNY8uH88ftbR3s7
gSUfDtxwW8GShmDJhwP7Np+15VGxoPLhwJa1ZyccAks+3GL8+1FFBbPBkg8H
fqK//5slWPLhwG/Sb7f6UySofDjwwQfTxuSAJR8O7HzGNXQDWPLhAgTRddOZ
y05gyYcDt4/3rd0ILPlw4AFOGxwfFwoqHw488opGzGGw5MOBf415+GEOWPLh
AgWxfm/DgVZgyYcD++Udi/17R1D5cP9+3XqPRi5Y8uHAv4rezdoIlnw48MgX
O0pHgyUfbgnW/1PRQ5uAJR8O3HHpr6yntwWVDweevCmpTzxY8uHAkzrmZM4F
Sz4cOHF3x8G2YMmHW4rnybZvi9TBkg8H/qVfw+vKLUHlw4EDDvtUh4MlHw7s
3r5TtAtY8uHAcY/tercASz7cMrx+BvHPXxQIKh8OHF9n2uYEsOTDga/rzOu/
CCz5cGBdj1u/eoMlHw78bOTycwqw5MMFCWJ686CA/JuCyocDWxre6LsdLPlw
4MplM3QmgSUfDpwQM+qRKVjy4cD26SFn3+ULKh9uOa6npjpbk8GSDwc+0+TB
gqVgyYcDx735OtEeLPlw4J1l4wdrgyUfLhg/h7myR9ENQeXDgXfb/DXfDZZ8
OPA8256dpoIlHw58e0lmZzOw5MOBnQZv7P7luqDy4Vbge/Yyxu4CWPLhwKti
v4xaDZZ8OPCtrPCZw8GSDwcODJuzxgAs+XD/fr9TxKEH1wSVD7cS9+Fjvtw4
CJZ8OLDVo6gfPmDJhwOP7RXcvjtY8uHAOcmH3P9eFVQ+HPjjZu3oXLDkw63C
577ZqfubwJIPB07Zt9V4LFjy4cAHp532aQ6WfDhw5Zl66S+uCCofDrz4/mG9
k2DJh1uN59SWS2b7gyUfDtz25vp8ESz5cGD/Lre6aYIlHw7sEuYYc+uyoPLh
wPrda+tEgSUfbg3uG+b8XDEFLPlw4DOrWv5pD5Z8OPDezGVLPuUJKh9uzb/n
jfrqaWDJhwPn37sbsgos+XBr8X6PKGw4HCz5cOB4vZonDMCSDwdWX+g5sDxX
UPlw4CMXvz2PA0s+HDi3d9r6OWDJh1uHz12PxK7WYMmHA7vVKH6kBpZ8OHB4
ebutVy4JKh8OvL/xsWGbwZIPB26tMbH2BLDkw63HdabC+kYrsOTDgS3q2G17
myOofDjwsMyFU5LBkg8H/uRYbLEMLPlwIVhHarvXGQiWfDjwT0u9V3XBkg8H
3tHyw9W72YLKhwP3aPgpcR9Y8uHAPWc0i5kJlny4DfjeTPIN6waWfDhwvf4v
V//OElQ+HPjH9NXBl8CSDwee2WDgik1gyYcDt4ruuG4sWPLhQvH3sbfc0gIs
+XDgB+7usa8yBZUPB863OX7uFFjy4cBPmza+EwiWfDjwsPFHqvqDJR9uI57P
eo411AFLPhzYur5J35KLgsqHA69sXdd3L1jy4cAJVwwPzABLPhzYZVCvB13B
kg+3Ca9j5bLGvzMElQ8HrtS5P+kSWPLhwMurRh3aBJZ8OPCNl88/jwVLPhz4
fp+IgS3Bkg8XJojX7MfseZ0uqHw48NVB5r+TwJIPBzbeYTJpKVjy4cCdgjpd
GgCWfDiwh8MI83pgyYcLx3XPeeX+0guCyocDL3ly3SgWLPlw4FN27bfOAks+
HDj5UpR+d7Dkw4GnpDaNqk4TVD5cBF6POadMroAlHw58yMLl9Gaw5MOBZ7jo
DJ6YJqh8OHCH9oVPTMGSD7dZEG1+HA7+cF5Q+XDgz/qhpilgyYcD37m+JH8F
WPLhwJN9A5YMA0s+HNjOYVXnBmDJh9uC611K5IuHqYLKhwO//5Ny4AhY8uHA
M32eTZsHlnw4cORYo069wJIPB15fZ8xPBVjy4bbi+ng/8lpBiqDy4cBOhhX7
osCSDwc+rW2z1BMs+XDgV3U3u3YCSz4c2Ht2pd33c4LKh9uG92HxKLMssOTD
gRNWpDYJBUs+HPhWqUl9Z7Dkw4FrFETUbgGWfDhw+zNqmq/PCiofbju+Zw98
65wGSz4ceOr2x/rLwJIPB07s6mQ8CCz5cNv/PQdmWeiCJR8OXDKuy7D7ZwSV
D7cD6/TaaK84sOTD7fh3P6QR4guWfDiw/gnvk7ZgyYcDTxly414tsOTDgUfU
al/nZrKg8uF24jpoFtw3Eiz5cGAvo9uBHmDJhwMHNWhy3gws+XBgzYBJ1d9O
CyofDtxp285BWWDJh4vEOp56ZXsoWPLhwNN7fHzlDJZ8OHAPbx27lmDJhwN3
jm6x502SoPLhwKUt2qifAUs+XJQgvhja0ms5WPLhwI18dQqHgCUfDjz40bv+
BmDJhwNP+ZCe+vCUoPLhduHnqVxueRQs+XDgud27Jc8HSz4c+KR+kU0fsOTD
gT3Kp2ZrgiUfDlxR8cyxMFFQ+XDR+BwFOz6PAUs+HLhtjfilM8CSDwcW0iob
WYAlHw5cWcP4wt+TgsqHAx9p39vzCljy4Xbj+re2f72tYMmHA9eeZZE5CSz5
cODDZtqL2oElHw6s1iLf/HOCoPLhwP13LPyYDpZ8uBi87i80zqwHSz4c+MLU
wKDRYMmHA2dMLR7eHCz5cOABPRu0fH1CUPlw4Mpetj9OgyUfbg8+bxl9i4PA
kg8HXm3Q8dwQsOTDgRts+x5jAJZ8OHD9LXEhj44LKh8OHORpGRgPlny4vXj+
mHTAdyFY8uHAvYurZvYFSz4cWKtli5l1wJIPB+63tcPskmOCyocDu6zWX7Qf
LPlw+7D+DC5b5QOWfDjwaKslO6zBkg8HDov9caImWPLhwMOfOV7LjxdUPhzY
x2HV20iw5MPtx/2rbbjuVLDkw+3/58fP79UFLPlw4AZvzH1+HRVUPhy49cTc
fblgyYeLFcTuceb3IsCSDwc+1HxeQ1ew5MOBPzQLmdgWLPlw4MifCw58OiKo
fDiwvWb3j+lgyYc7gM/Lvit2IWDJhwNHNOoSOQYs+XDgh1e9PrcASz4cuPiJ
3+i3hwWVD/dfLPlwB7EubfphvBIs+XDgDSvmR4wASz7cf7Hkw/0XSz7cf7Hk
w8X9H0s+3H+x5MOBvy+23qh3SFD5cHH/90/+//x9/78/53//O//79/jfv+f/
/hz8Oflz83X4/71OfB35uvJ15uvO94HvC98nvm98H/m+8n3m+87PAT8X/Jzw
c8PPET9X/Jzxc8fPIT+X/Jzyc8vPMT/X/Jzzc8/vAb8X/J7we8PvEb9X/J7x
e8fvIb+X/J7ye8vvMb/X/J7ze891gOsC1wmuG1xHuK5wneG6w3WI6xLXKa5b
XMe4rnGd47rHdZDrItdJrptcR7mucp3lust1mOsy12mu21zHua5znee6z+sA
rwu8TvC6wesIryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x+sgr4u8TvK6yeso
r6u8zvK6y+swr8u8TvO6zes4r+u8zvO6z/sA3hfwPoH3DbyP4H0F7zN438H7
EN6X8D6F9y28j+F9De9zeN/D+yDeF/E+ifdNvI/ifRXvs3jfxfsw3pfxPo33
bbyP430d7/N438f7QN4X8j6R9428j+R9Je8zed/J+1Del/I+lfetvI/lfS3v
c3nfy/tg3hfzPpn3zbyP5n0177N53837cN6X8z6d9+28j+d9Pe/zed/P5wA+
F/A5gc8NfI7gcwWfM/jcwecQPpfwOYXPLXyO4XMNn3P43MPnID4X8TmJz018
juJzFZ+z+NzF5zA+l/E5jc9tfI7jcx2f8/jcx+dAPhfyOZHPjXyO5HMlnzP5
3MnnUD6X8jmVz618juVzLZ9z+dzL52A+F/M5mc/NfI7mczWfs/nczedwPpfz
OZ3P7XyO53M9n/P53M99AO4LcJ+A+wbcR+C+AvcZuO/AfQjuS3CfgvsW3Mfg
vgb3ObjvwX0Q7otwn4T7JtxH4b4K91m478J9GO7LcJ+G+zbcx+G+Dvd5uO/D
fSDuC3GfiPtG3EfivhL3mbjvxH0o7ktxn4r7VtzH4r4W97m478V9MO6LcZ+M
+2bcR+O+GvfZuO/GfTjuy3Gfjvt23Mfjvh73+bjvx31A7gtyn5D7htxH5L4i
9xm578h9SO5Lcp+S+5bcx+S+Jvc5ue/JfVDui3KflPum3Eflvir3Wbnvyn1Y
7styn5b7ttzH5b4u93m578t9YO4Lc5+Y+8bcR+a+MveZue/MfWjuS3OfmvvW
3Mfmvjb3ubnvzX1w7otzn5z75txH574699m57859eO7Lc5+e+/bcx+e+Pvf5
ue/PcwCeC/CcgOcGPEfguQLPGXjuwHMInkvwnILnFjzH4LkGzzl47sFzEJ6L
8JyE5yY8R+G5Cs9ZeO7Ccxiey/Cchuc2PMfhuQ7PeXjuw3MgngvxnIjnRjxH
4rkSz5l47sRzKJ5L8ZyK51Y8x+K5Fs+5eO7FczCei/GcjOdmPEfjuRrP2Xju
xnM4nsvxnI7ndjzH47kez/l47sdzQJ4L8pyQ54Y8R+S5Is8Zee7Ic0ieS/Kc
kueWPMfkuSbPOXnuyXNQnovynJTnpjxH5bkqz1l57spzWJ7L8pyW57Y8x+W5
Ls95ee7Lc2CeC/OcmOfGPEfmuTLPmXnuzHNonkvznJrn1jzH5rk2z7l57s1z
cJ6L85yc5+Y8R+e5Os/Zee7Oc3iey/Ocnuf2PMfnuT7P+XnuTw+AXgA9AXoD
9AjoFdAzoHdAD4FeAj0Fegv0GOg10HOg90APgl4EPQl6E/Qo6FXQs6B3QQ+D
XgY9DXob9DjoddDzoPdBD4ReCD0ReiP0SOiV0DOhd0IPhV4KPRV6K/RY6LXQ
c6H3Qg+GXgw9GXoz9Gjo1dCzoXdDD4deDj0dejv0eOj10POh90MPiF4QPSF6
Q/SI6BXRM6J3RA+JXhI9JXpL//GYZK+JnhO9J3pQ9KLoSdGbokdFr4qeFb0r
elj0suhp0duix0Wvi54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLoqdFbo8dG
r42eG703enD04ujJ0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9P3qA9ALp
CdIbpEdIr5CeIb1Deoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RHSa+SniW9
S3qY9DLpadLbpMdJr5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS6anSW6XH
Sq+Vniu9V3qw9GLpydKbpUdLr5aeLb1berj0cunp0tv9j8cre730fOn90gOm
F0xPmN4wPWJ6xfSM6R3TQ6aXTE+Z3jI9ZnrN9JzpPdODphdNT5reND1qetX0
rOld08Oml01Pm942PW563fS86X3TA6cXTk+c3jg9cnrl9MzpndNDp5dOT53e
Oj12eu303Om904OnF09Pnt48PXp69fTs6d3Tw6eXT0+f3j49fnr99Pzp/XMO
gHMBnBPg3ADnCDhXwDkDzh1wDoFzCZxT4NwC5xg418A5B849cA6CcxGck+Dc
BOcoOFfBOQvOXXAOg3MZnNPg3AbnODjXwTkPzn1wDoRzIZwT4dwI50g4V8I5
E86dcA6FcymcU+HcCudYONfCORfOvXAOhnMxnJPh3AznaDhXwzkbzt1wDodz
OZzT4dwO53g418M5H879cA6Ic0GcE+LcEOeIOFfEOSPOHXEOiXNJnFPi3BLn
mDjXxDknzj1xDopzUZyT4twU56g4V8U5K85dcQ6Lc1mc0+LcFue4ONfFOS/O
fXEOjHNhnBPj3BjnyDhXxjkzzp1xDo1zaZxT49wa59g418Y5N869cQ6Oc3Gc
k+PcHOfoOFfHOTvO3XEOj3N5nNPj3B7n+DjXxzk/zv1xDpBzgZwT5Nwg5wg5
V8g5Q84dcg6Rc4mcU+TcIucYOdfIOUfOPXIOknORnJPk3CTnKDlXyTlLzl1y
DpNzmZzT5Nwm5zg518k5T859cg6Uc6GcE+XcKOdIOVfKOVPOnXIOlXOpnFPl
3CrnWDnXyjlXzr1yDpZzsZyT5dws52g5V8s5W87dcg6Xc7mc0+XcLud4OdfL
OV/O/XIOmHPBnBPm3DDniDlXzDljzh1zDplzyZxT5twy55g518w5Z849cw6a
c9Gck+bcNOeoOVfNOWvOXXMOm3PZnNPm3DbnuDnXzTlvzn1zDpxz4ZwT59w4
58g5V845c86dcw6dc+mcU+fcOufYOdfOOXfOvXMOnnPxnJPn3Dzn6DlXzzl7
zt1zDp9z+ZzT59w+5/g51885f879MweAuQDMCWBuAHMEmCvAnAHmDjCHgLkE
zClgbgFzDJhrwJwD5h4wB4G5CMxJYG4CcxSYq8CcBeYuMIeBuQzMaWBuA3Mc
mOvAnAfmPjAHgrkQzIlgbgRzJJgrwZwJ5k4wh4K5FMypYG4FcyyYa8GcC+Ze
MAeDuRjMyWBuBnM0mKvBnA3mbjCHg7kczOlgbgdzPJjrwZwP5n4wB4S5IMwJ
YW4Ic0SYK8KcEeaOMIeEuSTMKWFuCXNMmGvCnBPmnjAHhbkozElhbgpzVJir
wpwV5q4wh4W5LMxpYW4Lc1yY68KcF+a+MAeGuTDMiWFuDHNkmCvDnBnmzjCH
hrk0zKlhbg1zbJhrw5wb5t4wB4e5OMzJYW4Oc3SYq8OcHebuMIeHuTzM6WFu
D3N8mOvDnB/m/jAHiLlAzAlibhBzhJgrxJwh5g4xh4i5RMwpYm4Rc4yYa8Sc
I+YeMQeJuUjMSWJuEnOUmKvEnCXmLjGHiblMzGlibhNznJjrxJwn5j4xB4q5
UMyJYm4Uc6SYK8WcKeZOMYeKuVTMqWJuFXOsmGvFnCvmXjEHi7lYzMlibhZz
tJirxZwt5m4xh4u5XMzpYm4Xc7yY68WcL+Z+MQeMuWDMCWNuGHPEmCvGnDHm
jjGHjLlkzCljbhlzzJhrxpwz5p4xB425aMxJY24ac9SYq8acNeauMYeNuWzM
aWNuG3PcmOvGnDfmvjEHjrlwzIljbhxz5Jgrx5w55s4xh465dMypY24dc+yY
a8ecO+beMQePuXjMyWNuHnP0mKvHnD3m7jGHj7l8zOljbh9z/Jjrx5w/5v4x
B5C5gMwJZG4gcwSZK8icQeYOMoeQuYTMKWRuIXMMmWvInEPmHjIHkbmIzElk
biJzFJmryJxF5i4yh5G5jMxpZG4jcxyZ68icR+Y+MgeSuZDMiWRuJHMkmSvJ
nEnmTjKHkrmUzKlkbiVzLJlryZxL5l4yB5O5mMzJZG4mczSZq8mcTeZuMoeT
uZzM6WRuJ3M8mevJnE/mfjIHlLmgzAllbihzRJkrypxR5o4yh5S5pMwpZW4p
c0yZa8qcU+aeMgeVuajMSWVuKnNUmavKnFXmrjKHlbmszGllbitzXJnrypxX
5r4yB5a5sMyJZW4sc2SZK8ucWebOMoeWubTMqWVuLXNsmWvLnFvm3jIHl7m4
zMllbi5zdJmry5xd5u4yh5e5vMzpZW4vc3yZ68ucX+b+MgeYucDMCWZuMHOE
mSvMnGHmDjOHmLnEzClmbjFzjJlrzJxj5h4zB5m5yMxJZm4yc5SZq8ycZeYu
M4eZuczMaWZuM3OcmevMnGfmPjMHmrnQzIlmbjRzpJkrzZxp5k4zh5q51Myp
Zm41c6yZa82ca+ZeMwebudjMyWZuNnO0mavNnG3mbjOHm7nczOlmbjdzvJnr
zZxv5n4zB5y54MwJZ244c8SZK86cceaOM4ecueTMKWduOXPMmWvOnHPmnjMH
nbnozElnbjpz1Jmrzpx15q4zh5257MxpZ247c9yZ686cd+a+MweeufDMiWdu
PHPkmSvPnHnmzjOHnrn0zKlnbj1z7Jlrz5x75t4zB5+5+MzJZ24+c/SZq8+c
febuM4efufzM6WduP3P8mevPnH/m/rMHgL0A7AlgbwB7BNgrwJ4B9g6wh4C9
BOwpYG8BewzYa8CeA/YesAeBvQjsSWBvAnsU2KvAngX2LrCHgb0M7GlgbwN7
HNjrwJ4H9j6wB4K9EOyJYG8EeyTYK8GeCfZOsIeCvRTsqWBvBXss2GvBngv2
XrAHg70Y7MlgbwZ7NNirwZ4N9m6wh4O9HOzpYG8HezzY68GeD/Z+sAeEvSDs
CWFvCHtE2CvCnhH2jrCHhL0k7Clhbwl7TNhrwp4T9p6wB4W9KOxJYW8Ke1TY
q8KeFfausIeFvSzsaWFvC3tc2OvCnhf2vrAHhr0w7Ilhbwx7ZNgrw54Z9s6w
h4a9NOypYW8Ne2zYa8OeG/besAeHvTjsyWFvDnt02KvDnh327rCHh7087Olh
bw97fNjrw54f9v6wB4i9QOwJYm8Qe4TYK8SeIfYOsYeIvUTsKWJvEXuM2Gv0
n54jufeIPUjsRWJPEnuT2KPEXiX2LLF3iT1M7GViTxN7m9jjxF4n9jyx94k9
UOyFYk8Ue6PYI8VeKfZMsXeKPVTspWJPFXur2GPFXiv2XLH3ij1Y7MViTxZ7
s9ijxV4t9myxd4s9XOzlYk8Xe7vY48VeL/Z8sfeLPWDsBWNPGHvD2CPGXjH2
jLF3jD1k7CVjTxl7y9hjxl4z9pyx94w9aOxFY08ae9PYo8ZeNfassXeNPWzs
ZWNPG3vb2OPGXjf2vLH37T89cHIvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb
xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn
j71/7AFkLyB7AtkbyB5B9gqyZ5C9g+whZC8hewrZW8geQ/YasueQvYfsQWQv
InsS2ZvIHkX2KrJnkb2L7GFkLyN7GtnbyB5H9jqy55G9j+yBZC8keyLZG8ke
SfZKsmeSvZPsoWQvJXsq2VvJHkv2WrLnkr2X7MFkLyZ7MtmbyR5N9mqyZ5O9
m+zhZC8nezrZ28keT/Z6sueTvZ/sAWUvKHtC2RvKHlH2irJnlL2j7CFlLyl7
Stlbyh5T9pqy55S9p+xBZS8qe1LZm8oeVfaqsmeVvavsYWUvK3ta2dvKHlf2
urLnlb2v7IFlLyx7Ytkbyx5Z9sqyZ5a9s+yhZS8te2rZW8seW/basueWvbfs
wWUvLnty2ZvLHl326rJnl7277OFlLy97etnbyx5f9vqy55e9v+wBZi8we4LZ
G8weYfYKs2eYvcPsIWYvMXuK2VvMHmP2GrPnmL3H7EFmLzJ7ktmbzB5l9iqz
Z5m9y+xhZi8ze5rZ28weZ/Y6s+eZvc/sgWYvNHui2RvNHmn2SrNnmr3T7KFm
LzV7qtlbzR5r9lqz55q91+zBZi82e7LZm80ebfZqs2ebvdvs4WYvN3u62dvN
Hm/2erPnm73f7AFnLzh7wtkbzh5x9oqzZ5y94+whZy85e8rZW84ec/aas+ec
vefsQWcvOnvS2ZvOHnX2qrNnnb3r7GFnLzt72tnbzh539rqz55297+yBZy88
e+LZG88eefbKs2eevfPsoWcvPXvq2VvPHnv22rPnnr33kg8HLh2y2/0kWPLh
wIa1Xr7+A5Z8OHCbOvZLhx5Uqny4IoW4aXKyYSRY8uHAr2vYplaAJR8O/Pb9
HU+LOKXKhwNPNFlluAIs+XDgRvuH3r4Jlny4Qlwvp3fY1vSQUuXDgT3mmrh7
gyUfDtwo26pbCljy4cDzXabpCIfl3GVwhnnix9GHZR/uDv57Ixo+2H9Y9uHA
ucf3FFQeln04cKiD/fXeR2QfDuzUTasg9Ijsw4ELXarulR2RfbjbCvFZxq8P
bY/KPhx4plfbOouOyj4c2MNpcZdLR2Uf7t/vX/phol687MOBDd9siJgcL/tw
t/D9iHLIT4iXfTjwkQ099P7Gyz4c+FrGSPdhx2QfDmxqFZ4cdUz24cCOVT91
Xx2TfbgChfj7Y4S/1XHZhwO/6+5csfq47MOBqzMHTSw8LvtwYJOtM8uMT8g+
HNjjRJq73wnZh7uJ61l98UPGCdmHA2dkfFmtkyD7cODxKeUmrgmyDwfWUft9
LT5B9uHAjttGBP5MkH24fIWYEFDSdfBJ2YcD30jcUbXjpOzDgT16hqdWnJR9
OLBdk6wQy0TZhwM7jOrksSpR9uFu4H75aVG/O4myDwf+nZ/S0fiU7MOBSwzv
NfU7JftwYOeLtoYXT8k+3HWFWHC11KhukuzDgU/YpBhPSpJ9OPD8umUWx5Nk
Hw6cMqKXw+8k2YcDt//51G/oadmHu4bvg/7N6KjTsg8HTt9bffPVadmHA8fv
W6hlkyz7cGDXRpYO65JlHw5cpd1zV0my7MNdxXoYFPqh9RnZhwMfnttm2MIz
sg8Hnv9aO/HSGdmHA/u/FpsZnJV9OLDdwswtnmdlH+4Kfn9EeP3TZ2UfDny5
T8KOmudkHw6ss7pZ61HnZB8ObDb1Ydr+c7IPB275rGpC1TnZh7uM9UNjfE27
FNmHA7/LN0iKSJF9OHCnfm28H6fIPhzYcHpYB/NU2YcDG/Rx+Lw8Vfbh8vD5
vzn9UkGq7MOBZzcti2lxXvbhwPpmh5b7npd9OLBbzYKZF8/LPhzY7OAY13pp
sg+XqxB9DW1c3NNkHw5s7hY44WSa7MOBw4ObTle7IPtw4JyVLQJHXpB9OLCh
9+odey/IPtwl/Hw9h6dVXpB9OHDGX/9XYrrsw4GbntFsHpEu+3Dg415qro/T
ZR8uB5+XJpNizTNkHw48o7hVVXCG7MOBnXY7Db6dIftw4OcL3xw2vij7cGDr
GR/qzbso+3DZeL8D3IKzL8o+HPjVyZ4/9TJlHw78VHddoGem7MOBi+PsNJIz
ZR8OPGSezw6NLNmHy1KI95dpdnXOkn04cO8Cw6K4LNmHA/eYHbn8W5bsw4FP
u4VZDMqWfTjwnviflTuzZR8uE9e7cfeTX2XLPhzYaI7lStsc2YcDa3xRjNuQ
I/twYOMqR6v7ObIPBy72MWxmdkn24S7iz5/jor3skuzDgXWrDTRuXpJ9OHBZ
K0eNFrmyDwdOeV5bxy9X9uHA64b1b56VK/twGQrRwv2vtV6e7MOBL7W1neCZ
J/tw4NEnvq9OzpN9OLDhD9sUxWXZh/v36/VrfBl7Wfbh0hWiT/UImyOXZR8O
fPea8Zqfl2UfDtwyaNm9oVdkHw78tqWHze4rsg8H/px2a8/7K7IPd+Hf63dN
R7wq+3BgveqRayKuyj4cuO45D8XTq7IP9+/XN9YKs7gm+3DgIWstWqy5Jvtw
aQrxS8LnlJJrsg8Hnl1vwMR212UfDtzqVDsh8Lrsw4F3xexNvQ7WKvQ3/8c3
rv/7n1L8f4a6hHw=
"]]},
Annotation[#, "Charting`Private`Tag#8"]& ]}, {{}, {}}},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1.9000000000000041`, 1.9000000000000041`},
DisplayFunction->Identity,
Epilog->{
EdgeForm[
GrayLevel[0]], {{
RGBColor[0.368417, 0.506779, 0.709798],
DiskBox[{2.8, 2}, 0.016]}, {
RGBColor[0.560181, 0.691569, 0.194885],
DiskBox[
NCache[{
Rational[83966, 29991],
Rational[770427, 372500]}, {2.799706578640259, 2.068260402684564}],
0.016]}, {
RGBColor[0.528488, 0.470624, 0.701351],
DiskBox[
NCache[{
Rational[121297, 43324],
Rational[8546581, 3735000]}, {2.7997645646754687`,
2.2882412315930387`}], 0.016]}, {
RGBColor[0.363898, 0.618501, 0.782349],
DiskBox[
NCache[{
Rational[63677, 22743],
Rational[75401837, 27410000]}, {2.7998505034516117`,
2.750887887632251}], 0.016]}}},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
TagBox[
SubscriptBox["\[Omega]", "2"], HoldForm], TraditionalForm], None}, {
FormBox[
TagBox[
SubscriptBox["\[Omega]", "1"], HoldForm], TraditionalForm], None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->165,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "DefaultPlotStyle" -> {
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Directive[
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Directive[
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[2]],
Directive[
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]],
Directive[
RGBColor[0.772079, 0.431554, 0.102387],
AbsoluteThickness[2]],
Directive[
RGBColor[0.363898, 0.618501, 0.782349],
AbsoluteThickness[2]],
Directive[
RGBColor[1, 0.75, 0],
AbsoluteThickness[2]],
Directive[
RGBColor[0.647624, 0.37816, 0.614037],
AbsoluteThickness[2]],
Directive[
RGBColor[0.571589, 0.586483, 0.],
AbsoluteThickness[2]],
Directive[
RGBColor[0.915, 0.3325, 0.2125],
AbsoluteThickness[2]],
Directive[
RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
AbsoluteThickness[2]],
Directive[
RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
AbsoluteThickness[2]],
Directive[
RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
AbsoluteThickness[2]],
Directive[
RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
"PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05],
"OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentSet",
"HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{1.9, 3.1}, {1.9, 3.1}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.909045677015095*^9, 3.909046340411375*^9, {3.909047439726328*^9,
3.909047526046637*^9}, 3.909047564404361*^9, 3.915536077676535*^9,
3.9155368604895*^9, 3.915772759432945*^9, 3.9163812145378447`*^9,
3.916386519150815*^9, 3.916388170780579*^9, 3.927268441141471*^9, {
3.927268510562241*^9, 3.9272685441240473`*^9}, {3.927269536179427*^9,
3.927269574612711*^9}, 3.9272696110843983`*^9, 3.927269963911026*^9,
3.9272700233691072`*^9, 3.927270070957769*^9, 3.9272702630683527`*^9,
3.927270298337522*^9, {3.927270370098089*^9, 3.927270408689001*^9}, {
3.927270474927936*^9, 3.927270530976882*^9}},
CellLabel->
"Out[217]=",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Two-sphere spectrum", "Section",
CellChangeTimes->{{3.9272084822996902`*^9,
3.927208485621049*^9}},ExpressionUUID->"e8e3024e-103e-44c3-bff6-\
eeb43f1280c8"],
Cell[BoxData[
RowBox[{
RowBox[{"\[ScriptCapitalS]", "=",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], "2",
RowBox[{"(",
RowBox[{
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], ")"}]}], "-",
RowBox[{
SuperscriptBox[
SubscriptBox["\[Sigma]", "1"], "2"],
SuperscriptBox[
SubscriptBox["q", "11"], "2"]}], "-",
RowBox[{
SubscriptBox["\[Omega]", "1"],
SubscriptBox["q", "11"]}], "-",
RowBox[{
SuperscriptBox[
SubscriptBox["\[Sigma]", "2"], "2"],
SuperscriptBox[
SubscriptBox["q", "22"], "2"]}], "-",
RowBox[{
SubscriptBox["\[Omega]", "2"],
SubscriptBox["q", "22"]}], "-",
RowBox[{"2", " ", "\[Epsilon]", " ",
SubscriptBox["q", "12"]}]}], ")"}]}], "+",
RowBox[{
FractionBox["1", "2"],
RowBox[{"Log", "[",
RowBox[{"Det", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["q", "11"], ",",
SubscriptBox["q", "12"]}], "}"}], ",",
RowBox[{"{",
RowBox[{
SubscriptBox["q", "12"], ",",
SubscriptBox["q", "22"]}], "}"}]}], "}"}], "]"}], "]"}]}]}]}],
";"}]], "Input",
CellChangeTimes->{{3.90594182959378*^9, 3.905941902867828*^9}, {
3.905942385645071*^9, 3.905942386540984*^9}, {3.905942436589874*^9,
3.9059424626147*^9}, 3.905942798436865*^9, {3.908957055896055*^9,
3.908957066229992*^9}, {3.908957973678803*^9, 3.908958018879878*^9},
3.90895818318715*^9, {3.908958253884284*^9, 3.9089582839010677`*^9}, {
3.908958323213801*^9, 3.90895833915803*^9}, {3.908958413719482*^9,
3.908958448146799*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s1", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"0", "==",
RowBox[{"D", "[",
RowBox[{"\[ScriptCapitalS]", ",",
RowBox[{"{",
RowBox[{"{",
RowBox[{
SubscriptBox["q", "11"], ",",
SubscriptBox["q", "22"], ",",
SubscriptBox["q", "12"]}], "}"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{
SubscriptBox["q", "11"], ",",
SubscriptBox["q", "22"], ",",
SubscriptBox["q", "12"]}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.905941903820272*^9, 3.905941962068831*^9}},
CellLabel->"In[67]:=",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"],
Cell[BoxData[
TemplateBox[<|"shortenedBoxes" -> TagBox[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["q", "11"], "\[Rule]",
FractionBox[
RowBox[{
TemplateBox[{"36"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{"4", " ", "\[Epsilon]", " ",
SuperscriptBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}],
"+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "1"}], "]"}], "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "5"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SuperscriptBox["\[Lambda]", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "1"}], "]"}], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "3"]}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "-",
RowBox[{
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}],
",",
RowBox[{
SubscriptBox["q", "22"], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "4"], " ", "\[Lambda]", " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "5"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SuperscriptBox["\[Lambda]", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "1"}], "]"}], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "3"], " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}]}],
"&"}], ",", "1"}], "]"}], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
TemplateBox[{"31"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox[
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}]}], "&"}],
",", "1"}], "]"}], "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"4", " ", "\[Epsilon]", " ",
SuperscriptBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "5"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SuperscriptBox["\[Lambda]", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "1"}], "]"}], "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "-",
RowBox[{
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}],
",",
RowBox[{
SubscriptBox["q", "12"], "\[Rule]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "5"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SuperscriptBox["\[Lambda]", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "1"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["q", "11"], "\[Rule]",
FractionBox[
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"],
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}],
",",
RowBox[{
SubscriptBox["q", "22"], "\[Rule]",
FractionBox[
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"],
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]]}], ",",
RowBox[{
SubscriptBox["q", "12"], "\[Rule]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], ")"}]}]}],
"&"}], ",", "2"}], "]"}]}]}], "}"}], ",",
RowBox[{"{",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "}"}], ",",
RowBox[{"{",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["q", "11"], "\[Rule]",
FractionBox[
RowBox[{
TemplateBox[{"36"}, "OutputSizeLimit`Skeleton"], "+",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"], "&"}],
",", "5"}], "]"}], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "3"]}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "-",
RowBox[{
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}],
",",
RowBox[{
SubscriptBox["q", "22"], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
TemplateBox[{"35"}, "OutputSizeLimit`Skeleton"], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
TemplateBox[{"2"}, "OutputSizeLimit`Skeleton"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"4", " ", "\[Epsilon]", " ",
SuperscriptBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
TemplateBox[{"4"}, "OutputSizeLimit`Skeleton"], "+",
TemplateBox[{"1"}, "OutputSizeLimit`Skeleton"]}], "&"}],
",", "5"}], "]"}], "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}]}],
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "-",
RowBox[{
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "-",
RowBox[{
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"2", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]]}],
",",
RowBox[{
SubscriptBox["q", "12"], "\[Rule]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["\[Epsilon]", "4"], "+",
RowBox[{"16", " ",
SuperscriptBox["#1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"32", " ", "\[Epsilon]", " ",
SuperscriptBox["#1", "5"], " ",
SubsuperscriptBox["\[Sigma]", "1", "4"], " ",
SubsuperscriptBox["\[Sigma]", "2", "4"]}], "+",
RowBox[{"#1", " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "5"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SuperscriptBox["\[Lambda]", "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ", "\[Lambda]", " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "16"}], " ",
SuperscriptBox["\[Epsilon]", "3"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"8", " ", "\[Epsilon]", " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "-",
RowBox[{"8", " ", "\[Epsilon]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"], " ",
SubscriptBox["\[Omega]", "2"]}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["#1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SuperscriptBox["\[Lambda]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubscriptBox["\[Omega]", "1"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "2", "2"], " ",
SubsuperscriptBox["\[Omega]", "1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["\[Epsilon]", "2"], " ", "\[Lambda]", " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubscriptBox["\[Omega]", "2"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Epsilon]", "2"], " ",
SubsuperscriptBox["\[Sigma]", "1", "2"], " ",
SubsuperscriptBox["\[Omega]", "2", "2"]}]}], ")"}]}]}],
"&"}], ",", "5"}], "]"}]}]}], "}"}]}], "}"}],
Short[#, 8]& ], "line" -> 67, "sessionID" -> 23876000146772358520,
"byteCount" -> 2225960, "size" -> 8, "stored" -> False, "expr" ->
Missing["NotStored"], "wrap" -> OutputSizeLimit`Defer, "version" -> 1|>,
"OutputSizeLimitTemplate"]], "Output",
CellChangeTimes->{{3.905941916302861*^9, 3.905941963097375*^9},
3.905942388134901*^9, {3.905942438623794*^9, 3.905942464087213*^9},
3.905942799919817*^9, 3.908536699283951*^9, 3.90861298526831*^9,
3.908622449600922*^9, 3.908958028321018*^9, 3.908958184613326*^9, {
3.908958255380935*^9, 3.9089582853320217`*^9}, {3.908958324621259*^9,
3.908958340482032*^9}, {3.9089584151555347`*^9, 3.908958449922164*^9},
3.90896489331504*^9, 3.927208535226565*^9, 3.927268740841626*^9},
CellLabel->"Out[67]=",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"testparams0", "=",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "1"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Sigma]", "2"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Omega]", "1"], "->",
RowBox[{"test\[Omega]0", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
SubscriptBox["\[Omega]", "2"], "->",
RowBox[{"test\[Omega]0", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ",",
RowBox[{"\[Epsilon]", "->",
RowBox[{"4", "/", "10"}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"testparams", "=",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "1"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Sigma]", "2"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Omega]", "1"], "->",
RowBox[{"test\[Omega]", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
SubscriptBox["\[Omega]", "2"], "->",
RowBox[{"test\[Omega]", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ",",
RowBox[{"\[Epsilon]", "->",
RowBox[{"8", "/", "10"}]}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"testparams2", "=",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "1"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Sigma]", "2"], "->", "1"}], ",",
RowBox[{
SubscriptBox["\[Omega]", "1"], "->",
RowBox[{"test\[Omega]2", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{
SubscriptBox["\[Omega]", "2"], "->",
RowBox[{"test\[Omega]2", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ",",
RowBox[{"\[Epsilon]", "->",
RowBox[{"12", "/", "10"}]}]}], "}"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, {
3.908536742080185*^9, 3.908536762233824*^9}, {3.908613034087284*^9,
3.908613109184179*^9}, {3.908613158385238*^9, 3.908613172681319*^9}, {
3.908618693814392*^9, 3.908618730015048*^9}, {3.908618845241262*^9,
3.908618845385201*^9}, {3.90861892530678*^9, 3.908618925394691*^9}, {
3.908618965819545*^9, 3.9086189670433493`*^9}, {3.9086224379557233`*^9,
3.908622441179409*^9}, {3.908622708296472*^9, 3.908622730715274*^9}, {
3.908622851915338*^9, 3.908622852155175*^9}, {3.908622947397026*^9,
3.908622962029228*^9}, {3.908622992429907*^9, 3.908623009974077*^9}, {
3.908960061302*^9, 3.908960082422131*^9}, {3.908960277545883*^9,
3.908960277641775*^9}, 3.908960322794814*^9, {3.908961159738974*^9,
3.908961204675587*^9}, {3.908962983357521*^9, 3.908963017470103*^9}, {
3.908963164432898*^9, 3.908963171880988*^9}, {3.908963286667354*^9,
3.908963287291148*^9}, {3.908963664084598*^9, 3.908963664994039*^9}, {
3.908964181455646*^9, 3.9089641969418297`*^9}, {3.908964899353694*^9,
3.908964913009623*^9}, {3.908964959642782*^9, 3.908964975746837*^9}, {
3.9089653624260902`*^9, 3.908965363753908*^9}, {3.908965402306756*^9,
3.908965411154817*^9}, {3.908965722376893*^9, 3.908965751457464*^9}, {
3.927268751251314*^9, 3.92726876713138*^9}, {3.9272692476847143`*^9,
3.9272692556048517`*^9}, {3.9272694010477133`*^9, 3.927269412568018*^9}},
CellLabel->
"In[133]:=",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[",
RowBox[{"{",
RowBox[{"2", ",", "4"}], "}"}], "]"}], "]"}]}], "/.",
"testparams"}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "/.",
RowBox[{"\[Epsilon]", "->",
SuperscriptBox["10",
RowBox[{"-", "10"}]]}]}], "/.", "testparams"}]}], "}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "0.0005"}], ",", "0.0005"}], "}"}], ",",
RowBox[{"WorkingPrecision", "->", "20"}], ",",
RowBox[{"PlotPoints", "->", "200"}]}], "]"}]], "Input",
CellChangeTimes->{{3.908960443948842*^9, 3.9089604545250273`*^9}, {
3.908960692418763*^9, 3.908960755930942*^9}, {3.908960847749057*^9,
3.9089608486687536`*^9}, {3.908961209260089*^9, 3.90896122552599*^9}, {
3.90896300338239*^9, 3.9089630049980183`*^9}, 3.908963160577557*^9, {
3.908963276731831*^9, 3.908963278427134*^9}, {3.908963339860756*^9,
3.908963343380438*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV
GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI
HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG
+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw
X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm
gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO
TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv
dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy
BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg
3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg
lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb
AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe
LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS
f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB
v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6
pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR
sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt
bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx
mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb
B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs
7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/
KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm
IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM
FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w
K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA
JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh
6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7
AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53
ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7
kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu
o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/
vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f
70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar
ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5
GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC
nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du
vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU
1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr
ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO
4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581
WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE
CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG
6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs
ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB
x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl
Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL
thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A
n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW
aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL
zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/
wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7
e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM
qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD
u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G
D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd
NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL
ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx
NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA
rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3
n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+
2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl
CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ
HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ
kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm
wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5
CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k
7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ
ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7
uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT
bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/
jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV
GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI
HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG
+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw
X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm
gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO
TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv
dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy
BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg
3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg
lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb
AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe
LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS
f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB
v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6
pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR
sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt
bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx
mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb
B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs
7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/
KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm
IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM
FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w
K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA
JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh
6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7
AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53
ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7
kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu
o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/
vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f
70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar
ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5
GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC
nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du
vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU
1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr
ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO
4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581
WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE
CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG
6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs
ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB
x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl
Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL
thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A
n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW
aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL
zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/
wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7
e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM
qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD
u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G
D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd
NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL
ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx
NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA
rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3
n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+
2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl
CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ
HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ
kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm
wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5
CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k
7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ
ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7
uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT
bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/
jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]}, "Charting`Private`Tag#2"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}},
"Frame" -> {{False, False}, {False, False}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio},
"Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1),
"DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwt12k01dsbwHEcV4YoGVJkyDwPx3g4Z/+oax6iblRkinAJpZSSIXUNETIV
GZIbkRB1S+xImVXGKBlDSubM/J+z1v/FXnt93nzX3i+eF4+Yi6+NGxMDA8MI
HPpd46f0wcKFwI+UXSh+/W3IsiMgt9CZwJTLm6fo7tOovMAGtnh39xbdc6tG
+946EnjzeMco3fuvO3vpORA46urBW/7g8DtJzPJ2BDYtlho9CzaoXdVmtSSw
X8lk7HlwHU99Tq0Ogc2Q/1AQ+PmXNY82TgIzq/b53ABfv6BR8U8jwiaHDmkm
gMs8eZq4LiGMgtIa0sHV+bJNb8QQts7WJh6C13fxiph/oOGzLePzpeA9jZqO
TBdpmOY2dbMKbFGx8uGIGA0f8KubbqD3WuJTgz5QsZZbUVwHeEnZyaTtIhWv
dk3sGgD7VJMOLUpRsYm0Vsd38Gq4UeR/3XqY7ZOdwwLY/fabwoIQPcwu2tqy
BWZ+zyNxRkkPV4j8dZH9axsKO5rxj1O3LraTUWLjB/PyvhWaDtHF7su9rmLg
3vUaFmtlXZzhkr4qDw5WXfo82EPBx8cKL2iBDycwsBy8QcESq+1KBmA2qoFg
lyIFe6UatViAu4QlXJh6dLDM81vkY+AO+b4Nphs6ONZsptsVXBLREKGqpIPb
AzMcfcGYNcaJ/EUbV+5wkQgCj9ZO+XyM0ca7BTbKIsATDZHu99S1MaljSCoe
LLy69FRvRAv7fBzqvgsmB2b9ZIvRwhHzst7/gh3lxo+eU9fCzVOGzaXgKlYS
f8mIJm7gCnN/BV5Vs32996YmNnBlHK8He0aGYDuKJn7emZXbDv7FYzyjNqmB
v7PzyfWDbX4Yb9e9rYEr4tuSJ+jvmdoXzG+ggefY8qnzYAc9+V6RSXW888+6
pk0w87Pt0eup6njDizGJbaAN1bjFeZ83Usc7dvBL84JPOhtThGbIeD7u7ywR
sEJkt31KJhlT2kcOy4H7VjO8aIZk3OGcPqUBzswlPQqfVsM8PbLW+uCkQBrt
bqYafjT/ZcYM7JlaWjVgqIZz/249bwv2G15OWF5QxalhI5ou4FjXwdTHD1Rx
mFd7jTc4SoUhKt5CFcs1rateBD+XWWgzXFfBjFmWX8PBdd6iDPIPVDBh3+cb
B54Y++lSaKGCPY7Qmu+ArwgIamyuKGOzB80uD8Djqy1BjGbKmG8qfuAJuIIs
7VX4UAnHXAtNewk2YJ5TLv2tiJvD/9V8B14jNuymjRXxtot5mR/BAp0l8p3/
KuC7WR8MvoAXNjs7eZfksSlNpWUcTA7NkV63kce2LFUJc+Asn+J+wTI57Fsm
IbYBbpyT90olyWFipjqZdbAN2bZZZ79wksX2ypGGPOBc/YkirRIZTPMP/yIM
FhLDQr+YZPDw5lE9OfDKUZqmmbM03utv/0kdnCShJMVcJoV7FuOPEeDbxu+w
K5cUDvxrid8MXP0p89WajyQOnNLJ/AuczzBxaxpL4G3lBezO4N9Xe7dH75PA
JAWLp3+DmZJ1nUJ9xPGbg0L6geCzjIYO+xr3YzsWUY5wMFdffNWc9H5c9YIh
6ybY09R8QfySGH4rzSGQBpbhLulc6xLFxrvNW++D83wjYpQlRfFX1YrTxeB7
AWpmWtPCuDZvtfkF+Pmzonb7wn1YMuSidx3YUoZ1G8VcCN9NFJp7D35sWB53
ilkQ05hWn/aB3ahDX7Zq9+Bb/1Wgb+C7rtM9Nu4CWK8uuWQGnKJpKTUvuhs7
kEod1sA7dOLEzF7z4bNs09MsQ21oiMdqhMedF4tXs5vvAl9Od1qWFefBE5Gu
o0LgRJvDL5fquDGnfL+zDNjvWcr7XVd3YqI3SZAMtvpWcZR6mQtviClkUcH/
vWLwqHvDgdtPDm8zAT+Z+ikyRmHDycGfig6Ds4PTVQMvs2BV0k9NR7Do6R/f
70+ScIszseEJtmGkKpe4M+L9vOdjA8DrCzkZx+w2qvuM3jKFgv3vbpeJJJar
ExTsyqPBfRtr7smVc9X5pD/MUsCHrveHNGdPViukJBTmgKXPG7d0RwxWs1e5
GBeBk67NbwZT3lXPfzNreg6OVpdsLC+vpcXfCYqsBdf4JTiNe/XTzBajd7aC
nz2k1a+nfqex+pYGfwJ7pvXkcA7O0vhMRaRHwCSRGAWa8xLNtCKn4hdY+6Du
vcKGddprlT+4VsEyJ44M+n9nQCHTpfeZh9sQpcI4TTiPhIKt/IV2gqsq0gtU
1FiQ20RQ+16woa2Cc8ciK5pOTPaRAu8zroxJKuJASayJ7apgt4H8HZXqXEgr
ve+cHriPY1LoxaWdyNNSbdWI3l8rPllfw40O8/W8sgHr75rvPUXiQU1JjiYO
4OaVv/JNnXgRy6HFlx7gWHUP8ZE8PmTzu9fjHLgd3Zl9w7IbTZk0rV0FV581
WSE7C6CNqnt20eCR5fzHRx/sQR+2amaTwDFW0hU1TILIdGvaNxvsvXLEc8BE
CEXW+soVguebGG1vRu9DRGJncQV4w7s1NWxMGBno6QvUgMVUH9Qm8YmijRDG
6mYwM+/s8M23oqhiZ4NxD/hadvKxr55iiFAb2TEM7n694r3Evh9d3jOa/RPs
ZTJVUP5iP5L1+M6/DE6/rE1tthdHVSJ/NjKNtCFOfp7V65wSqOxJrhMX+PDB
x4dZKyUQs894zR6whlAWadReEuVfuOYoAbazF+133S6FjDxEh5XBAoYr26kl
Uig9gz+HAi58k9Dbf0gacf+Yl/0THFrw4v3+LWnkSv2Qegg8q60jVJMjgwQL
thmcAOeqGCeSbGTRu2i9j+5g2Vf8eZxbsqjkl63cWbDZrB6Xf7YcYrf8gK+A
n8TNZV+0kkcO6gcpkXR3bUX1zsmjJg7+2UR6PyIj42uuArrWN3QzE8zSsGxW
aK2ITowlzRWAn5cXWX+cV0QB9Q+TysGP2GZC03OVUHlxmeBrsA5rDAs2UkZL
zsIDTeCMu99kHk0oo0F0zrsLnNN0+mWGmQriRtVfB8G1GZEc3PdUUNnQ37E/
wCRxf3/bRRXEv5tLbAmsdO5FHqO5KmIcSLvKNArzlqZ4/VOGKhJRjBTgBOv7
e14KW1BFRsJeqQJgWZGPAraGaqg4ptRGHLyWknYjPkUNlQeO9CiCf9VKs2VM
qSEbcRYDHfCTN8OanTQy0hKLnzgATrjodulrChnZWbMFWIHtl4yizafIyMvD
u/E4+LfpUcNxqjqSfKp9wg1cYqOw+0iyOmrVn/voB9ZWVro9NaaOAlb4rl8G
D+El8WNIA427Se77BxywV+yaTIoGmjwnEpII7jK5ECsxroE84q7vuwe2Vbxd
NEfTRLo+Xdn54IffPl+YitdEvy0TnZ7Se6cjdpgPaSIBrDtZBdbNXHh1RVsL
ndzRatcIPlUQz9cXpYWsdFpJneDHHgvhbMNayLPi6e0B8ODs8+oMbW1Ekrkx
NUnvWT3Ms4/SRqeONl5bBJNcTub8GtRGw+MzmwzfYL6M9Y0fq+mgL3LRzzjA
rSvXqt6H6yBsxa3ND244GWdU16uD1haCMsXACWl1V77JURCPmJ2+Avjyjdp3
n8IpqIzgb9QCk01+Vi53UtBav3GsAbiz63zIFUldJMPvJWgBTuGvt22/oot+
2nvF2YGlFA5+PtKmiz4tD1JdwT2LkecKpPTQW16N9jPgs1GKfc7BeugcOVAl
CPx5duOHYZseEolWbY4Au3Gl7NqUpCIG/3rTeHDV1rHRoUAqWrjezZIO3noZ
HCHbQEUdUV0388DOcp46B0RoyJVSvFQCTjwTeifKj4b2TzNmVYJH3B257jfQ
kOQbRfl6sLBsprWwCEKOv4zD2sHSr1mJel+E9LYGefrB1hy6BwzqEdogrGIm
wHnJLcsB2wlU7aCL5sGlIY59pdoEIgut92yCL1RqmtrpECjM/x5pC0xZ4ny5
CTZ/R1Omu/bMqztmugQ6cSbsBt0dDnuOfaMSyPY/Fg2GsTa0qNvRI3CAQK1k
7kRGsM6yYVeIBYGKGyTNmcGbZOE/pSwJlMdZH0h3re9ieQt4j41HLt2m47lJ
ew4RKKj30SrdJ7oZjjy1IdDeYeWCP8DB5S/bx2wJ1NOnw7INbDCTYBBrR6D7
uz+r0s2i4FlGPkagH4evONAdl7s7MfQ4gRaaqsvpzkoMsN7rQKCxsgOurOBT
bWY1r8EZP0bj6JZhF1c9fZJAbeI3XtJdEvZxZ7kjgYoSG7jZwAFV+aHHneC/
jZ5UurVXQmYYnAkUssXuSfe6uq3TQ7CERlES3f/fD5GRl8Vruv8HLwg2wg==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJxN13k0FPoeAPBhHI9raSGRPfu+aywzSb0xtkSe5V7LUNQ4VErKxSXRtZRn
p0ziykO4yaWunaFQrhZblCJZUrI3du+9c27fr985v/M7n3++f3y3c36y3mcd
fDgJBMLo/+7/3+Zzmi9svc0aCX+fo91B+SVe6EGD2mDebZ5ftZB87IneH+Pl
Z+qOjrqZxqXmgjZnrZJ4jqJbhdryWEboR2/XTncJoGOCDap+7TgIrmAIPRUM
QTcUqTxtkUWv7xaWtnlBAYt1GHpyXkbbVq28cJRFV3QmZf78ggxma9Etuy6j
AxqIx5YU0atRFrF/9pmCfVNbSooj0FzPheTPaKKvODF/pfeZgIWFH0vMRKAH
1pu57bXQ4TrsN8P9xuDjyQTuI9fQvGRz8V4NdK+UvDdnvxG4W21wg/Maujy6
PVpHE93Ik0DXe0sCf2RNB7xMQE+2x/re1kdLrbL/MB09ANa7dOcLbwLaU3XC
6YI+up6HKFI+aoj50nVu2ncdzYiNaHQxRn8Vos3qThmAHT7T+E1S0ZPTkuEi
5mh3U7UB6Sl9zPdD/vj1THSzT6L/RQu0hxfNWGJWD6we2+eWkYMeXGX6Uajo
nHzivagZXXDaJQrlVg6akfmg/j0Vfe7DcvLyog74xonhzLK76DhtQlySLfqR
8mIXdV0b+99fhqB2Fz05/sW7xBYdJipusLmiBZ5Y7fyZwxpdpafkV1KoifPF
Na/14JsGeM1sw2WGhhbtKVfr+Y86eHGzp0eYrYb1jcxTWndA3wn4fUi8QhXc
Ma/ml0lEO3fZ51bTVcD5hyZLD5QrgyVkGyW+cqJXnCiG1l5KmF95TUWuCkVw
Ku1J4wlBdMPrnLq1AAVwEWHy3zON8uBvvwzwx0uiOdNN6JEBcuDzHFR3yY79
YMHBpPp5JTTDymZRLkQWrLyrvGetVwZccDY6QUsBfTtI1/rAjBTW82HpK7cS
SdyXyjz/MLaRAJdRKxNPcomDfcgjb7dYYuBbJ2b6HXxFwRmGRxUXZPaCdxgl
ylo37QGPCNmNCvkKg0Oz6csqckLgFIfjNezWXdifDzOe7/5lJ9hurMqJHCoI
/rOOcLq1hQ98f/qL9LgxLzg3PFvnUig3WObU50+/TRFxXjnIWuW+HLh/F/OY
ri4bDd8deItfOdZsGTy4seabXjsPPhYzFPEsdwqsdJHW2Rc9DE67urAZbvwE
HK+v0FFZyaJ8d/O5ZPqE3xD4YSGlbT3zE5iR1Z8nMDwHJkonqFO82GDSEZPb
Je3rYOWfHIcDPxEOfrdxFS1LqoAIrq/KLtbW5QZTndW9upd4wJK02oS0Uj6w
z/uiHbX6guBBvimJ6pCdGH/td4+25l3gQ7sXBk4ShcDPVv5VZEUXBt/QPy03
WrAH/OrgzbkW7r3ghvOWK3peouDR5aIyp7ti4AQ7papmTnGw/4oj472lBHjh
KYfz9XhJ8Ib/X5lXxqXAsjp3WWl7ZMBcwnMfrj9GX81Nd33HkAX3Na34s3/Y
D/aznC6urEZnh5LIz9zkwAIiQqsxAvLg40fKjvPUog0k7hA/uimAXdxkhk7w
K4JFqSv85HJ0SUvywNAxJXBkcfXz/VvoOZKRRHOeMjhfm5ZCdFABq9SJFAhs
oa3nTAUDc1XB9xPncy/bqaF7t+IG5tFz0Uzmu3x1MHf7snWJvQb4UWWp/csF
9D3e2cjsfE2wEU8Cd6OFFph5a0z53iQ67+mpGqa1NpjFjOXbdRtNlAsMdF5C
a16oLuCw0QErZWnEvGaiDwUyQq4solWkX4o6U3XBaxlZ15Iy0F9ZSrzMafT9
lg+GPRQ9cPJln5B3GWg3tkW8zTT6m5UTdYKsDy53UN/rmI4maWmmTo+jRxrZ
cq4HDcBB+2SvKmegey2Db8hPoJ01UkvnKYbgwrE3wdNJ6JFT0TtsRtAmOYt1
YaQD4JPFSXsG49BlpxejeD+gh+ceNTBJJIxnV1jgFocmenvkfR1GL9AO0cp0
jcB/rVytfx6FbvdItGgdQCdntYaNqRqDQ6+xnryOQutZfqld7kH39F6MCFMw
AWeItDm/CkMrqh9549iF7l+KvVCsaAo+H6cx6BWOfjO38ZnahfYRzNi9qUDG
fbjl+nHkEnqrJjxapR3tpcowOixNAaecibwZdw496usp+Fs7Wkolx15K+iD2
ZxOPWdtZtD2fyWHzNnRBeudyEL8Z+EGE5+ADEjq41tDKxQhtzBao2dxm1pm6
m9Ym6G53MdcxMnrJpLtf9DDaaJnaG2GL3tST+qfi0W3xzi5Vdm6z1UR+mtgx
9E99BMc/HNDhlTWvxp3R5rPJ5jdc0NzqjAo9V3Ri/t6UyB/Rd1KC7Pe5o092
WTc3bbPyD3I6pzzQ5Vde7qz0RAfVF0X+SEeTViJmCV7odX1neuE2//0/BP8X
j4NThw==
"]]}, "Charting`Private`Tag#2"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.0005, 0.0005}, {0., 0.24139520540014045`}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-0.0005, 0.0005}, {0., 0.24139520540014045`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.9089604447255*^9, 3.908960455157442*^9}, {
3.908960693751487*^9, 3.908960756428286*^9}, 3.908960849152417*^9, {
3.908961168904378*^9, 3.908961226387982*^9}, {3.908962993566587*^9,
3.908963019140664*^9}, {3.908963161193892*^9, 3.9089631733873253`*^9}, {
3.908963279044405*^9, 3.90896328850895*^9}, {3.908963340836013*^9,
3.908963344120305*^9}, 3.90896366611727*^9, 3.908964915724281*^9,
3.908965365524316*^9, 3.927208538177861*^9},
CellLabel->"Out[4]=",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Re", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}], "/.", "s1"}], "/.", "testparams"}],
"}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "1"}], ",", "5"}], "}"}], ",",
RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]], "Input",
CellChangeTimes->{{3.908961842479794*^9, 3.908961893649458*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.],
LineBox[{{-0.9999998775510204, -3.940556599296917}, \
{-0.9981596924766423, -3.9386716372323836`}, {-0.996319507402264, \
-3.9367866380612533`}, {-0.9926391372535077, -3.9330165282128426`}, \
{-0.9852783969559951, -3.9254758611825142`}, {-0.9705569163609696, \
-3.9103927272500703`}, {-0.9411139551709189, -3.880219174518301}, \
{-0.8822280327908175, -3.8198422288430267`}, {-0.754549857487248, \
-3.688787413629198}, {-0.6353326985790873, -3.5662262752280545`}, \
{-0.5184541070867436, -3.4458734950754937`}, {-0.3916691850510331, \
-3.3150797015232283`}, {-0.3794025698494181, -3.302411059269318}}],
LineBox[{{-0.3755760392371732, -3.298458586895177}, \
{-0.14511504322706312`, -3.0599146700220166`}, {-0.019223374459211767`, \
-2.9291502852651723`}, {0.0008253533415522574, -2.9082924147332117`}}],
LineBox[CompressedData["
1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAqDskl9oNcz9u9CcTBzwHwBXWB2Si
3sw/rwxva/VjBcCm/SIj+wrWP5diKEG8ZATAao6dalSA3T8P95OCnGkDwF6w
wu39y+I/MPUBlvlXAsDB55+cgZLmP44dzGdoVwHA6r8zYCyq6j/AEmKCvz8A
wCdX9c6uru4/b0pqJMpW/r9PHhCa8DbxPwza/UWXT/y/buEAVx0/8z9YhZPX
tBf6v6pLJg+iJPU/nSAUDW0A+L9JBqdRujL3P7IWMzuotfW/cqC+aT43+T9W
PLy2bW3zv7jhCn0aGfs/divBbLJD8b9ic7IaiiP9P78UrAPvv+2/KayOs1EL
/z+vzVDRQTDpvz3iAJHCdABAYTcXx7ab5L+XFmgNJngBQJjvd0tdAd+/gJ5p
hzVqAkDiXSthnzXVv5vOmMaOcANAK+dTkCKsxL+VDUdMe2IEQGmSBGmJI2W/
nbei+A==
"]], LineBox[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAZjgRpiSNlP+lhKBhZ
YgVALYcd/uouxT+J/eoE3mYGQCq6F495YtU/uOxH7w5aB0ArtfDioTjfP6tL
cMR1SAhAZWaai0RO5D/QUsZeJksJQAqhCIisQ+k/hK229oI8CkDxPlpP8sbt
P2mw1FMpQgtA9urlliFI8T/dBo2uezYMQA+XS1+FefM/Fs0Q9AMmDUDSqkw3
gpf1P4E7wv7VKQ5AdnGJ54Lb9z96/Q0HVBwPQM3ZVnWV8vk/0rND6o0REECB
OESYrDD8P8kgZsaMkhBA/xlGvFpf/j+It1Wh4QoRQAU7Pw9dMgBAYCLcXluN
EUCBgkHcE0kBQP+2LxsrBxJAQVRqR9RLAkCAA+nMlX4SQHjfMtVMSANAGiQ5
YSUAE0Dp/CI/ClkEQHtuVvQKeRNAGY2D8I9WBUAgNmTIJnsTQB+nCf35WgVA
xP1xnEJ9E0C4yN34Y18FQA6NjUR6gRNA/Y2RvjdoBUCiq8SU6YkTQK7YD4Pe
eQVAyOgyNciaE0BjIZv3KJ0FQBZjD3aFvBNAMfhux7HjBUC7Kh1Kob4TQO8j
f80Z6AVAYPIqHr3AE0CIZ97DgewFQKqBRsb0xBNA1PqogVH1BUA9oH0WZM0T
QFuYRELwBgZAZN3rtkLeE0DOlzfeKioGQAml+Ype4BNAt/nJ7JEuBkCubAdf
euITQH1GJOz4MgZA9/siB7LmE0DEKk69xjsGQIoaWlch7xNANNpEqmFNBkAv
4mcrPfETQKRw5D/IUQZA1Kl1/1jzE0CriobGLlYGQB45kaeQ9xNASzzvpvte
BkDDAJ97rPkTQKRBxABiYwZAaMisT8j7E0AeprhLyGcGQAyQuiPk/RNA/5TT
hy5sBkCxV8j3//8TQPo0HLWUcAZArMQmEQ==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAir1Cvv//779vwPo0v9rUv07sa5js
8O+/8LbagpLe1L8RG5Vy2eHvv+ieYoJn4tS/mHjnJrPD7792mMCbFurUv6Yz
jI9mh++/5pFrXYn51L/BqdVgzQ7vvxmWk0/CGNW/+JVoA5sd7r/7tKHhi1jV
v2dujkg2O+y/TGKLatPd1b9+fiO+RSXovwOyUIq4HNe/WkBPPaVU5L/whi4C
DXTYv2U4n1yvReS/JsaBQbh52L9wMO97uTbkv4hbbfxmf9i/hiCPus0Y5L/4
3mP1zorYv7MAzzf23OO/NyrVZ8mh2L8MwU4yR2Xjv3Cp0Qhs0Ni/vkFOJ+l1
4r9ILCXEhzDZvyNDTREtl+C/D/ih8DT92b+rYEqU8obgvwGgty12BNq/M35H
F7h24L8tWKwPvQvav0O5QR1DVuC/3Pjn5Fsa2r9jLzYpWRXgv8eXUszeN9q/
Rzc+ggon37+vFjSWAXTav0jo4eG6H92/GJBvWgDx2r9YI9znRf/cv6bzmMEI
+dq/aF7W7dDe3L8ZqjESGAHbv4jUyvnmndy/IGbDn0sR27/IwLMRExzcvwrX
XcQHMtu/SZmFQWsY278SVbZo33Tbv0pKKaEbEdm/QEII6G0A3L/oOnAn0fLY
v7DVXpDTCNy/hiu3rYbU2L/AHbnNQBHcv8MMRbrxl9i/Cbk4QDIi3L8AYmG3
IUjYv2RaHfKzONy/G0wqoA==
"]], LineBox[CompressedData["
1:eJwVyX0wmwcAx3Evcc5CT73US21H2brZ6KYklM5L20OQbraitk5vql7G1prh
qHdHnLc4QhUr6n0zr1Uq+sMosjUlEsMakjxPYsZWi6KrYt0f3/v88bX48hv/
MDUVFZXTr/rfDeFXhte05pFYaOXBYjyB3heaUb96ilDfdHLkwEyMTiZzI+Md
ESocI99MeEsMpisnnk4VIZuu7vn8hBj55pZZ9XwhFBZ8I+MzYlCID6sTLwiR
rdMSMB0pxnZ4PN8qdBYFjX+y6QNiLFyX26WkzuBCiHZ5+eUlXG/PSW+9NIMb
jHmHkOglaK0e54tcZmDzd4MbPXEJTpejIm13pxGdr+t9hL2ESubT28sJ0xD5
6X7AGV5CT4DSJFvGh7JzFCNWy+idMuHrTPJAVu19HbW7DNLt88irOTx4urjK
xygSGPR/T8FZHkZawt6QUCWIa7J0vjYyhXFJkcTJVAKHLJsWwf1JrPet16bR
Jehzcc+saH8IZcjGdlqcBPc6ImgWpaNYy1PkUF5IsM14HvCj/yj2DRNTeWpS
2CtyE+h6r/6/adw7VCm6zZr7/UpGoJcd2FzyuhQ/5clPJRUPQ+cxxyvcQwrv
ibHUJqMhTEzrt0WwpXi4R4BbzkVwWPih6ltSnLVXV5015KJ1Nub0WoMUbnXu
WQf6gwhaK3i2PCAFLflBbpDuALxK7xY4yaWwOtHPfk3rLn7gqFizPGSoD/tt
xpzVC/ue0IoVpgzm1dt6dM1eXFSvNYv7TIajWg6cUI0eeBPd1ke/k0GP6Krk
qnaB6vbp4lybDGyTmUVBeieEs/27s/0ymNZK6IKDDnQZNu8dmpDhcNIll3df
tmOOxrNmkDLs2wSeEz9rRUjZwuOTxwi8uMWZ0NpsgfkverkpdgS2NIXetH+a
UaPYabU8Q2Bd+hGz+K9GFE0GGVeHEVhhFk8PrjVgjuUbmpxAQDb4yP+P1Tv4
tvG8z0wegQUOI9BdUQfHLO4xSicBoVreQgxZC23nzvytnwnULhfdsx+/DVFr
1E7OPIHCUtawYqgKoftDB2PqJLJjNMZd71dCtSfjY44piSTPzKmbfRUIuGHE
YNqRiNhNFjA6StG5KQhcv0LCw3bsdx9+CZwXStjOqSRoo8a8ysVibD2yNhDd
JLF6vPVJlXEBeDTqkfVeEtWFTk9rAljIMFIUjApInN+cUq0tywYt1lHZoSSh
djHYoF6QDlfjjrL3DOWIShH5eVkkIX68b0d+So5pr+1Y35pYWAk1D69ckSP6
bdv36+yugmIdrFCWySF5+WC1sc0XPtRu51S+HNqfaPDZVB/XTEUxRa6vwH/c
US0K
"]], LineBox[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]], LineBox[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2],
Opacity[1.],
LineBox[{{-0.9999998775510204, -1.488156762814999}, \
{-0.9981596924766423, -1.4871433606953322`}, {-0.996319507402264, \
-1.4861297170016188`}, {-0.9926391372535077, -1.4841017011389381`}, \
{-0.9852783969559951, -1.4800427289585925`}, {-0.9705569163609696, \
-1.4719128060184357`}, {-0.9411139551709189, -1.455603239400245}, \
{-0.8822280327908175, -1.422769505337342}, {-0.754549857487248, \
-1.3504137287628426`}, {-0.6353326985790873, -1.2809871039463332`}, \
{-0.5184541070867436, -1.2104590771661408`}, {-0.3916691850510331, \
-1.1298241549583612`}, {-0.3794025698494181, -1.1217098390817606`}}],
LineBox[CompressedData["
1:eJwVxXtQywEAB/A1j27KYeY0iUbOcOVxs5V1FKHHas5jehhJoeKoc8cVSaU2
pOhBEq1TqSuZkqT6ZtJj7qbNQkTRa7+9fvOonPL843MfVtix7RFUCoWy5p//
W7TRc47T3qKltPEoU/cFMZWpiWViNURman0qLKARS1Vd7mos0rc6Sx9b4BYa
Feky3onvoSPq5EoL8gLI270nO6HpjNcG5FhQLfrKTPmsgtzVY8PqcAtqOpiq
6e1KsD7Rrl74RWLAY0/kwVQlBg1vyy9aSDDqbk2GlxLBgh2CpH4SJ0oW848/
7cCyBbZnhR0k1iY739XUt4N/iYXwbBK17p5J1ypbcU4YKRWySTyqOsxlZSkw
IEmin95sxqjvD1HFdgUqmhzYU3lmcIbSTvLoCrBq8x0S2GY8mF9a53/lKewc
r8/k2phxTzq4Li6jGdVyqWP9SxN82loSSuY2QmkRq+7sNKH1Vz8achuQWrZK
qPUywYszyerVnAa4+TnwCY4JHjLP5D+zn8AsEO5rZpjAjW9KC5z5GNFP3qyc
/soIp5V1mdNoDzGm48ze6mNEUcQbtaOkBiWfX4Tt5RnheHOUzrOuwcJNI30+
S4ywp63NOTClGindm+S5FCPo/fK8Bis5ml39+ZoaAzKZ6neaxPsYntfKFskM
mFfYx9P8qYJfCJFSkG7ArDix+4qJSlgrqFOjIwz47bx784fvZdBOXCwummXA
zxs5bbRvd8FtS8wdGNdjxFrrw/1Simek/YkXg3oYP20LyDAVI0oVwoip06M7
x3e355AMB6gVCbsC9dBSpd1HBwrxY3mo7Od6PQp7Lz/iPL8Np6G5i62W6JGe
JWkeasxHe2DvwjEzgcPj8Rrfqiy8nk8v8D5FYKNLy3s/1RXYkPqYsSACXIWd
Mu9dBiQMvqt4HQFiaVlPvt0l+NvcaNzCJHAz3Y0sEEmw8WOwbeyoDsJvHVaF
2Sk41GZdkabWgRoUzCjSJOJ86ETAjHIdos50+Xuz4pAp7YoNOatDp/dorKAg
FmG1g4v2b9PhCNtllWzNQQRNOhcsttehb6KJKC4XgBJ+X/S+Zxi2O6aoMm38
NuQ77/PquTqMv0AswxE=
"]], LineBox[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]], LineBox[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwVlHs81Okex2dZrZdjlbak1Y1ZhrOpY1lmkTjWbSoiFEXWpUUlpAxedFSk
tLRtcpfalMKyo9y29RmcdqV1ORqXubjMjMYQ5uzmdlae3/ntH8/reb3/+j6f
7+fzeQxDz/hEqDEYjJP0+eu+9vM/WylKhSVz35D3Sxh8z5mTBTP/VcF7m7Hl
qSIGX9cgL14oVcF/g8JNUMDgF3AnTeo7VDC14LEr8hj8B5bXc09cUeGTfQtO
nFwGv+3RQEi3jgpBzUMedy8y+Mt5kerFW+dgYJqnmxnF4H8dk+NubTeDxWKr
wS/ZDH5aGrPVxViJ2P43l6MeUMg032GvrqdEp6V7Xsn3FL6RbGnhr1Hio71O
C33lFEps9RrslJNg+f1au6eYQsui5g8WVZOYXs0MY92gsBAzV7rVYhJT3L5s
h2QKp443py7YK3C7y+bSLS8KCToNKzxzBd5j8z9c3k8h5WdeUuw2BYLvNBwL
4lC4ZlB97g31Gqzy8EBzFwqVQ2Wnpe2vsWq4LVBuS0HudTmo2/01kosvDFWZ
UAh09NpT4TsBjTahcpAiiGDfOVbrMoFdX9X6XF0liP2HKqXZegIi9XaWwwpB
5o7clm79CURO3bCoXSSoZ/TaLErkWO99rrR2lkC7zfMztwg5dnG6jS0kBJua
y7y9/eVgmNbq6YgIjH6ciz3qJsdC25/vZocI2Hdzas+YyaH3rKO/4RU9P71n
Z8GsDDY6Jj2nXxK0Onmyps7JkMrxNU35ieDFF2Wub0/IcEKW0nK9mUBgMRex
eliGti6e2r1GgmnDnPu6tjJQlc2qoXp6vlqPoS2RYulC8FR8Na2n/cCW7Ewp
Jp646ieUEaS0lNrlJUrxo/W+p50ltD7ebOCdSCkq6zhGRsUEpfe+KaznSGH8
q/+/5fkEXRe79SQ6UjwuSXx6/1sCpvMBXfP8cXzHszawyiSoCuHc+iNzHDL3
/u3PLxNYprltajo/DrPZj4eDLhE4NzttdfYfh+XBGYOH/yJ4OehQruk6jqbS
6Q+OXCA4NG/H7Pl8HHEZdZG6aQRhu63NAjaOo/gXXnBZCsGb/ZbV2zTGIYoI
Co9PJlAIQoI7p8YQkDYNrySCNfv8okcrx+CWIT/LSiTQy/SKjcoag8D++4NG
5wlM2jzOz389ht4jjtdZ5wjcbBwuarHGsOQ87+FzluBIPDsrb80YXiRlRHHj
CSJrPsvZoRiFdX4g83EcAVe581bV81G862jvnYwlyGKyiqwrRrHDLuClBc0F
wYblbZdHoW7nnZh1hqCy0ODB/vBRhPV3fjETQ9Ak2Fg95DwK7YPMtCCaO9eu
44UyR7He+tRTyWmCYY5W06zaKNLrOvyjaVZmvN/KlY2gtX5gbA3Ny3zSod4+
gp26QQO8UwSa75Zf5NwdgY/ak44YmvVt3vZuTh/B+MTZvXY0m8bPDtwPGcGQ
iYlCn2Z2zaR4t+MIbOo1j2vS7K6USlu2jyDihvKoFs1HmJJJF0qCR4KNRdtp
jgwenO0blcD2ToLcnWZuYd/bo60SlETXrr1Cc5ag63+KUglUA7kaYpoL1j6n
4lIl2LR06ZkL/d5KDjRWj0mgiDvs0ElzU0bz37LsJXhBTB+F/aWfX6/70RYJ
1vc9sNhM72t4pWZT2YoYpYllxtM0K60rt5qJxfD+QTU3RO93Oe4e80mLGL8N
zOtN0H5o1pSY7S0SY0M8l7OO9k9feXt3V5IYdVzf4OAEWj/z28/9AsSQfTfm
20f7zQ7Othtni2E67RceSefDozDD6aS+GFfCEokpnZ9AwQW3xSURZqUVwg10
3qLXJh9IHxKhXWNiZVcqQTIn4ZB2owiuFpadyXRer2XEBOTfFuG3hWWdd+kE
RfzI40bnRZjS9jRqpPP/eCU0osZPBMXBk6q6K3R/4g7HdWwQIfvJzB5uDoGo
2jvRc16IOauw+UM36f5O7ksVvhKiVEtzf/Ztgj+NXC+F1wsRFa1aZ0b3USvY
8arqppD2K87ftpzg40Lb3OR4IT6Y/tKyt4Lg7wKrPA0fIT5k33y1UkVgu3Z3
8Q0LIRw7rumJeAQcjtldA12ara5uvt5C79c2lvWfP4aRsnck9V473f9PG2sy
BcNgP0yf7qH/n0+2EEv7hmEUaXG5xwcJOrRdWn7PH0ZF4kWPXhlB6Gq248Ok
Ydw8+8xl8XcCxlz/L8eODsNF1OBVoEHhvdCvGg3dh7GuLto5TI/C/wG2Dt+i
"]], LineBox[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]], LineBox[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]], LineBox[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwBoQNe/CFib1JlAgAAADkAAAACAAAAir1Cvv//779hs4R11Y0GwE7sa5js
8O+/wLdxcJSJBsARG5Vy2eHvvyEdoRhThQbAmHjnJrPD7796fClvz3wGwKYz
jI9mh++/vgBlKcRrBsDBqdVgzQ7vv8eH9XOdSQbA+JVoA5sd7r/76o8+DAUG
wGdujkg2O+y/CIxYOr56BcB+fiO+RSXov2OByf0SSATAWkBPPaVU5L//pJk9
Kh0DwGU4n1yvReS/ag3zE3MYA8BwMO97uTbkv6dn7pq6EwPAhiCPus0Y5L/D
95GrRQoDwLMAzzf23OO/AcD7aEv3AsAMwU4yR2Xjv8WJbJ4R0QLAvkFOJ+l1
4r8Zk3VnZoMCwMk5nkbzZuK/1f/TUXx+AsDUMe5l/VfivyLNUkWQeQLA6iGO
pBE64r/BDDUqsm8CwBcCziE6/uG//rz+Et1bAsBwwk0ci4bhv9ZSMvLHMwLA
I0NNES2X4L/K7tQJqeEBwKtgSpTyhuC/dl6utvvbAcAzfkcXuHbgv5eeK2ZK
1gHAQ7lBHUNW4L/B2o9w28oBwGMvNilZFeC/Un4jecmzAcBHNz6CCiffv9Fb
QAa8hAHAWHI4iJUG37/1AjPhwX4BwGitMo4g5t6/PJTdycF4AcCIIyeaNqXe
v1VsKhGvbAHAyA8QsmIj3r/JNUkQOlQBwEjo4eG6H92/576DA90hAcBYI9zn
Rf/cvwMY7+9oGwHAaF7W7dDe3L8QVuCv6hQBwIjUyvnmndy/cE/98s0HAcDI
wLMRExzcv7gnw60F7QDA2PutF577278ZTRaFMuYAwOg2qB0p29u/LALzyVDf
AMAIrZwpP5rbv1zoZXde0QDASZmFQWsY278UXkTxo7QAwFrUf0f299q/eGVs
E0KtAMBqD3pNgdfav0cYU+nIpQDAioVuWZeW2r/kaS2ziZYAwMpxV3HDFNq/
A5iDVJh2AMDarFF3TvTZv2vj3T89bgDA6udLfdnT2b/d0O8wtGUAwApeQInv
ktm/quXxZwFUAMAamTqPenLZv3hGmxjJSgDAKtQ0lQVS2b/clVe9REEAwEpK
KaEbEdm/hG0RBSAtAMDoOnAn0fLYv+wxpisUIwDAhiu3rYbU2L+Lo+UofRgA
wCQc/jM8tti/CHs08DMNAMDDDEW68ZfYv6Yfl/D6AADAYv2LQKd52L/qRcpr
zOb/vwDu0sZcW9i/+qF2nSfH/78BYmG3IUjYvzfsPXG8rv+/UXjZvg==
"]], LineBox[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]], LineBox[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]], LineBox[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ], {}}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -3.940556599296917}, \
{-0.9981596924766423, -3.9386716372323836`}, {-0.996319507402264, \
-3.9367866380612533`}, {-0.9926391372535077, -3.9330165282128426`}, \
{-0.9852783969559951, -3.9254758611825142`}, {-0.9705569163609696, \
-3.9103927272500703`}, {-0.9411139551709189, -3.880219174518301}, \
{-0.8822280327908175, -3.8198422288430267`}, {-0.754549857487248, \
-3.688787413629198}, {-0.6353326985790873, -3.5662262752280545`}, \
{-0.5184541070867436, -3.4458734950754937`}, {-0.3916691850510331, \
-3.3150797015232283`}, {-0.3794025698494181, -3.302411059269318}}],
Line[{{-0.3755760392371732, -3.298458586895177}, \
{-0.14511504322706312`, -3.0599146700220166`}, {-0.019223374459211767`, \
-2.9291502852651723`}, {0.0008253533415522574, -2.9082924147332117`}}],
Line[CompressedData["
1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAqDskl9oNcz9u9CcTBzwHwBXWB2Si
3sw/rwxva/VjBcCm/SIj+wrWP5diKEG8ZATAao6dalSA3T8P95OCnGkDwF6w
wu39y+I/MPUBlvlXAsDB55+cgZLmP44dzGdoVwHA6r8zYCyq6j/AEmKCvz8A
wCdX9c6uru4/b0pqJMpW/r9PHhCa8DbxPwza/UWXT/y/buEAVx0/8z9YhZPX
tBf6v6pLJg+iJPU/nSAUDW0A+L9JBqdRujL3P7IWMzuotfW/cqC+aT43+T9W
PLy2bW3zv7jhCn0aGfs/divBbLJD8b9ic7IaiiP9P78UrAPvv+2/KayOs1EL
/z+vzVDRQTDpvz3iAJHCdABAYTcXx7ab5L+XFmgNJngBQJjvd0tdAd+/gJ5p
hzVqAkDiXSthnzXVv5vOmMaOcANAK+dTkCKsxL+VDUdMe2IEQGmSBGmJI2W/
nbei+A==
"]],
Line[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAZjgRpiSNlP+lhKBhZ
YgVALYcd/uouxT+J/eoE3mYGQCq6F495YtU/uOxH7w5aB0ArtfDioTjfP6tL
cMR1SAhAZWaai0RO5D/QUsZeJksJQAqhCIisQ+k/hK229oI8CkDxPlpP8sbt
P2mw1FMpQgtA9urlliFI8T/dBo2uezYMQA+XS1+FefM/Fs0Q9AMmDUDSqkw3
gpf1P4E7wv7VKQ5AdnGJ54Lb9z96/Q0HVBwPQM3ZVnWV8vk/0rND6o0REECB
OESYrDD8P8kgZsaMkhBA/xlGvFpf/j+It1Wh4QoRQAU7Pw9dMgBAYCLcXluN
EUCBgkHcE0kBQP+2LxsrBxJAQVRqR9RLAkCAA+nMlX4SQHjfMtVMSANAGiQ5
YSUAE0Dp/CI/ClkEQHtuVvQKeRNAGY2D8I9WBUAgNmTIJnsTQB+nCf35WgVA
xP1xnEJ9E0C4yN34Y18FQA6NjUR6gRNA/Y2RvjdoBUCiq8SU6YkTQK7YD4Pe
eQVAyOgyNciaE0BjIZv3KJ0FQBZjD3aFvBNAMfhux7HjBUC7Kh1Kob4TQO8j
f80Z6AVAYPIqHr3AE0CIZ97DgewFQKqBRsb0xBNA1PqogVH1BUA9oH0WZM0T
QFuYRELwBgZAZN3rtkLeE0DOlzfeKioGQAml+Ype4BNAt/nJ7JEuBkCubAdf
euITQH1GJOz4MgZA9/siB7LmE0DEKk69xjsGQIoaWlch7xNANNpEqmFNBkAv
4mcrPfETQKRw5D/IUQZA1Kl1/1jzE0CriobGLlYGQB45kaeQ9xNASzzvpvte
BkDDAJ97rPkTQKRBxABiYwZAaMisT8j7E0AeprhLyGcGQAyQuiPk/RNA/5TT
hy5sBkCxV8j3//8TQPo0HLWUcAZArMQmEQ==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAir1Cvv//779vwPo0v9rUv07sa5js
8O+/8LbagpLe1L8RG5Vy2eHvv+ieYoJn4tS/mHjnJrPD7792mMCbFurUv6Yz
jI9mh++/5pFrXYn51L/BqdVgzQ7vvxmWk0/CGNW/+JVoA5sd7r/7tKHhi1jV
v2dujkg2O+y/TGKLatPd1b9+fiO+RSXovwOyUIq4HNe/WkBPPaVU5L/whi4C
DXTYv2U4n1yvReS/JsaBQbh52L9wMO97uTbkv4hbbfxmf9i/hiCPus0Y5L/4
3mP1zorYv7MAzzf23OO/NyrVZ8mh2L8MwU4yR2Xjv3Cp0Qhs0Ni/vkFOJ+l1
4r9ILCXEhzDZvyNDTREtl+C/D/ih8DT92b+rYEqU8obgvwGgty12BNq/M35H
F7h24L8tWKwPvQvav0O5QR1DVuC/3Pjn5Fsa2r9jLzYpWRXgv8eXUszeN9q/
Rzc+ggon37+vFjSWAXTav0jo4eG6H92/GJBvWgDx2r9YI9znRf/cv6bzmMEI
+dq/aF7W7dDe3L8ZqjESGAHbv4jUyvnmndy/IGbDn0sR27/IwLMRExzcvwrX
XcQHMtu/SZmFQWsY278SVbZo33Tbv0pKKaEbEdm/QEII6G0A3L/oOnAn0fLY
v7DVXpDTCNy/hiu3rYbU2L/AHbnNQBHcv8MMRbrxl9i/Cbk4QDIi3L8AYmG3
IUjYv2RaHfKzONy/G0wqoA==
"]],
Line[CompressedData["
1:eJwVyX0wmwcAx3Evcc5CT73US21H2brZ6KYklM5L20OQbraitk5vql7G1prh
qHdHnLc4QhUr6n0zr1Uq+sMosjUlEsMakjxPYsZWi6KrYt0f3/v88bX48hv/
MDUVFZXTr/rfDeFXhte05pFYaOXBYjyB3heaUb96ilDfdHLkwEyMTiZzI+Md
ESocI99MeEsMpisnnk4VIZuu7vn8hBj55pZZ9XwhFBZ8I+MzYlCID6sTLwiR
rdMSMB0pxnZ4PN8qdBYFjX+y6QNiLFyX26WkzuBCiHZ5+eUlXG/PSW+9NIMb
jHmHkOglaK0e54tcZmDzd4MbPXEJTpejIm13pxGdr+t9hL2ESubT28sJ0xD5
6X7AGV5CT4DSJFvGh7JzFCNWy+idMuHrTPJAVu19HbW7DNLt88irOTx4urjK
xygSGPR/T8FZHkZawt6QUCWIa7J0vjYyhXFJkcTJVAKHLJsWwf1JrPet16bR
Jehzcc+saH8IZcjGdlqcBPc6ImgWpaNYy1PkUF5IsM14HvCj/yj2DRNTeWpS
2CtyE+h6r/6/adw7VCm6zZr7/UpGoJcd2FzyuhQ/5clPJRUPQ+cxxyvcQwrv
ibHUJqMhTEzrt0WwpXi4R4BbzkVwWPih6ltSnLVXV5015KJ1Nub0WoMUbnXu
WQf6gwhaK3i2PCAFLflBbpDuALxK7xY4yaWwOtHPfk3rLn7gqFizPGSoD/tt
xpzVC/ue0IoVpgzm1dt6dM1eXFSvNYv7TIajWg6cUI0eeBPd1ke/k0GP6Krk
qnaB6vbp4lybDGyTmUVBeieEs/27s/0ymNZK6IKDDnQZNu8dmpDhcNIll3df
tmOOxrNmkDLs2wSeEz9rRUjZwuOTxwi8uMWZ0NpsgfkverkpdgS2NIXetH+a
UaPYabU8Q2Bd+hGz+K9GFE0GGVeHEVhhFk8PrjVgjuUbmpxAQDb4yP+P1Tv4
tvG8z0wegQUOI9BdUQfHLO4xSicBoVreQgxZC23nzvytnwnULhfdsx+/DVFr
1E7OPIHCUtawYqgKoftDB2PqJLJjNMZd71dCtSfjY44piSTPzKmbfRUIuGHE
YNqRiNhNFjA6StG5KQhcv0LCw3bsdx9+CZwXStjOqSRoo8a8ysVibD2yNhDd
JLF6vPVJlXEBeDTqkfVeEtWFTk9rAljIMFIUjApInN+cUq0tywYt1lHZoSSh
djHYoF6QDlfjjrL3DOWIShH5eVkkIX68b0d+So5pr+1Y35pYWAk1D69ckSP6
bdv36+yugmIdrFCWySF5+WC1sc0XPtRu51S+HNqfaPDZVB/XTEUxRa6vwH/c
US0K
"]],
Line[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]],
Line[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -1.488156762814999}, \
{-0.9981596924766423, -1.4871433606953322`}, {-0.996319507402264, \
-1.4861297170016188`}, {-0.9926391372535077, -1.4841017011389381`}, \
{-0.9852783969559951, -1.4800427289585925`}, {-0.9705569163609696, \
-1.4719128060184357`}, {-0.9411139551709189, -1.455603239400245}, \
{-0.8822280327908175, -1.422769505337342}, {-0.754549857487248, \
-1.3504137287628426`}, {-0.6353326985790873, -1.2809871039463332`}, \
{-0.5184541070867436, -1.2104590771661408`}, {-0.3916691850510331, \
-1.1298241549583612`}, {-0.3794025698494181, -1.1217098390817606`}}],
Line[CompressedData["
1:eJwVxXtQywEAB/A1j27KYeY0iUbOcOVxs5V1FKHHas5jehhJoeKoc8cVSaU2
pOhBEq1TqSuZkqT6ZtJj7qbNQkTRa7+9fvOonPL843MfVtix7RFUCoWy5p//
W7TRc47T3qKltPEoU/cFMZWpiWViNURman0qLKARS1Vd7mos0rc6Sx9b4BYa
Feky3onvoSPq5EoL8gLI270nO6HpjNcG5FhQLfrKTPmsgtzVY8PqcAtqOpiq
6e1KsD7Rrl74RWLAY0/kwVQlBg1vyy9aSDDqbk2GlxLBgh2CpH4SJ0oW848/
7cCyBbZnhR0k1iY739XUt4N/iYXwbBK17p5J1ypbcU4YKRWySTyqOsxlZSkw
IEmin95sxqjvD1HFdgUqmhzYU3lmcIbSTvLoCrBq8x0S2GY8mF9a53/lKewc
r8/k2phxTzq4Li6jGdVyqWP9SxN82loSSuY2QmkRq+7sNKH1Vz8achuQWrZK
qPUywYszyerVnAa4+TnwCY4JHjLP5D+zn8AsEO5rZpjAjW9KC5z5GNFP3qyc
/soIp5V1mdNoDzGm48ze6mNEUcQbtaOkBiWfX4Tt5RnheHOUzrOuwcJNI30+
S4ywp63NOTClGindm+S5FCPo/fK8Bis5ml39+ZoaAzKZ6neaxPsYntfKFskM
mFfYx9P8qYJfCJFSkG7ArDix+4qJSlgrqFOjIwz47bx784fvZdBOXCwummXA
zxs5bbRvd8FtS8wdGNdjxFrrw/1Simek/YkXg3oYP20LyDAVI0oVwoip06M7
x3e355AMB6gVCbsC9dBSpd1HBwrxY3mo7Od6PQp7Lz/iPL8Np6G5i62W6JGe
JWkeasxHe2DvwjEzgcPj8Rrfqiy8nk8v8D5FYKNLy3s/1RXYkPqYsSACXIWd
Mu9dBiQMvqt4HQFiaVlPvt0l+NvcaNzCJHAz3Y0sEEmw8WOwbeyoDsJvHVaF
2Sk41GZdkabWgRoUzCjSJOJ86ETAjHIdos50+Xuz4pAp7YoNOatDp/dorKAg
FmG1g4v2b9PhCNtllWzNQQRNOhcsttehb6KJKC4XgBJ+X/S+Zxi2O6aoMm38
NuQ77/PquTqMv0AswxE=
"]],
Line[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]],
Line[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwVlHs81Okex2dZrZdjlbak1Y1ZhrOpY1lmkTjWbSoiFEXWpUUlpAxedFSk
tLRtcpfalMKyo9y29RmcdqV1ORqXubjMjMYQ5uzmdlae3/ntH8/reb3/+j6f
7+fzeQxDz/hEqDEYjJP0+eu+9vM/WylKhSVz35D3Sxh8z5mTBTP/VcF7m7Hl
qSIGX9cgL14oVcF/g8JNUMDgF3AnTeo7VDC14LEr8hj8B5bXc09cUeGTfQtO
nFwGv+3RQEi3jgpBzUMedy8y+Mt5kerFW+dgYJqnmxnF4H8dk+NubTeDxWKr
wS/ZDH5aGrPVxViJ2P43l6MeUMg032GvrqdEp6V7Xsn3FL6RbGnhr1Hio71O
C33lFEps9RrslJNg+f1au6eYQsui5g8WVZOYXs0MY92gsBAzV7rVYhJT3L5s
h2QKp443py7YK3C7y+bSLS8KCToNKzxzBd5j8z9c3k8h5WdeUuw2BYLvNBwL
4lC4ZlB97g31Gqzy8EBzFwqVQ2Wnpe2vsWq4LVBuS0HudTmo2/01kosvDFWZ
UAh09NpT4TsBjTahcpAiiGDfOVbrMoFdX9X6XF0liP2HKqXZegIi9XaWwwpB
5o7clm79CURO3bCoXSSoZ/TaLErkWO99rrR2lkC7zfMztwg5dnG6jS0kBJua
y7y9/eVgmNbq6YgIjH6ciz3qJsdC25/vZocI2Hdzas+YyaH3rKO/4RU9P71n
Z8GsDDY6Jj2nXxK0Onmyps7JkMrxNU35ieDFF2Wub0/IcEKW0nK9mUBgMRex
eliGti6e2r1GgmnDnPu6tjJQlc2qoXp6vlqPoS2RYulC8FR8Na2n/cCW7Ewp
Jp646ieUEaS0lNrlJUrxo/W+p50ltD7ebOCdSCkq6zhGRsUEpfe+KaznSGH8
q/+/5fkEXRe79SQ6UjwuSXx6/1sCpvMBXfP8cXzHszawyiSoCuHc+iNzHDL3
/u3PLxNYprltajo/DrPZj4eDLhE4NzttdfYfh+XBGYOH/yJ4OehQruk6jqbS
6Q+OXCA4NG/H7Pl8HHEZdZG6aQRhu63NAjaOo/gXXnBZCsGb/ZbV2zTGIYoI
Co9PJlAIQoI7p8YQkDYNrySCNfv8okcrx+CWIT/LSiTQy/SKjcoag8D++4NG
5wlM2jzOz389ht4jjtdZ5wjcbBwuarHGsOQ87+FzluBIPDsrb80YXiRlRHHj
CSJrPsvZoRiFdX4g83EcAVe581bV81G862jvnYwlyGKyiqwrRrHDLuClBc0F
wYblbZdHoW7nnZh1hqCy0ODB/vBRhPV3fjETQ9Ak2Fg95DwK7YPMtCCaO9eu
44UyR7He+tRTyWmCYY5W06zaKNLrOvyjaVZmvN/KlY2gtX5gbA3Ny3zSod4+
gp26QQO8UwSa75Zf5NwdgY/ak44YmvVt3vZuTh/B+MTZvXY0m8bPDtwPGcGQ
iYlCn2Z2zaR4t+MIbOo1j2vS7K6USlu2jyDihvKoFs1HmJJJF0qCR4KNRdtp
jgwenO0blcD2ToLcnWZuYd/bo60SlETXrr1Cc5ag63+KUglUA7kaYpoL1j6n
4lIl2LR06ZkL/d5KDjRWj0mgiDvs0ElzU0bz37LsJXhBTB+F/aWfX6/70RYJ
1vc9sNhM72t4pWZT2YoYpYllxtM0K60rt5qJxfD+QTU3RO93Oe4e80mLGL8N
zOtN0H5o1pSY7S0SY0M8l7OO9k9feXt3V5IYdVzf4OAEWj/z28/9AsSQfTfm
20f7zQ7Othtni2E67RceSefDozDD6aS+GFfCEokpnZ9AwQW3xSURZqUVwg10
3qLXJh9IHxKhXWNiZVcqQTIn4ZB2owiuFpadyXRer2XEBOTfFuG3hWWdd+kE
RfzI40bnRZjS9jRqpPP/eCU0osZPBMXBk6q6K3R/4g7HdWwQIfvJzB5uDoGo
2jvRc16IOauw+UM36f5O7ksVvhKiVEtzf/Ztgj+NXC+F1wsRFa1aZ0b3USvY
8arqppD2K87ftpzg40Lb3OR4IT6Y/tKyt4Lg7wKrPA0fIT5k33y1UkVgu3Z3
8Q0LIRw7rumJeAQcjtldA12ara5uvt5C79c2lvWfP4aRsnck9V473f9PG2sy
BcNgP0yf7qH/n0+2EEv7hmEUaXG5xwcJOrRdWn7PH0ZF4kWPXhlB6Gq248Ok
Ydw8+8xl8XcCxlz/L8eODsNF1OBVoEHhvdCvGg3dh7GuLto5TI/C/wG2Dt+i
"]],
Line[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]],
Line[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBoQNe/CFib1JlAgAAADkAAAACAAAAir1Cvv//779hs4R11Y0GwE7sa5js
8O+/wLdxcJSJBsARG5Vy2eHvvyEdoRhThQbAmHjnJrPD7796fClvz3wGwKYz
jI9mh++/vgBlKcRrBsDBqdVgzQ7vv8eH9XOdSQbA+JVoA5sd7r/76o8+DAUG
wGdujkg2O+y/CIxYOr56BcB+fiO+RSXov2OByf0SSATAWkBPPaVU5L//pJk9
Kh0DwGU4n1yvReS/ag3zE3MYA8BwMO97uTbkv6dn7pq6EwPAhiCPus0Y5L/D
95GrRQoDwLMAzzf23OO/AcD7aEv3AsAMwU4yR2Xjv8WJbJ4R0QLAvkFOJ+l1
4r8Zk3VnZoMCwMk5nkbzZuK/1f/TUXx+AsDUMe5l/VfivyLNUkWQeQLA6iGO
pBE64r/BDDUqsm8CwBcCziE6/uG//rz+Et1bAsBwwk0ci4bhv9ZSMvLHMwLA
I0NNES2X4L/K7tQJqeEBwKtgSpTyhuC/dl6utvvbAcAzfkcXuHbgv5eeK2ZK
1gHAQ7lBHUNW4L/B2o9w28oBwGMvNilZFeC/Un4jecmzAcBHNz6CCiffv9Fb
QAa8hAHAWHI4iJUG37/1AjPhwX4BwGitMo4g5t6/PJTdycF4AcCIIyeaNqXe
v1VsKhGvbAHAyA8QsmIj3r/JNUkQOlQBwEjo4eG6H92/576DA90hAcBYI9zn
Rf/cvwMY7+9oGwHAaF7W7dDe3L8QVuCv6hQBwIjUyvnmndy/cE/98s0HAcDI
wLMRExzcv7gnw60F7QDA2PutF577278ZTRaFMuYAwOg2qB0p29u/LALzyVDf
AMAIrZwpP5rbv1zoZXde0QDASZmFQWsY278UXkTxo7QAwFrUf0f299q/eGVs
E0KtAMBqD3pNgdfav0cYU+nIpQDAioVuWZeW2r/kaS2ziZYAwMpxV3HDFNq/
A5iDVJh2AMDarFF3TvTZv2vj3T89bgDA6udLfdnT2b/d0O8wtGUAwApeQInv
ktm/quXxZwFUAMAamTqPenLZv3hGmxjJSgDAKtQ0lQVS2b/clVe9REEAwEpK
KaEbEdm/hG0RBSAtAMDoOnAn0fLYv+wxpisUIwDAhiu3rYbU2L+Lo+UofRgA
wCQc/jM8tti/CHs08DMNAMDDDEW68ZfYv6Yfl/D6AADAYv2LQKd52L/qRcpr
zOb/vwDu0sZcW9i/+qF2nSfH/78BYmG3IUjYvzfsPXG8rv+/UXjZvg==
"]],
Line[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]],
Line[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]}, "Charting`Private`Tag#1"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-3.940556599296917,
2.8049711369736743`}},
"Frame" -> {{False, False}, {False, False}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio},
"Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-3.940556599296917, 2.8049711369736743`}},
"Frame" -> {{False, False}, {False, False}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio},
"Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -3.940556599296917}, \
{-0.9981596924766423, -3.9386716372323836`}, {-0.996319507402264, \
-3.9367866380612533`}, {-0.9926391372535077, -3.9330165282128426`}, \
{-0.9852783969559951, -3.9254758611825142`}, {-0.9705569163609696, \
-3.9103927272500703`}, {-0.9411139551709189, -3.880219174518301}, \
{-0.8822280327908175, -3.8198422288430267`}, {-0.754549857487248, \
-3.688787413629198}, {-0.6353326985790873, -3.5662262752280545`}, \
{-0.5184541070867436, -3.4458734950754937`}, {-0.3916691850510331, \
-3.3150797015232283`}, {-0.3794025698494181, -3.302411059269318}}],
Line[{{-0.3755760392371732, -3.298458586895177}, \
{-0.14511504322706312`, -3.0599146700220166`}, {-0.019223374459211767`, \
-2.9291502852651723`}, {0.0008253533415522574, -2.9082924147332117`}}],
Line[CompressedData["
1:eJwBYQGe/iFib1JlAgAAABUAAAACAAAAqDskl9oNcz9u9CcTBzwHwBXWB2Si
3sw/rwxva/VjBcCm/SIj+wrWP5diKEG8ZATAao6dalSA3T8P95OCnGkDwF6w
wu39y+I/MPUBlvlXAsDB55+cgZLmP44dzGdoVwHA6r8zYCyq6j/AEmKCvz8A
wCdX9c6uru4/b0pqJMpW/r9PHhCa8DbxPwza/UWXT/y/buEAVx0/8z9YhZPX
tBf6v6pLJg+iJPU/nSAUDW0A+L9JBqdRujL3P7IWMzuotfW/cqC+aT43+T9W
PLy2bW3zv7jhCn0aGfs/divBbLJD8b9ic7IaiiP9P78UrAPvv+2/KayOs1EL
/z+vzVDRQTDpvz3iAJHCdABAYTcXx7ab5L+XFmgNJngBQJjvd0tdAd+/gJ5p
hzVqAkDiXSthnzXVv5vOmMaOcANAK+dTkCKsxL+VDUdMe2IEQGmSBGmJI2W/
nbei+A==
"]],
Line[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAZjgRpiSNlP+lhKBhZ
YgVALYcd/uouxT+J/eoE3mYGQCq6F495YtU/uOxH7w5aB0ArtfDioTjfP6tL
cMR1SAhAZWaai0RO5D/QUsZeJksJQAqhCIisQ+k/hK229oI8CkDxPlpP8sbt
P2mw1FMpQgtA9urlliFI8T/dBo2uezYMQA+XS1+FefM/Fs0Q9AMmDUDSqkw3
gpf1P4E7wv7VKQ5AdnGJ54Lb9z96/Q0HVBwPQM3ZVnWV8vk/0rND6o0REECB
OESYrDD8P8kgZsaMkhBA/xlGvFpf/j+It1Wh4QoRQAU7Pw9dMgBAYCLcXluN
EUCBgkHcE0kBQP+2LxsrBxJAQVRqR9RLAkCAA+nMlX4SQHjfMtVMSANAGiQ5
YSUAE0Dp/CI/ClkEQHtuVvQKeRNAGY2D8I9WBUAgNmTIJnsTQB+nCf35WgVA
xP1xnEJ9E0C4yN34Y18FQA6NjUR6gRNA/Y2RvjdoBUCiq8SU6YkTQK7YD4Pe
eQVAyOgyNciaE0BjIZv3KJ0FQBZjD3aFvBNAMfhux7HjBUC7Kh1Kob4TQO8j
f80Z6AVAYPIqHr3AE0CIZ97DgewFQKqBRsb0xBNA1PqogVH1BUA9oH0WZM0T
QFuYRELwBgZAZN3rtkLeE0DOlzfeKioGQAml+Ype4BNAt/nJ7JEuBkCubAdf
euITQH1GJOz4MgZA9/siB7LmE0DEKk69xjsGQIoaWlch7xNANNpEqmFNBkAv
4mcrPfETQKRw5D/IUQZA1Kl1/1jzE0CriobGLlYGQB45kaeQ9xNASzzvpvte
BkDDAJ97rPkTQKRBxABiYwZAaMisT8j7E0AeprhLyGcGQAyQuiPk/RNA/5TT
hy5sBkCxV8j3//8TQPo0HLWUcAZArMQmEQ==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAir1Cvv//779vwPo0v9rUv07sa5js
8O+/8LbagpLe1L8RG5Vy2eHvv+ieYoJn4tS/mHjnJrPD7792mMCbFurUv6Yz
jI9mh++/5pFrXYn51L/BqdVgzQ7vvxmWk0/CGNW/+JVoA5sd7r/7tKHhi1jV
v2dujkg2O+y/TGKLatPd1b9+fiO+RSXovwOyUIq4HNe/WkBPPaVU5L/whi4C
DXTYv2U4n1yvReS/JsaBQbh52L9wMO97uTbkv4hbbfxmf9i/hiCPus0Y5L/4
3mP1zorYv7MAzzf23OO/NyrVZ8mh2L8MwU4yR2Xjv3Cp0Qhs0Ni/vkFOJ+l1
4r9ILCXEhzDZvyNDTREtl+C/D/ih8DT92b+rYEqU8obgvwGgty12BNq/M35H
F7h24L8tWKwPvQvav0O5QR1DVuC/3Pjn5Fsa2r9jLzYpWRXgv8eXUszeN9q/
Rzc+ggon37+vFjSWAXTav0jo4eG6H92/GJBvWgDx2r9YI9znRf/cv6bzmMEI
+dq/aF7W7dDe3L8ZqjESGAHbv4jUyvnmndy/IGbDn0sR27/IwLMRExzcvwrX
XcQHMtu/SZmFQWsY278SVbZo33Tbv0pKKaEbEdm/QEII6G0A3L/oOnAn0fLY
v7DVXpDTCNy/hiu3rYbU2L/AHbnNQBHcv8MMRbrxl9i/Cbk4QDIi3L8AYmG3
IUjYv2RaHfKzONy/G0wqoA==
"]],
Line[CompressedData["
1:eJwVyX0wmwcAx3Evcc5CT73US21H2brZ6KYklM5L20OQbraitk5vql7G1prh
qHdHnLc4QhUr6n0zr1Uq+sMosjUlEsMakjxPYsZWi6KrYt0f3/v88bX48hv/
MDUVFZXTr/rfDeFXhte05pFYaOXBYjyB3heaUb96ilDfdHLkwEyMTiZzI+Md
ESocI99MeEsMpisnnk4VIZuu7vn8hBj55pZZ9XwhFBZ8I+MzYlCID6sTLwiR
rdMSMB0pxnZ4PN8qdBYFjX+y6QNiLFyX26WkzuBCiHZ5+eUlXG/PSW+9NIMb
jHmHkOglaK0e54tcZmDzd4MbPXEJTpejIm13pxGdr+t9hL2ESubT28sJ0xD5
6X7AGV5CT4DSJFvGh7JzFCNWy+idMuHrTPJAVu19HbW7DNLt88irOTx4urjK
xygSGPR/T8FZHkZawt6QUCWIa7J0vjYyhXFJkcTJVAKHLJsWwf1JrPet16bR
Jehzcc+saH8IZcjGdlqcBPc6ImgWpaNYy1PkUF5IsM14HvCj/yj2DRNTeWpS
2CtyE+h6r/6/adw7VCm6zZr7/UpGoJcd2FzyuhQ/5clPJRUPQ+cxxyvcQwrv
ibHUJqMhTEzrt0WwpXi4R4BbzkVwWPih6ltSnLVXV5015KJ1Nub0WoMUbnXu
WQf6gwhaK3i2PCAFLflBbpDuALxK7xY4yaWwOtHPfk3rLn7gqFizPGSoD/tt
xpzVC/ue0IoVpgzm1dt6dM1eXFSvNYv7TIajWg6cUI0eeBPd1ke/k0GP6Krk
qnaB6vbp4lybDGyTmUVBeieEs/27s/0ymNZK6IKDDnQZNu8dmpDhcNIll3df
tmOOxrNmkDLs2wSeEz9rRUjZwuOTxwi8uMWZ0NpsgfkverkpdgS2NIXetH+a
UaPYabU8Q2Bd+hGz+K9GFE0GGVeHEVhhFk8PrjVgjuUbmpxAQDb4yP+P1Tv4
tvG8z0wegQUOI9BdUQfHLO4xSicBoVreQgxZC23nzvytnwnULhfdsx+/DVFr
1E7OPIHCUtawYqgKoftDB2PqJLJjNMZd71dCtSfjY44piSTPzKmbfRUIuGHE
YNqRiNhNFjA6StG5KQhcv0LCw3bsdx9+CZwXStjOqSRoo8a8ysVibD2yNhDd
JLF6vPVJlXEBeDTqkfVeEtWFTk9rAljIMFIUjApInN+cUq0tywYt1lHZoSSh
djHYoF6QDlfjjrL3DOWIShH5eVkkIX68b0d+So5pr+1Y35pYWAk1D69ckSP6
bdv36+yugmIdrFCWySF5+WC1sc0XPtRu51S+HNqfaPDZVB/XTEUxRa6vwH/c
US0K
"]],
Line[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]],
Line[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -1.488156762814999}, \
{-0.9981596924766423, -1.4871433606953322`}, {-0.996319507402264, \
-1.4861297170016188`}, {-0.9926391372535077, -1.4841017011389381`}, \
{-0.9852783969559951, -1.4800427289585925`}, {-0.9705569163609696, \
-1.4719128060184357`}, {-0.9411139551709189, -1.455603239400245}, \
{-0.8822280327908175, -1.422769505337342}, {-0.754549857487248, \
-1.3504137287628426`}, {-0.6353326985790873, -1.2809871039463332`}, \
{-0.5184541070867436, -1.2104590771661408`}, {-0.3916691850510331, \
-1.1298241549583612`}, {-0.3794025698494181, -1.1217098390817606`}}],
Line[CompressedData["
1:eJwVxXtQywEAB/A1j27KYeY0iUbOcOVxs5V1FKHHas5jehhJoeKoc8cVSaU2
pOhBEq1TqSuZkqT6ZtJj7qbNQkTRa7+9fvOonPL843MfVtix7RFUCoWy5p//
W7TRc47T3qKltPEoU/cFMZWpiWViNURman0qLKARS1Vd7mos0rc6Sx9b4BYa
Feky3onvoSPq5EoL8gLI270nO6HpjNcG5FhQLfrKTPmsgtzVY8PqcAtqOpiq
6e1KsD7Rrl74RWLAY0/kwVQlBg1vyy9aSDDqbk2GlxLBgh2CpH4SJ0oW848/
7cCyBbZnhR0k1iY739XUt4N/iYXwbBK17p5J1ypbcU4YKRWySTyqOsxlZSkw
IEmin95sxqjvD1HFdgUqmhzYU3lmcIbSTvLoCrBq8x0S2GY8mF9a53/lKewc
r8/k2phxTzq4Li6jGdVyqWP9SxN82loSSuY2QmkRq+7sNKH1Vz8achuQWrZK
qPUywYszyerVnAa4+TnwCY4JHjLP5D+zn8AsEO5rZpjAjW9KC5z5GNFP3qyc
/soIp5V1mdNoDzGm48ze6mNEUcQbtaOkBiWfX4Tt5RnheHOUzrOuwcJNI30+
S4ywp63NOTClGindm+S5FCPo/fK8Bis5ml39+ZoaAzKZ6neaxPsYntfKFskM
mFfYx9P8qYJfCJFSkG7ArDix+4qJSlgrqFOjIwz47bx784fvZdBOXCwummXA
zxs5bbRvd8FtS8wdGNdjxFrrw/1Simek/YkXg3oYP20LyDAVI0oVwoip06M7
x3e355AMB6gVCbsC9dBSpd1HBwrxY3mo7Od6PQp7Lz/iPL8Np6G5i62W6JGe
JWkeasxHe2DvwjEzgcPj8Rrfqiy8nk8v8D5FYKNLy3s/1RXYkPqYsSACXIWd
Mu9dBiQMvqt4HQFiaVlPvt0l+NvcaNzCJHAz3Y0sEEmw8WOwbeyoDsJvHVaF
2Sk41GZdkabWgRoUzCjSJOJ86ETAjHIdos50+Xuz4pAp7YoNOatDp/dorKAg
FmG1g4v2b9PhCNtllWzNQQRNOhcsttehb6KJKC4XgBJ+X/S+Zxi2O6aoMm38
NuQ77/PquTqMv0AswxE=
"]],
Line[CompressedData["
1:eJwVlHs01HsXxsclkUKiKCW3IpwTyVRqtoqQW6goFUd1jnSP7jfUqVmSjspL
cr/lSEPRxSUbb+nFHJEaL6Vm5vedHzPDaDoJBzOv949n7fVZzz9772etxyzi
aOB+VQaDcWFK/58+MovUnlnRMNF8UO7cRiODo+Lo1XAVYi07bXlNNPp6Hjf1
uMKGDxMZQWGvaEwX8me6uydCNUdhJm6YYm1+dA5Jhut6NZWKWhqdXNEvI/Ie
aH9IaXCooLHyPUt186oCqNTv//E8m0aPmvSLzdaF4BAV1OqdSWNP7o9RT+Mi
EIZF+vPTaVQ5yhny+OcBMJZLI7X/RaOf1qJe99qH8LZdKT+QSOP3LMXHxTmP
YR5lSDzP0pjU2fvMxLIKqHD90ttBNH5NNw+OK6qCT4e5QdoBNAZF/DYisq6G
k5oTgqt+NBrJvzLL7GvA02rN03NeNObqqFetZ76E840i/+MwtY9lyu4VhfUQ
eDnK9IYtjbKwmrCQF68gTP/j49PqNBrypu/L+8yF6nSt5YerRFg0aW4xPoMH
c4psNtuvEaG4z5Xdbs2D+jJrk/BVIrR7t2ewcBMPeNrxtnedRfikKP35lnge
dEp0pjNWiLDOX9+naIwHd2oDOmlbEXblqpwM6O+CS2GeHfKFItTcxG968Lob
Wud819VQE6H3coXtRaobWtrOyiJURJg03yQ5UKUHwjMNHRuUBA2GgkMn1/ZA
38yiwbgJgovT3g4FVvbAD27rDoMfBFdL6owUeR/B5Y3M/JKYYFRSZtTW2F6Q
Jtt7HukgWGH/i2ZFTi8M6Bs96nlLcIJrWTS7oRee1UeJPNsI3tIuFbSpfAZ+
+DreslaClezqEK8rn6El445A/TVBZXzXJta1L2Dn7tOjX0WwpYY926CJD96n
nEyy8wgeuREVvpHHh7IrpWc9cwnOCfUpO0HzQUN/fvvf2QR3/aPr26EhgA3a
O6O2ZBIcWpXKTvIQwIcY2GuWNnXfs0KlZrMAgionH5knEdxT3jg42SqEG6Hu
DrnnCa61ujQx76MQyhglWzPOETROX63tKBFCHtvB4t5Zgu+vlFv/qkkB+NdW
p54muDk4a2+bGwUJYJtZHE2QqTjbnfWSgr82/jZ33iGCej4Or6GMwKxbijSd
PQRl9QOdO+oIqI32eKzeTbB1ZbEw+i8CtGqN5f5dBK+ZmjKKpQTWnmT51O+c
+t+3mS561iJIvLvv0pVggv33+sv5OSIwD74tWxlAsKEvOyPuNg0pQodhhRtB
cybHg59HwzaNuD7bKY6/VvuNVUGD0mkiPmQjQTerbs+JThrOs4J3lq8n2BSh
P3zKsA8+x5RLg1kEub1XfQ+l9YF7YVrRUSZBO/s7oy3FffD4ItP1hjPBmxdy
822q+qC5I7O9YCVBvwV1Y3R3H6zeNBjUsYJgR8hI4S8L+mHtTUvmzOUEeZ0H
FNuz+sHNWp0pWUrQ2eLMn085/VB7v/HL+yUEU09c22qA/fBWwl1dY0UwZHZ+
SceXfrh39E34OQuCH/0+bfcxE8PiL/vV6hZN5ZMlUXnoIAatxHWNcQsJZgyO
lmptEIMNQyYGk6k8Ew3V3kSI4cnXLG6JMUF+s1/Z+oIp6+k5H2cDgq7Gu3fm
VIrBYMyp/j/6BHMjD05TvhJD188X/LfOJhgxnR1aKxJDSYzewu06BEVuDdOZ
SyUQwjHVYWgSlOCKcLsSCeCr2+WtYxR6NMkOsKolIL4fWkePUFjA/TN6S4sE
Eo5OSEaHKdzTbXo9RiIBTmeZneo3Ct990+bULpOCY3bFjkIxhT+PNT1vWyOd
6qP54af6KExUxjXwN0vBqy/k2ToRhZtmjr5XPygFq7Z4BYdPYZUVGfd5KIWR
wVVy4y4K59plTwurkUKmQUzE/fcUnnDcqXu8VQpawy739N9RaAft5ilSKVhW
u1gLuRTmhNR69doOgFGvsFG9kUL2jbuph0sHwLc4+degEgpFyf65l2sHYJvS
YMZPDyjckDbjYTJ3AEyMtdYo8imcKIitezowADe9bbZfzqTwWN0h0aTdILAO
s4Km/UFhiNxtRdKjQTApv4U20RQuDR5u43BkEHHCVn+DI4W1qglpD1/KYK5m
cZvjTxQGchZFFHNlwM4csjdZRuGlaZ7DuRIZnNJ1WthtRiGvIn1BypIh2PXJ
8OWkHoVX9Vwjz2cNwb/Xyg1UZUKU73vNsPT4Curj3GOn8oXov0gv/auzHASC
24GVSgHuEqj5zgY5sFzIH/wxAUYWjCgdPOQwxzHlg+Z3AcYu+7I/OlgO46HX
S337BfjEmePw47QcRi63LCppF+Bcf5/m8Rdy2Gu8gK7KEeDny+xRDZdv0C5v
XpPAEuARASN4IfwNft7RbKNoPpZ4L9HNsxwGnfKw38+096KXxoOAascRcFo3
7/jI/h48kVN3gMUcg1eNhFum1YUvBDMuzjcehyiHI2aMoU6MiH4yP8FiEpS6
Nvvu5rajTWlSRYC2EnRa404abWzFdUJGcmMMw9VI6qvIv/MaU+dGzlpyRsW1
g/mk5PdtiLFZB66vjFJ1jT/EjM3uqMT7bWlNScfUXDW8RcTtv/mYMsvD53yE
umu8QXDCeks3/B9Sfi/8
"]],
Line[CompressedData["
1:eJwVUnlcTIsXH2mX5t65v6Ii1UupCCGUnKPJVEobiaJIUhTK1iJCpVJNMT1K
0mJ5KiGpRMvza5kkiTxC6713UOGHlCS9+f1xPudz/jjnux1d371uO2Q4HE6s
tP7fl9bERrvukkV/wiNxlb4NfNg2Z/omXzn85FAsvOdxGRLG+2W7/OUxeeNC
rxmcu1AxaPtZ1VMB+eatfM2zNVDosK/uoJ0iupSfDaw1r4enbg3eBg5KuHZ7
fuCQVzPE3CgbPrFCGaubT5i7XH0Kgbfa1xlZT8ErzlWO/O/PoVM+uTjSXAVP
FNFejlovQb2FGJpsMBUPPH4+tGD5azhu+fD3CyNVHB45JxeW0QkR41MV1s/g
Yn6a8J3Gxh7Qo/kGe3W4OHRk36vr3j3QLA5fnajPxVJtO/6yHT0wQ8SerJ3L
xVdOSXtcQnugxriKM8+KiwWFR4OCk3pAdmPQTzlvLgoNyvjra3tAWPLoY/kl
LsZsqNDKM+iFZ3f4/ckkgcNJJXdXDvRCnFUpm0YReC3bZAnxpRcsGvV709UI
zCiV7+0c7oW813KvLmoQuHbam5hgmT4ImSSuv6FL4N6l73w3a/QB4eyY27KQ
QJ55N2e3oA+c+tdvnOpGYGWMnuBFVh/IHKhfR64ncF2RHquS1wdl40uc1TYQ
uPpEfOzKa32gTU4TzPQk0LSs7LDwdh98XNqxaJ4vgSUPZrWz9X2QFLuFuzaU
QKelikdcP/ZBk45/Q9IZAi0FJqtOmdOg392msUdE4EHV7pZECxqOXrQKdv6T
QP2wqoq4lTQs1lT7Dy+TQP5cI9+dAhpyqLpt53IJTDhtqv3InYYweb3x3FsE
bp+4/UJ+Pw3P65JdTpYQ+OR+8N74QzSYnhzN9yslsOLZlMBJETQwE0/XGFYQ
ONJ6za4jmgaX0WPni2oIDOI8CZ6VQsOcwc5F5U8IlNFoqP91lYaTBfanzj8l
sLVUK/zzdRq6Au6+Dn9G4GQV5UkdRTSI2KTjK/4hUMMv4GRqCQ2cbsvWvzsJ
3PTizPy0Khq8Ll7Ty+8mMP7ncx+LWhrKvKhDMb0EWpzX2f76IQ1Br/pn2LIE
xoWQX3830vCqLWPX40Epvi635XUbDYtS5apvfJLmMbDZxLKdhhSnEFL4Pyl/
e8MzZ/6hwabZrsJ1iMCOZPaywRsabtWNyL0ck+Zh027N0jTEl7vn9iqTuN+z
0uPRN6mfbQ7xAyok+uUmiZq+09Ddv2rvd1US+1JMTteM0GCubWqlRJEoCC3V
SR2jgY6R71igRaJ5l11kowwDKdm/aixmkngqXzw1WpYBi4qvV21mkSjsH9mx
QJ6B1IGuAxv/IFFkFDoWpsTASrdyItqExKgMVnKDy0D/7hsjCfNI9LZReTKH
ZCA9Nr/r7HwSh418bmXxGBisEBZdWyTFOyJW3KfGQMasALtWSxLVqk1jmjQZ
GBqcHq3tSKLPnP6/d+szkCPP3TnHicSblYcyEmYz4KAj52TmQuLhjpSxPAMG
8tZ90RKsl+rZY/pbPIcB58qm8uDN0nuuf6FkLgMFpyI+PwgicWBmZVDcYga2
6r319kom8ViQQ4CtNQMl+1ouWgtJtN5vLVLhMyBXU/3WKI3EC/u2erZJ5wKv
XM8fIhJtN1n+3rRayk/kvyE9i0Rjwe6kQDsG4hW+rG0tJLHrXsAVoRMDtwbl
rPiPSNQysGXcvBiQsRyJNH5MoiPjZmu4mQH3hPeV5BMS1b/rtv+Szj9nNy/r
aSPRXf/pqUJvBmx8UhdHdZB4lBFQ030Z6b9ozi1/TyJuefHWLJCBibL5WiYK
PMy4dNgoJYwBs6zhekUlHr7MmnwlKZwBv+NV+yTKPCTLZ9UmRTAgdnBoyFXl
oVFG4pu0I9L8evxDpqvzMPudT+vNaAZ0lLMb5Wbz0C/TMd8ygQHconKgx5qH
jGqc5M8LDIRaP9eutuHh+cHC4UdZDFw2zGy6IOChqqdiGSebAcWvhrM81vBQ
jbqHITkMPI3jP2px5aHYzT7M/4rU71sROve38lB4Wvwu5yYD0ZM/PE4/ysOC
/otGLvVSf2wspmRFS/mMDIS/bGAgNua0fd4JHsq637u6VcxAopxpQ3EcD89y
1FLDmhk4q7C/pjGFh57anWHVbQxcnTJ+ezSbh/cEi1xzuxhoochzW2p4yAaK
9CpGGdDUX75tNodCQYIb07qYBZuM2BFFGQrHpqRm55izEKz6LHlwMoWNW8sv
hS5jofbHrso7ChTaxTWFaK5gwb8li7LmUtgrt8UsnM9CySFOg7c2ha5+l6lQ
NxbWNDUan19B4YaTa2TsQ1iI3LNhSDmcwljx/r8cS1jQMfcTG0RS6OgrL7xc
ykLdeEiWdRSFAw93lo6XsaCanGwTcZzCT9tWlt25z0JeYZ3oQwKFDzYsDDGt
Z0H83myJOJNC6ztxuVtesaC+nXso9oFUz7Ds/MwJFu4bz1yTW02hZVh52DQZ
CWz9aqxdVUthgEpBR7qsBAqOCxqG6qT7Hk1v05UkYJUTpe7XQqH9t0xxHiUB
v86BMusuCpXV6/GzoQSUrowmevdQeMCuMzzKWALFQQo+EX0UHhltqlCZJ4GR
MT2FEonUj5wffFMzCSRqenrofqZQVNwdGrVCAvP7dppYfaEwPq2higIJtF8/
OLHxG4XHRO7yhaskoL087VrqCIWDtXuT3gok8F/OpciiUQqfGHDEh+wlECAu
chaPUVisyx8nHSWgklr5BzMu5Zuz0qTYSQK3PcQjExMUrusddXFwlcC/WFnN
5A==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwVlHs81Okex2dZrZdjlbak1Y1ZhrOpY1lmkTjWbSoiFEXWpUUlpAxedFSk
tLRtcpfalMKyo9y29RmcdqV1ORqXubjMjMYQ5uzmdlae3/ntH8/reb3/+j6f
7+fzeQxDz/hEqDEYjJP0+eu+9vM/WylKhSVz35D3Sxh8z5mTBTP/VcF7m7Hl
qSIGX9cgL14oVcF/g8JNUMDgF3AnTeo7VDC14LEr8hj8B5bXc09cUeGTfQtO
nFwGv+3RQEi3jgpBzUMedy8y+Mt5kerFW+dgYJqnmxnF4H8dk+NubTeDxWKr
wS/ZDH5aGrPVxViJ2P43l6MeUMg032GvrqdEp6V7Xsn3FL6RbGnhr1Hio71O
C33lFEps9RrslJNg+f1au6eYQsui5g8WVZOYXs0MY92gsBAzV7rVYhJT3L5s
h2QKp443py7YK3C7y+bSLS8KCToNKzxzBd5j8z9c3k8h5WdeUuw2BYLvNBwL
4lC4ZlB97g31Gqzy8EBzFwqVQ2Wnpe2vsWq4LVBuS0HudTmo2/01kosvDFWZ
UAh09NpT4TsBjTahcpAiiGDfOVbrMoFdX9X6XF0liP2HKqXZegIi9XaWwwpB
5o7clm79CURO3bCoXSSoZ/TaLErkWO99rrR2lkC7zfMztwg5dnG6jS0kBJua
y7y9/eVgmNbq6YgIjH6ciz3qJsdC25/vZocI2Hdzas+YyaH3rKO/4RU9P71n
Z8GsDDY6Jj2nXxK0Onmyps7JkMrxNU35ieDFF2Wub0/IcEKW0nK9mUBgMRex
eliGti6e2r1GgmnDnPu6tjJQlc2qoXp6vlqPoS2RYulC8FR8Na2n/cCW7Ewp
Jp646ieUEaS0lNrlJUrxo/W+p50ltD7ebOCdSCkq6zhGRsUEpfe+KaznSGH8
q/+/5fkEXRe79SQ6UjwuSXx6/1sCpvMBXfP8cXzHszawyiSoCuHc+iNzHDL3
/u3PLxNYprltajo/DrPZj4eDLhE4NzttdfYfh+XBGYOH/yJ4OehQruk6jqbS
6Q+OXCA4NG/H7Pl8HHEZdZG6aQRhu63NAjaOo/gXXnBZCsGb/ZbV2zTGIYoI
Co9PJlAIQoI7p8YQkDYNrySCNfv8okcrx+CWIT/LSiTQy/SKjcoag8D++4NG
5wlM2jzOz389ht4jjtdZ5wjcbBwuarHGsOQ87+FzluBIPDsrb80YXiRlRHHj
CSJrPsvZoRiFdX4g83EcAVe581bV81G862jvnYwlyGKyiqwrRrHDLuClBc0F
wYblbZdHoW7nnZh1hqCy0ODB/vBRhPV3fjETQ9Ak2Fg95DwK7YPMtCCaO9eu
44UyR7He+tRTyWmCYY5W06zaKNLrOvyjaVZmvN/KlY2gtX5gbA3Ny3zSod4+
gp26QQO8UwSa75Zf5NwdgY/ak44YmvVt3vZuTh/B+MTZvXY0m8bPDtwPGcGQ
iYlCn2Z2zaR4t+MIbOo1j2vS7K6USlu2jyDihvKoFs1HmJJJF0qCR4KNRdtp
jgwenO0blcD2ToLcnWZuYd/bo60SlETXrr1Cc5ag63+KUglUA7kaYpoL1j6n
4lIl2LR06ZkL/d5KDjRWj0mgiDvs0ElzU0bz37LsJXhBTB+F/aWfX6/70RYJ
1vc9sNhM72t4pWZT2YoYpYllxtM0K60rt5qJxfD+QTU3RO93Oe4e80mLGL8N
zOtN0H5o1pSY7S0SY0M8l7OO9k9feXt3V5IYdVzf4OAEWj/z28/9AsSQfTfm
20f7zQ7Othtni2E67RceSefDozDD6aS+GFfCEokpnZ9AwQW3xSURZqUVwg10
3qLXJh9IHxKhXWNiZVcqQTIn4ZB2owiuFpadyXRer2XEBOTfFuG3hWWdd+kE
RfzI40bnRZjS9jRqpPP/eCU0osZPBMXBk6q6K3R/4g7HdWwQIfvJzB5uDoGo
2jvRc16IOauw+UM36f5O7ksVvhKiVEtzf/Ztgj+NXC+F1wsRFa1aZ0b3USvY
8arqppD2K87ftpzg40Lb3OR4IT6Y/tKyt4Lg7wKrPA0fIT5k33y1UkVgu3Z3
8Q0LIRw7rumJeAQcjtldA12ara5uvt5C79c2lvWfP4aRsnck9V473f9PG2sy
BcNgP0yf7qH/n0+2EEv7hmEUaXG5xwcJOrRdWn7PH0ZF4kWPXhlB6Gq248Ok
Ydw8+8xl8XcCxlz/L8eODsNF1OBVoEHhvdCvGg3dh7GuLto5TI/C/wG2Dt+i
"]],
Line[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]],
Line[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBoQNe/CFib1JlAgAAADkAAAACAAAAir1Cvv//779hs4R11Y0GwE7sa5js
8O+/wLdxcJSJBsARG5Vy2eHvvyEdoRhThQbAmHjnJrPD7796fClvz3wGwKYz
jI9mh++/vgBlKcRrBsDBqdVgzQ7vv8eH9XOdSQbA+JVoA5sd7r/76o8+DAUG
wGdujkg2O+y/CIxYOr56BcB+fiO+RSXov2OByf0SSATAWkBPPaVU5L//pJk9
Kh0DwGU4n1yvReS/ag3zE3MYA8BwMO97uTbkv6dn7pq6EwPAhiCPus0Y5L/D
95GrRQoDwLMAzzf23OO/AcD7aEv3AsAMwU4yR2Xjv8WJbJ4R0QLAvkFOJ+l1
4r8Zk3VnZoMCwMk5nkbzZuK/1f/TUXx+AsDUMe5l/VfivyLNUkWQeQLA6iGO
pBE64r/BDDUqsm8CwBcCziE6/uG//rz+Et1bAsBwwk0ci4bhv9ZSMvLHMwLA
I0NNES2X4L/K7tQJqeEBwKtgSpTyhuC/dl6utvvbAcAzfkcXuHbgv5eeK2ZK
1gHAQ7lBHUNW4L/B2o9w28oBwGMvNilZFeC/Un4jecmzAcBHNz6CCiffv9Fb
QAa8hAHAWHI4iJUG37/1AjPhwX4BwGitMo4g5t6/PJTdycF4AcCIIyeaNqXe
v1VsKhGvbAHAyA8QsmIj3r/JNUkQOlQBwEjo4eG6H92/576DA90hAcBYI9zn
Rf/cvwMY7+9oGwHAaF7W7dDe3L8QVuCv6hQBwIjUyvnmndy/cE/98s0HAcDI
wLMRExzcv7gnw60F7QDA2PutF577278ZTRaFMuYAwOg2qB0p29u/LALzyVDf
AMAIrZwpP5rbv1zoZXde0QDASZmFQWsY278UXkTxo7QAwFrUf0f299q/eGVs
E0KtAMBqD3pNgdfav0cYU+nIpQDAioVuWZeW2r/kaS2ziZYAwMpxV3HDFNq/
A5iDVJh2AMDarFF3TvTZv2vj3T89bgDA6udLfdnT2b/d0O8wtGUAwApeQInv
ktm/quXxZwFUAMAamTqPenLZv3hGmxjJSgDAKtQ0lQVS2b/clVe9REEAwEpK
KaEbEdm/hG0RBSAtAMDoOnAn0fLYv+wxpisUIwDAhiu3rYbU2L+Lo+UofRgA
wCQc/jM8tti/CHs08DMNAMDDDEW68ZfYv6Yfl/D6AADAYv2LQKd52L/qRcpr
zOb/vwDu0sZcW9i/+qF2nSfH/78BYmG3IUjYvzfsPXG8rv+/UXjZvg==
"]],
Line[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABgAAAACAAAA8dRrFXAJ2L/C1qg6IVb/v3iw7t8y
4te/ou/c81hO/7+1kXzsnaXXv1GQMo5UQv+/LlSYBXQs178Izvj1SSr/v8xE
34spDte/m3lD70Yk/79qNSYS3+/Wv3ARrcFDHv+/pxa0Hkqz1r9RT2zxPBL/
vyDZzzcgOta/sdp/eS36/r8SXgdqzEfVv+rjwxIHyv6/sE5O8IEp1b911oyQ
AcT+v04/lXY3C9W/3tSk5fu9/r+LICODos7Uv0D0SRXwsf6/BOM+nHhV1L90
CBqH1pn+v/Znds4kY9O/vxj2mZtp/r/ZceUyfX7Rv40kMp8FCf6/ca2GgKld
0b+1gVpHeQL+vwnpJ87VPNG/nywGu+z7/b85YGppLvvQv/ehOQTT7v2/mU7v
n9930L/PrkUZndT9v7NW8hmE4s6/4eDxJieg/b+0yRnODcjKv+Xo340RN/2/
t69oNiGTwr/kMiq8NGT8v2j7e9JKr5O/aJOmXhvD+r/svQfOkAtLP4PtjOVB
gPq/kEjgPg==
"]],
Line[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAAqDskl9oNcz97o3Lfe3P6vxXWB2Si
3sw/BOH9vMiI97+m/SIj+wrWP3XeyB9C7fW/ao6dalSA3T/HXY3kv1D0v16w
wu39y+I/94s8kmqE8r/B55+cgZLmP4o2Vhtqy/C/6r8zYCyq6j9I3MEg2e3t
v0fG7mk+uuo/X0qibz7g7b+kzKlzUMrqP9IABNms0u2/Xtkfh3Tq6j8XW+hv
pbftv9LyC668Kus/bmUUqgiC7b+5JeT7TKvrPzfP89arGO2/iIuUl22s7D9S
mhe4zk3svydX9c6uru4/26Zg+VPX6r+8AoqYq73uPypuf2D9zOq/Uq4eYqjM
7j+yXMRersLqv34FSPWh6u4/rFDx2Cau6r/Ws5oblSbvP/eO+8hvheq/hBBA
aHue7z/Keq2iUTXqv/FkxQAkR/A/xax+4taZ6b9PHhCa8DbxP4xPpf9Icui/
buEAVx0/8z928VwBQR7mv6pLJg+iJPU/xIov6dYP5L9JBqdRujL3P0Cesn2T
5eG/cqC+aT43+T+yzvcXy5zfv7jhCn0aGfs/J/qa48i/279ic7IaiiP9P8Pz
yMQMlte/KayOs1EL/z+gEGOLFLfTvz3iAJHCdABACAoIdUrcz7+XFmgNJngB
QPFvBjfoqce/gJ5phzVqAkB3qWvGJQbAv5vOmMaOcANA/9KL51EAr7+VDUdM
e2IEQEVo85Men0+/We0kjg==
"]],
Line[CompressedData["
1:eJwBcQOO/CFib1JlAgAAADYAAAACAAAAN7+FgFFqBEDQYfOTHp9PP+lhKBhZ
YgVAsvbUHHPFrz+J/eoE3mYGQM7EvR+vKMA/uOxH7w5aB0BaR0zQndXHP6tL
cMR1SAhAWPokUCdezz/QUsZeJksJQD/CpOdYx9M/hK229oI8CkC1SuY9FJzX
P2mw1FMpQgtAjlKippzH2z/dBo2uezYMQPCqVEeost8/Fs0Q9AMmDUAS10eg
lsnhP4E7wv7VKQ5AL5HRp17s4z96/Q0HVBwPQAUfB2fi+OU/0rND6o0REED6
Qc9GVVDoP4Y9tOWRExBAQ6h/uu9Z6D86xyThlRUQQELPu0+OY+g/otoF2J0Z
EEDvXRcX2HboP3EByMWtIRBATwgDrp+d6D8QT0yhzTEQQP3qbkkM7Og/TupU
WA1SEEAYooBl0IzpP8kgZsaMkhBAzMLx6FDi6j8k39EZbpQQQKuCufbA7Oo/
fp09bU+WEED/+kzgOPfqPzQaFRQSmhBAo4EjjUAM6z+gE8Rhl6EQQFKrgS+x
Nus/eAYi/aGwEEAP07rfJY3rPyjs3TO3zhBACwCdi7xA7D+It1Wh4QoRQH1j
ZbOow+0/YCLcXluNEUBMYo51ubLwP/+2LxsrBxJAufLEE7Rv8j+AA+nMlX4S
QAANQbBaGfQ/GiQ5YSUAE0DdY9fiOtr1P3tuVvQKeRNAU/IVQlhz9z8gNmTI
JnsTQEg5mTppevc/xP1xnEJ9E0A3FWekeYH3Pw6NjUR6gRNALVxtzpiP9z+i
q8SU6YkTQI1OwI3Qq/c/yOgyNciaE0B5xp9DJuT3PxZjD3aFvBNA/Ks3sm5U
+D+7Kh1Kob4TQCPtoP9uW/g/YPIqHr3AE0BQDRvRbmL4P6qBRsb0xBNAVDBm
Am1w+D89oH0WZM0TQDt8LK1jjPg/ZN3rtkLeE0BS2rmXOsT4Pwml+Ype4BNA
Eg3uZDPL+D+ubAdfeuITQKYVcL4r0vg/9/siB7LmE0BjOVQYG+D4P4oaWlch
7xNAi7o0dfT7+D8v4mcrPfETQH9gdLLpAvk/1Kl1/1jzE0Dact1/3gn5Px45
kaeQ9xNAwAYNzcYX+T/DAJ97rPkTQFR8wk26Hvk/aMisT8j7E0BISH9grSX5
PwyQuiPk/RNA8ke5BaAs+T+xV8j3//8TQE+15T2SM/k/WHWUvQ==
"]]}, "Charting`Private`Tag#1"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-3.940556599296917, 2.8049711369736743`}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{595., Automatic},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 5}, {-3.940556599296917, 2.8049711369736743`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.908961850255053*^9, 3.908961894718499*^9},
3.908964918128897*^9, 3.90896536731945*^9, 3.927208542410543*^9},
CellLabel->"Out[5]=",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
SubscriptBox["q", "11"], "]"}], ",",
RowBox[{"Re", "[",
SubscriptBox["q", "22"], "]"}]}], "}"}], "/.",
RowBox[{"s1", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "/.", "testparams"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "1"}], ",", "5"}], "}"}], ",",
RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]], "Input",
CellChangeTimes->{{3.908962898235958*^9, 3.908962913156293*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.],
LineBox[{{-0.9999998775510204, -0.13762921123959704`}, \
{-0.9981596924766423, -0.13770766021306138`}, {-0.996319507402264, \
-0.13778621157438717`}, {-0.9926391372535077, -0.1379436223879897}, \
{-0.9852783969559951, -0.13825968291601204`}, {-0.9705569163609696, \
-0.13889681256415162`}, {-0.9411139551709189, -0.1401915415776846}, \
{-0.8822280327908175, -0.14286655650219973`}, {-0.754549857487248, \
-0.1490982481019447}, {-0.6353326985790873, -0.1555344402030519}, \
{-0.5184541070867436, -0.16254510294504526`}, {-0.3916691850510331, \
-0.1711280507455069}, {-0.3794025698494181, -0.17202274324157726`}}],
LineBox[CompressedData["
1:eJwB8QEO/iFib1JlAgAAAB4AAAACAAAA8NRrFXAJ2L8CU9hGEg7Gv3GthoCp
XdG/1IaqVMcax78J6SfO1TzRvwb4WotOIMe/OWBqaS770L9FZ4++aCvHv5lO
75/fd9C/fu43Ac1Bx7+zVvIZhOLOvzJ2Cnlbb8e/tMkZzg3Iyr/7e13Vys3H
v+RAXGlmhsq/VO53DtrTx78UuJ4Ev0TKv/tKqUPu2ce/dKYjO3DByb+gb7HQ
JebHvzWDLajSusi/QJshx9L+x7+2PEGCl63Gv50o4o4vMci/t69oNiGTwr/1
JSTxYJrIv/ZK+FasUsK/kRsgAAyhyL805od3NxLCv4KkMd+9p8i/shynuE2R
wb9ggWxsNrXIv66J5Tp6j8C/O0rGhH3QyL9Jx8R+phe9v/hCtJR8CMm/xv3j
v7yWvL8lsI6BoQ/Jv0Q0AwHTFby/3CWEI88Wyb9AoUGD/xO7v6L6MCpFJcm/
Nnu+h1gQub/dFK8boULJvyQvuJAKCbW//RblW0Z/yb+iZdfRIIi0v/qjpQMO
h8m/IJz2EjcHtL/42zD34Y7JvxsJNZVjBbO/rooWHLCeyb8S47GZvAGxv8hm
Awjwvsm//i1XRd30qb/KIJYpbALKv2j7e9JKr5O/FrsRST2cyr/svQfOkAtL
P5d9WgCkKcu/Uh0HzA==
"]], LineBox[CompressedData["
1:eJwV1Hk0lO0bB3CUbcge1dumiERZkkpcyDtS1hIT4U0USiGV0yJLi1+LCC8p
ky0tpDItmiZXNLSQ0HieFFIn66xGyhJ+z/vHfZ7zOef+47mv+3t/9UMObg2T
k5GRuUKt/763bQ1yPs86BLwd45wsvwacTSiGFnU1Ar44dWHGsSYsnVyydIJG
gLFMqUKGSzMO9DmkNhsT4MYdc5re0oymrUHCm3QCLDKuR0V7NWNlad5Tr2QC
6N49VwN2NGO1p5Zb6RgBNofrirfva0ayUPawdz8J13qizb9cbkYlenf9rbp2
UJ93eqfTl2aMTMuP9EnshDLHidp1J1qQZbZLiVXQCW+qTjHFSS34p9GgVLOm
E67GG/fcOdeCl1XKvzXJdoFl+gR3RWYLPkplM1xTukDoE/J32N0WnE4m6fZn
v0JBxFVRZXsLvnueqqlT3w1ZrpfiebatGPSgVjjZ8B0+BPfy29U+Yk3fjetJ
V3ohXUp7NvyWh0tsKly6i3rh7KVRg48tPEw+y5Has3qheG6ZD6udh86G7Zv+
fOyFS1rLnA8P8LA+RGvkyOw+OGmkPz6m1IaNnafd9+f2QdbmwWHCpQ2JjxFT
vsx+sPEK69F91YZrlsbfeVzRDxZFfFreuzbMiT3ro4P9oK1/9OTs1jZkaBbf
bfnaD1sq1PqGu9vwi0eHr5v+AJgGygqcp9qw+63HfceSAVjHOsLuXUOgw9xA
/4JHAyDHvVH/yo7AwvB98tPcARhhH9me6UxgiGJqAKdnAFIC955W2kpgj3ON
oo3RILBj9sx03E/gIFr9Y3p3EJ4FrTK/nk+gS70owp49CNaV/zYFFBNY0njn
kNe7QdjuvMlM+Q6BQe2LzsUNDsL6z+Yapo8IbJWqVHBM+KCw1Ur3wlsCV43V
P21azwcbGfr2h00EXpxOqunezAf9kmGvVx8JpKuO8mbu44OyHrvkTieBzwx/
TLiV8eHe8o2exyQE6prekA9+zoeYQ50/R38SGGvprx7TwIfeGrPvu8YINIXm
Jdl8PhhvXKkklSWxgMFx7VwhgCU+5RuUtEicDDq6TWwrgLpgt7dts0n0D7MM
lHUTQA/33uuLc0nUib0dbbhfADOT6V1PFpOYeiErJ6pcAOoZ9/3HzUjsyfAs
PMURgLlhzhYtCxKdcmllGY0CMKxJPqy9msQ/JYnVjwUCKOSkp7SsI3FHme2b
138EYO9SGJe2gcQnD3+1tKsK4WlufNVqIDG6en/PpKkQnEa54XbOJL7nGonV
7YRQucRCeoNOoknD91F9dyFMMKyVBJtI/EEyVOlRQhjMExs5upPo2KWtyzgp
hKngTzs3e5LI/NG0KPKSEBw/3Yiz8yaRMeRslXZPCCcCLj765kPi49/TGwpe
CCG1arVOpi+JWlNseuV7IWQaFtetZJB4cOYRL26nEO6kj/Q92kFiI83CnxAK
4Sbt7DXDABKXawp2908KwTjsi2zSThLP6t2KGp8lAteRq3avA0l0MFiQtHCl
CBx3L6jT+YfEfJNP583tRTC3wyZg/i4Sx80zs5w8RFB7zzVAPYREPxsPpk+Q
CGZIygVCyo/slG/vOSCC5pXJNlW7SdR05j6MTxBBWWtR6IFQEg9sPvX8fJoI
ponMfI0wEt95ra+7zhRBfku86g3KRn4jTRUVIphyV+yYu4dEjtz53LIXIjiu
NvLlGOWtFQtDbjeKwDiBp91AuX8Ha8XNLyJYCZG3aHtJTJDfNFI4KAJzXj17
HWWdhx3VzDERrPphH8ugfHdnTOo1JTGMsXdL91B2UFLYmqsnhm0Kf4LDKBOs
vL+yl4lh4MOfr9so7w9e1ZNhLYZBVnKOJWU5FW5FmrMYFvs0lMlSzn3CiL+w
TQwLFFc51VD/YxYidEwNEYP2q3mJMZRrZyWrnIkRQ+VG2gUtyoxnum1JiWKI
iUxOLaHOKwotYyZcFkP8JxWmEeXTGg7hx5li8K4xG7pGzWseh2cRf08MR0fC
b8lSfrA3YiKOIwbeUqteBjVfuvYUN6ZBDGre0tZCav4d1VfSDnwWQ2nK6JUO
6r5iI40Y+wbEwCo+tUWZspIuRz98VAz6l27qG1P3m/ck9rO5igT4rCL2hiAS
w1Tt4L6WBJ6ylV5bUnkwD1EsMZsnAYV0g9N/UXmpn3U9ymS5BB4LawvrqHwN
hdbJGLhIQCP7OCORyieHfTmsyEMCl02Y7erbqHxp+L9b7CsBnUXXjTOpPM/n
iDIXhEngeUIA+7AHiZu05xjppUjg95yHYRUuJGpHfL+QfV4CiUxTje6/Seyq
LpdoX5GAC388W4F6X3GRjmyNQmq/msxjSweqH2oi3WkoAS1zdzZtLYn79Kwr
U+slsFhO9nmvNYlroqZ1FZsk0MdZfaXKinoPc7K6Z3RKYJo3Zmu/isTRgy8O
TY5LYEmgqJJnSKLnQo08yZohiFru20nXJHHntxnumjAErnlvvLaqkRhe8nva
wmUI7Eo6OrapkJho8jXskN8QdPnxq9fJk1i5psLi19Eh0O400ckapfrO0+3t
RNUQJD1doJBP9WHXqdRRBVsp8JtGH3MKqX52OlFmtFEKn9wUNGupfv4tHx20
aYsU0k19m19eJVDjoh/3fwFSWJFp+uFuBkH11bJ01RNSkJSrKFglEVj6gGuk
9UIKxAvhOsNgAg98k/FbAMPwYHxNB02PQL2j3yJY9GGoPLFW+YEWgS9Va0+4
egyDT5zE01uNQK21KUWHA4fhVw7TN1WewCdp8qL3x4ehusT6yNvhNpy0pZ1J
qBqGqSbjyYIPbXjxX23WV4ufkCxfNNF7ug3vblmmXmQwAn3PAzaf7+Ohq8It
b7blb9jj5hDhduwjxhZUR9jbjIGp98nlvnKtWPWNdnLe3Ako8VDJ7spvxpBD
lfPOL50E1feb65TXNuHy8jSWt8o0bN+xMVo5tgHtvstk1MbJOLSErPDJevcG
c3TDZy2Ll3WwmX/G30K2HhOZEeesI+UcLEPdlPoTXuG1ptz6tOgZDsXuob5P
Pr/E7FkubsdDZjpY7d1uKunm4P8BVz/d1w==
"]], LineBox[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAOuUCpp7i8v+lhKBhZ
YgVA1PZdvMGot7+J/eoE3mYGQCvZXVMJFLK/uOxH7w5aB0CiAmCs9xipv6tL
cMR1SAhAcKuN2vZBm7/QUsZeJksJQKdD6ofh0FC/hK229oI8CkBMTw3v5IGY
P2mw1FMpQgtAHk636nakqj/dBo2uezYMQN+0lUuXRLQ/Fs0Q9AMmDUDo9uto
gki7P4E7wv7VKQ5AnKzSHWKQwT96/Q0HVBwPQCWp3BRkWcU/0rND6o0REEAD
S885cp/JP8kgZsaMkhBATc+O0NsOzj+It1Wh4QoRQDXMcEdUONE/YCLcXluN
EUCX7dMEtKDTP/+2LxsrBxJA2vOSMpvO1T+AA+nMlX4SQEWNHalb4dc/GiQ5
YSUAE0DIS089yxTaP3tuVvQKeRNAnvSXGJoa3D8gNmTIJnsTQAV8146UI9w/
xP1xnEJ9E0BqZeuZjizcPw6NjUR6gRNAVm/UcIE+3D+iq8SU6YkTQPSFSjFi
Ytw/yOgyNciaE0CxtkN2EKrcPxZjD3aFvBNAa820pyM53T+7Kh1Kob4TQNdL
/L0RQt0/YPIqHr3AE0C6tE15/0rdP6qBRsb0xBNA8vfX4Nlc3T89oH0WZM0T
QP+24H+KgN0/ZN3rtkLeE0BQ7OBd28fdPwml+Ype4BNAYWXF+MPQ3T+ubAdf
euITQJmqfz+s2d0/9/siB7LmE0A4cA7Se+vdP4oaWlch7xNAj3ybFhcP3j8v
4mcrPfETQNr1ORv9F94/1Kl1/1jzE0AJ2s3O4iDePx45kaeQ9xNA/M9YRK0y
3j/DAJ97rPkTQLyzDweSO94/aMisT8j7E0BQqTt6dkTePwyQuiPk/RNA2vs6
nlpN3j+xV8j3//8TQJlTa3M+Vt4/HNdCHA==
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAAir1Cvv//778at1XpqBfIv07sa5js
8O+/r2Iycb0cyL8RG5Vy2eHvv7yefoDUIci/mHjnJrPD7791nxQ+CizIv6Yz
jI9mh++/NsCZcpRAyL/BqdVgzQ7vv7uEabUlasi/+JVoA5sd7r8YKSPgS7/I
v2dujkg2O+y/c4YnSzNyyb9+fiO+RSXov8bU4lLKI8u/hi0gPAMW6L8Nv+UF
pSrLv43cHLrABui/wbodAYQxy7+cOha2O+jnvxHRPONOP8u/uvYIrjGr57/X
B2ndGFvLv/Vu7p0dMee/VMEq/oGTy79sX7l99Tzmv6dvemLNB8y/WkBPPaVU
5L9nnFORjP/Mv2U4n1yvReS/8rse8nsHzb9wMO97uTbkv9L7wt5wD82/hiCP
us0Y5L++CM53ax/Nv7MAzzf23OO/NthycaQ/zb8MwU4yR2Xjv3mJxfUrgc2/
vkFOJ+l14r80+aP2xwjOvyNDTREtl+C/OOCguiIsz7+rYEqU8obgv9DunfqG
Ns+/M35HF7h24L/LLIx09EDPv0O5QR1DVuC//7J4U+tVz79jLzYpWRXgv5O3
3nJKgM+/Rzc+ggon37/n6tlp3NbPv0jo4eG6H92/mxF0BeVF0L9YI9znRf/c
v+iaEDO7S9C/aF7W7dDe3L8A0K4dl1HQv4jUyvnmndy/COzZVGBd0L/IwLMR
Exzcv7/ZMX45ddC/SZmFQWsY278bVs3DEKbQv0pKKaEbEdm/X+2v1qoM0b/o
OnAn0fLYv7S1IULeEtG/hiu3rYbU2L8DlyoUGBnRv8MMRbrxl9i/7tZEH58l
0b8AYmG3IUjYv9xXBERINtG/7+Ndcw==
"]], LineBox[CompressedData["
1:eJwVzX081AcAx3FEdtlUxmtIHmKJhnDoQdMpEbl62aK88tDMYzNlQp5GZyLz
NE6sa450WAmLMk/fiDyMyz383INzhES2NOx4cc3aH5/X+8+P0VdRXsFKCgoK
lPf971v+Ra1LJCFWgpr1vz/KgYa/asSgK4HqwKDnuRMc1FOpb9PMCITb6lLu
veKA6kSPdVAjIH9jtXX4DQfZhsa0CjYfOqlX1W3fcaA89Tkj/gwfK5OJfwTq
ciELjWWbBPFgrSEdivTmQnT5pU1yCgcey6foywQXl2szUmv83n9VadnrUi5I
c6ZswpED8+iVta2zXBwIjAi3XB9Gv6Bv7sIaF6XUhbLxuGEUe8fUPzDg4aH3
ok76JBuiK4c3aUbyMD1EbpIw2Zi3D89WjeNB0yXutF0AG4zgAZpaGg8xtvKM
mdEhjPm3s1zoPJC3bV52Iwahp1n5aVYHD439OuyP+gYwM0ZV/kGTj+kj58ND
MgYQnOb8lGHAh2bzL8o4NgDl+zLdfnM+YljGhy519qOF1CMMpPBhR7Oo5rb0
YT/TTUqP4uORI+XazdpnKL4XtTtsmI/HdWH2RoVdkCgcogtZBGTuq973vbpA
1p+QqzcRIM9cj3PQ6EKRUWhW2FMCv+lVNXsWdOJKb7x25gSBB1kvDybkPYE8
vo+dpzeCE73dKaxP2qGROkQqZIzg2bsptBW3oTxa9Xxo7QiOkTcp8rTa8HWR
zty3HSM4Uk6hbXzcioBzil/ufDEC+8SO62e3/Q5jRmH2LjMBTKya87eQmiAo
U98d2SNARbCAY5jZiItFy5+5iQUwZMg0HFQb0VRSdThuQYAdJDt6kMpDHErz
dZXqCqEx1VDaptiAhkFWvV2sEPk6HDE3tR5+vjeqtXKF0GVOOHA36pBUMV4Q
zhJie4Kf4155LaK6GXtoQiH+tfBxGVuuga/27A3royKs/UzvJS1Voy/Z2yQo
QIR/VPkn7P+uwt4JFuGcJMKfL05T8/66i+PkFYP9zSK8ouYNt85XosRmR0qI
QITJ1iGv2bk7kDV0SmNWRBDR3X0oM+V4Xq7TEXNQDL5Slihymoml+QXXHD8x
mOO5j8k9ZTjDzezhp4mRU5j5ZKb9Fvx3mcddYIuRHqnS49RSis3Krwdfy8RI
cL3WX/LoJkg+Zg0WRqMIW0/kutcVgiDtVGtJHIWzZfeoB7sA9brJ/tY1o7Dv
0h4oFefBdjFqQ080ijnTGskt7R/hcPZOo1RNAkbOgYXb3pkQ7yu6ukyR4NRS
vyKzKB2NGUSQSpIESud8NSu4qVit1D++0iJBRDLh6WaUALnpFqaWwhiG3WTR
J29Ho6auM8Pfcwzf7LHcV24TAhV7I4EVawwT8o65u7+eRF+L4Xcm26X48AsV
dr6ah1NN7uIHqz9J8R9O5Ey0
"]], LineBox[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAATO4jl9oNcz8sZ1qEo/DfvwCuATJJ
wYQ/bSkeOhrZ379NSHEfR4OIP7EX5kc50d+/muLgDEVFjD/udB4iWMnfv5oL
4HOg5JE/r68YO5W53780QL9OnGiZP5TwrPkMmt+/tNQ+Ako4pD9qMDN88lrf
v0e7mn3JKKU/jZ8BOQ5T37/aofb4SBmmP8IFAL8pS9+/AW+u70f6pz93KLIl
YDvfv04JHt1FvKs/HE7gV8ob37/0nv7bIKCxP/xx+h2U3N6/jtPdthwkuT9s
RSqU+13ev/CaIleBprk/14M5+WRV3r9TYmf35Si6P0zXBRXOTN6/GPHwN68t
uz9jZYVvnzvev6EOBLlBN70/KqXOpj4Z3r/aJJVdM6XAP/PzHtJu1N2/7l+7
X1i4xD/91cmYk0rdvxXWB2Si3sw/lFZTmtg13L+m/SIj+wrWP/1LrY3JLNq/
ao6dalSA3T8r4l/NoibYv16wwu39y+I/R1ekdmjo1b/B55+cgZLmP5nSWDEK
wNO/6r8zYCyq6j/EKvYw+1XRvydX9c6uru4/jC2fkNT8zb9PHhCa8DbxP6o0
n49D3Mm/buEAVx0/8z/ZN19pTJ7Fv6pLJg+iJPU/TugHdtzRwb9JBqdRujL3
PzfDWx+srru/cqC+aT43+T9dxp2NZh20v7jhCn0aGfs/MRYXYwyJqr9ic7Ia
iiP9P4yXOhj4WJi/KayOs1EL/z8xI8dgfXhXPz3iAJHCdABAzL3rroK3mT+X
FmgNJngBQDkBsBS6Wak/gJ5phzVqAkDjW2GQMCyyP5vOmMaOcANAxPVVOkrJ
tz+VDUdMe2IEQAq5QKmnuLw/Vqs+Vg==
"]], LineBox[CompressedData["
1:eJwVlHlYTdsbx1Oa65x1ztZwU2m+FKVBpvK+aJATKSGlkBQ5VGRIoiiS0rmF
e1Ap5xoikSm/SHOiQac6eyc0XLco3ORGN/3Sb//+2M96Ps96nnft9Xm/6zUO
jvDZKi8nJ3eV/f6/zi1LivcOn4w2YWtmful+Av2bp+uuD1bEraf1lngNlMPJ
8YHJnaFK+EbszvBTquDRJ/dBjr8yvrg4oVHPrYWbgsjqvctU8Kmw12Uipw6a
fWqDLASqKJt7b+a5uHpIvPXw+1EnNcz8bPpyi1MTbL/TtnrGEnXs2RoacT+3
Gd4qpRXGOmqgAH4mW6i1gHYjGVaw0MSSJrE/CWuFhIWVP2UzOHg9r/C7m7QN
ksPffb80i4PycUUBAXQbiM5PHtxuy0HjytLXO1+3Qe6IW9f4PA4ePjBZN623
Dcrv1ZeZL+NgWfLNj/dG20Bupix+bygHO9//YZxjLIPD+h/ktSQcNHjOSy6J
kMFxgepY51X2vIFLk09Ey+D0Qct/rt/gYGHsO9mqGBnktAvfOd3loOIy2u/N
URmUnhmqCqng4FUXiXrLWRn8V2Ms8X4XB+9KCuxsH8vg4Limsq8+F+833alO
UKDB5N1SiwgjLrpZnatxU6Ghvi7GNcWMizZ97quVNWnQP9N7rHwmF6UOhW8P
atNQZlkqN8uZi0+2ehlZzqBhsp/wh2IQF1O8PF2zVtCQfvfF5+JLXPymuqvf
P4OGeWI5zVYJu6/0vWL3ORq64xxn/n2NrX/FUT7xAg12HpfDze5wcazbNiTj
Mg1tXTHvReVctFPY4rrhLg16mjN6tvdwseS8mo2omYaqr0FySb1cXLB6f6t9
Gw3C9jPTcvu5qPiaG/KSoaFUIhdED3ExXvm/nZ87aZhtINxpPIkg0chbWPOJ
hpZ7SwfSeAR3RMetrFZi4Ljz/d7fKII6pUGG9aoMLHhm1nNWi+DgPc2NdRoM
XO5QbM/+hWBpwMCDK3wGoibV1dwyJtguVJ//wYABs1PzKopMCYbPi+ddMmKg
fUr+kwfmBL32Z6wVmDKA01Pulc4gOGdeQ9ax6QwQL8+8RluClh1rFkXYMVDd
/iRLak9w6pi3pNGBgQPBs8SyOQTXnSpbazSXge69nPS38wmqT/D4lxcycDur
+dDnxQS3ur2W8F0YCLZYfGBoKcFtj1KXcd0Y0L5TtOebK0GnfxMUJtwZOFyV
ET7uQfC453XdYgEDKwd8/TR92P/JVLNL8mFAPrpmNc+XrX+zclzLl4GH43O8
tNYS/LnJMF28hgFDno6bgT/ByNK+1bv9GGi5cGKx8QaC5Q5GNs/Xs/7M/nUy
DyI4wM+exgtg4PPcV/azggmu2MWk7glkILfCw8Y2hGDCn1a304IY8BWUWM4J
Jbj50aiteCMDKjJLi/nbCA6XHnyfsYmBJ0EXjZ3DCbZeeZgXt5mByA/qBouF
BHvHT9j5BbO+dx/Sdd1FMDMib4fJFtb32CfKI5KgSJBp+Ibl1KRA7ordrN8t
Uv2kENY/t0nNO5rgLNv/zDXYysCweJHSmn0EHXzF+AfL101uT1p/gODCDfdU
9EIZCCiYNr7hIEHHz56bD7PMcRT9u+kQweXzbk2VslxZJjcccpigfeMMVX4Y
A/s8oga3xROcWTNrDFm2bO0ZEB4lWLhsSVUgy50bfPoiEwmqRunYb2M5o6+y
J/o4wZLjafqbWHaLtH97IJmtn/3U25XlH6OS9kMpBKekqVzRYbnw2JS2+FR2
X6DTT7PnB2smvUw8TXB27uCXoyxr//7tRbKIoMvCH+lTWX5uFFqbmkHwpRn3
Qi57P7Mu6S+7zhCs1MrX1Wf5cLbzTq9zBGt9VF2Os35eBeSXzxazeZp2drST
9eegpzWFf4FgkraljgXL6e3xYf9cJLgp6tfYANb/wLlPJW3ZBMOS9k8+wvYn
l6re/HsewblGNxVFbD/HpDYPDkgI7jXfsyiO7fda0UUV/ysEgxfuMPRj86Ch
uee2fj7BrlhRIO3PQFh9p/zPGwS7VdKPxbB5qjy5fG1XAUF5+X2dqmzeDiiZ
jOfdISjI9HkxxOaztTpt1bG7BHucNs7wWM2A9bFRSch9gsnPxevTvBn4a6J5
+a+PCD6ctEH2egUD8NQpR6WEoHvP1ZFeNv8XDl0f6n/M+oopFr/xYGDV6BFx
QRl7v6cO/HRXBm4Wf/yYVkFQL2t3/fKlDCjtWwcRVawvb+uar8jm86t1n+0z
gsa6VgJlJwamf3prX9xEMEdnvGCxLQPHbnicEDcTHPWeKQyyZvu/7UFHTAv7
nvTdHcOsGDjTm5rgRBP8kV076GTOgFzXwpcVbwkqX/eMHdVh85d9zUTSRVAt
ZLnq/insewyg9iX2ELw9zbWjmzDsvBvQd+8l+Mj+VmIMO6/apefDGz4RtB1P
Na0YpcFepPj01t8E9UV+f13+RsPplVG89C/sfCpYdT5qiAaX+mWPvIcJrnqg
FUh/oOFO9YgiM0YwIj3GtIKmIbl4TV6PGg+LPihsw9s0OEgFyR81eBj55YFl
Rj4NXQOLI75xeDjLSChtltDgaGjtrErxMCTQ8ruWmIZ3iUqvZk/lYbPwlHXd
ERoW+RSTeCsebv/j1mMtTxqGP+nGG3ry8GvVSvWmDhlsMnkTFJDGw9CPlfUd
79pg4qHNVCtlPq4XbDBKMGkFu6zvNSqqfNxeMWaqo98KIQmlkX1qfMxjokKL
tFqhTiCozePwcaO1+e2vKq0g6g6N0tXm45mRl/uvD7aAkVrOM0VzPlq0m5zr
KW0BDNSI7l7CR2EkpZwc2ALxCv0NZw/zkSwzvOGSLwV5lwXqWfF8zLgqHx0h
kUJS4imPy0f5+H7IoConWwopita1hcf56Nlh2q2WIYVM5T1lz07z8e7oxRzd
WClcVR8vGs3h45XdJ3YorZRCI8X7PbCMj8+tars0RppBz2z+ZnM5Cqtr15xq
822G2F1rh9ViKGyfdynyZ2YTGDmG1FnEUmj2W7jh9lNNUD0elbUkjsJXWJf9
6mgTcNLSXA4mUKiev2qkPqoJLt+sPtN/kkJlr9nB37yaoO6D3Zy6CxRe25h5
fo1mE2hv4e5LekLh0kU3hMapjfDY0mB53lMKnT16QxckNsKmr5aGpeUUWtVp
RPsdaoQbCW61w9UUWuzcWyQRNoJzbpx2SCOF0zfeMNm3ohFC3n58uKSTwuQj
Pu5KpBFUr4ymBHVTqLlu4NtOlUYoFCpvPPgnhU9F00M65BphZMxE+W4fhdqS
mh0VQw2Qoue/zniQQtsK95xnrQ1g82eYlfMQhTv8r5b7NjRAW/7eCb9/KOzP
Lontq24Aw/m/XRONUFiyRTNf52EDVMldii0YpbDUvodXXNgA2+oKvOrGKNRx
OCsXcK0BNEQlpn+NU7jrZGKkQm4DFK2rG5mYoFCvkwTeETfA/wAh/qr8
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ], {}}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -0.13762921123959704`}, \
{-0.9981596924766423, -0.13770766021306138`}, {-0.996319507402264, \
-0.13778621157438717`}, {-0.9926391372535077, -0.1379436223879897}, \
{-0.9852783969559951, -0.13825968291601204`}, {-0.9705569163609696, \
-0.13889681256415162`}, {-0.9411139551709189, -0.1401915415776846}, \
{-0.8822280327908175, -0.14286655650219973`}, {-0.754549857487248, \
-0.1490982481019447}, {-0.6353326985790873, -0.1555344402030519}, \
{-0.5184541070867436, -0.16254510294504526`}, {-0.3916691850510331, \
-0.1711280507455069}, {-0.3794025698494181, -0.17202274324157726`}}],
Line[CompressedData["
1:eJwB8QEO/iFib1JlAgAAAB4AAAACAAAA8NRrFXAJ2L8CU9hGEg7Gv3GthoCp
XdG/1IaqVMcax78J6SfO1TzRvwb4WotOIMe/OWBqaS770L9FZ4++aCvHv5lO
75/fd9C/fu43Ac1Bx7+zVvIZhOLOvzJ2Cnlbb8e/tMkZzg3Iyr/7e13Vys3H
v+RAXGlmhsq/VO53DtrTx78UuJ4Ev0TKv/tKqUPu2ce/dKYjO3DByb+gb7HQ
JebHvzWDLajSusi/QJshx9L+x7+2PEGCl63Gv50o4o4vMci/t69oNiGTwr/1
JSTxYJrIv/ZK+FasUsK/kRsgAAyhyL805od3NxLCv4KkMd+9p8i/shynuE2R
wb9ggWxsNrXIv66J5Tp6j8C/O0rGhH3QyL9Jx8R+phe9v/hCtJR8CMm/xv3j
v7yWvL8lsI6BoQ/Jv0Q0AwHTFby/3CWEI88Wyb9AoUGD/xO7v6L6MCpFJcm/
Nnu+h1gQub/dFK8boULJvyQvuJAKCbW//RblW0Z/yb+iZdfRIIi0v/qjpQMO
h8m/IJz2EjcHtL/42zD34Y7JvxsJNZVjBbO/rooWHLCeyb8S47GZvAGxv8hm
Awjwvsm//i1XRd30qb/KIJYpbALKv2j7e9JKr5O/FrsRST2cyr/svQfOkAtL
P5d9WgCkKcu/Uh0HzA==
"]],
Line[CompressedData["
1:eJwV1Hk0lO0bB3CUbcge1dumiERZkkpcyDtS1hIT4U0USiGV0yJLi1+LCC8p
ky0tpDItmiZXNLSQ0HieFFIn66xGyhJ+z/vHfZ7zOef+47mv+3t/9UMObg2T
k5GRuUKt/763bQ1yPs86BLwd45wsvwacTSiGFnU1Ar44dWHGsSYsnVyydIJG
gLFMqUKGSzMO9DmkNhsT4MYdc5re0oymrUHCm3QCLDKuR0V7NWNlad5Tr2QC
6N49VwN2NGO1p5Zb6RgBNofrirfva0ayUPawdz8J13qizb9cbkYlenf9rbp2
UJ93eqfTl2aMTMuP9EnshDLHidp1J1qQZbZLiVXQCW+qTjHFSS34p9GgVLOm
E67GG/fcOdeCl1XKvzXJdoFl+gR3RWYLPkplM1xTukDoE/J32N0WnE4m6fZn
v0JBxFVRZXsLvnueqqlT3w1ZrpfiebatGPSgVjjZ8B0+BPfy29U+Yk3fjetJ
V3ohXUp7NvyWh0tsKly6i3rh7KVRg48tPEw+y5Has3qheG6ZD6udh86G7Zv+
fOyFS1rLnA8P8LA+RGvkyOw+OGmkPz6m1IaNnafd9+f2QdbmwWHCpQ2JjxFT
vsx+sPEK69F91YZrlsbfeVzRDxZFfFreuzbMiT3ro4P9oK1/9OTs1jZkaBbf
bfnaD1sq1PqGu9vwi0eHr5v+AJgGygqcp9qw+63HfceSAVjHOsLuXUOgw9xA
/4JHAyDHvVH/yo7AwvB98tPcARhhH9me6UxgiGJqAKdnAFIC955W2kpgj3ON
oo3RILBj9sx03E/gIFr9Y3p3EJ4FrTK/nk+gS70owp49CNaV/zYFFBNY0njn
kNe7QdjuvMlM+Q6BQe2LzsUNDsL6z+Yapo8IbJWqVHBM+KCw1Ur3wlsCV43V
P21azwcbGfr2h00EXpxOqunezAf9kmGvVx8JpKuO8mbu44OyHrvkTieBzwx/
TLiV8eHe8o2exyQE6prekA9+zoeYQ50/R38SGGvprx7TwIfeGrPvu8YINIXm
Jdl8PhhvXKkklSWxgMFx7VwhgCU+5RuUtEicDDq6TWwrgLpgt7dts0n0D7MM
lHUTQA/33uuLc0nUib0dbbhfADOT6V1PFpOYeiErJ6pcAOoZ9/3HzUjsyfAs
PMURgLlhzhYtCxKdcmllGY0CMKxJPqy9msQ/JYnVjwUCKOSkp7SsI3FHme2b
138EYO9SGJe2gcQnD3+1tKsK4WlufNVqIDG6en/PpKkQnEa54XbOJL7nGonV
7YRQucRCeoNOoknD91F9dyFMMKyVBJtI/EEyVOlRQhjMExs5upPo2KWtyzgp
hKngTzs3e5LI/NG0KPKSEBw/3Yiz8yaRMeRslXZPCCcCLj765kPi49/TGwpe
CCG1arVOpi+JWlNseuV7IWQaFtetZJB4cOYRL26nEO6kj/Q92kFiI83CnxAK
4Sbt7DXDABKXawp2908KwTjsi2zSThLP6t2KGp8lAteRq3avA0l0MFiQtHCl
CBx3L6jT+YfEfJNP583tRTC3wyZg/i4Sx80zs5w8RFB7zzVAPYREPxsPpk+Q
CGZIygVCyo/slG/vOSCC5pXJNlW7SdR05j6MTxBBWWtR6IFQEg9sPvX8fJoI
ponMfI0wEt95ra+7zhRBfku86g3KRn4jTRUVIphyV+yYu4dEjtz53LIXIjiu
NvLlGOWtFQtDbjeKwDiBp91AuX8Ha8XNLyJYCZG3aHtJTJDfNFI4KAJzXj17
HWWdhx3VzDERrPphH8ugfHdnTOo1JTGMsXdL91B2UFLYmqsnhm0Kf4LDKBOs
vL+yl4lh4MOfr9so7w9e1ZNhLYZBVnKOJWU5FW5FmrMYFvs0lMlSzn3CiL+w
TQwLFFc51VD/YxYidEwNEYP2q3mJMZRrZyWrnIkRQ+VG2gUtyoxnum1JiWKI
iUxOLaHOKwotYyZcFkP8JxWmEeXTGg7hx5li8K4xG7pGzWseh2cRf08MR0fC
b8lSfrA3YiKOIwbeUqteBjVfuvYUN6ZBDGre0tZCav4d1VfSDnwWQ2nK6JUO
6r5iI40Y+wbEwCo+tUWZspIuRz98VAz6l27qG1P3m/ck9rO5igT4rCL2hiAS
w1Tt4L6WBJ6ylV5bUnkwD1EsMZsnAYV0g9N/UXmpn3U9ymS5BB4LawvrqHwN
hdbJGLhIQCP7OCORyieHfTmsyEMCl02Y7erbqHxp+L9b7CsBnUXXjTOpPM/n
iDIXhEngeUIA+7AHiZu05xjppUjg95yHYRUuJGpHfL+QfV4CiUxTje6/Seyq
LpdoX5GAC388W4F6X3GRjmyNQmq/msxjSweqH2oi3WkoAS1zdzZtLYn79Kwr
U+slsFhO9nmvNYlroqZ1FZsk0MdZfaXKinoPc7K6Z3RKYJo3Zmu/isTRgy8O
TY5LYEmgqJJnSKLnQo08yZohiFru20nXJHHntxnumjAErnlvvLaqkRhe8nva
wmUI7Eo6OrapkJho8jXskN8QdPnxq9fJk1i5psLi19Eh0O400ckapfrO0+3t
RNUQJD1doJBP9WHXqdRRBVsp8JtGH3MKqX52OlFmtFEKn9wUNGupfv4tHx20
aYsU0k19m19eJVDjoh/3fwFSWJFp+uFuBkH11bJ01RNSkJSrKFglEVj6gGuk
9UIKxAvhOsNgAg98k/FbAMPwYHxNB02PQL2j3yJY9GGoPLFW+YEWgS9Va0+4
egyDT5zE01uNQK21KUWHA4fhVw7TN1WewCdp8qL3x4ehusT6yNvhNpy0pZ1J
qBqGqSbjyYIPbXjxX23WV4ufkCxfNNF7ug3vblmmXmQwAn3PAzaf7+Ohq8It
b7blb9jj5hDhduwjxhZUR9jbjIGp98nlvnKtWPWNdnLe3Ako8VDJ7spvxpBD
lfPOL50E1feb65TXNuHy8jSWt8o0bN+xMVo5tgHtvstk1MbJOLSErPDJevcG
c3TDZy2Ll3WwmX/G30K2HhOZEeesI+UcLEPdlPoTXuG1ptz6tOgZDsXuob5P
Pr/E7FkubsdDZjpY7d1uKunm4P8BVz/d1w==
"]],
Line[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAOuUCpp7i8v+lhKBhZ
YgVA1PZdvMGot7+J/eoE3mYGQCvZXVMJFLK/uOxH7w5aB0CiAmCs9xipv6tL
cMR1SAhAcKuN2vZBm7/QUsZeJksJQKdD6ofh0FC/hK229oI8CkBMTw3v5IGY
P2mw1FMpQgtAHk636nakqj/dBo2uezYMQN+0lUuXRLQ/Fs0Q9AMmDUDo9uto
gki7P4E7wv7VKQ5AnKzSHWKQwT96/Q0HVBwPQCWp3BRkWcU/0rND6o0REEAD
S885cp/JP8kgZsaMkhBATc+O0NsOzj+It1Wh4QoRQDXMcEdUONE/YCLcXluN
EUCX7dMEtKDTP/+2LxsrBxJA2vOSMpvO1T+AA+nMlX4SQEWNHalb4dc/GiQ5
YSUAE0DIS089yxTaP3tuVvQKeRNAnvSXGJoa3D8gNmTIJnsTQAV8146UI9w/
xP1xnEJ9E0BqZeuZjizcPw6NjUR6gRNAVm/UcIE+3D+iq8SU6YkTQPSFSjFi
Ytw/yOgyNciaE0CxtkN2EKrcPxZjD3aFvBNAa820pyM53T+7Kh1Kob4TQNdL
/L0RQt0/YPIqHr3AE0C6tE15/0rdP6qBRsb0xBNA8vfX4Nlc3T89oH0WZM0T
QP+24H+KgN0/ZN3rtkLeE0BQ7OBd28fdPwml+Ype4BNAYWXF+MPQ3T+ubAdf
euITQJmqfz+s2d0/9/siB7LmE0A4cA7Se+vdP4oaWlch7xNAj3ybFhcP3j8v
4mcrPfETQNr1ORv9F94/1Kl1/1jzE0AJ2s3O4iDePx45kaeQ9xNA/M9YRK0y
3j/DAJ97rPkTQLyzDweSO94/aMisT8j7E0BQqTt6dkTePwyQuiPk/RNA2vs6
nlpN3j+xV8j3//8TQJlTa3M+Vt4/HNdCHA==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAAir1Cvv//778at1XpqBfIv07sa5js
8O+/r2Iycb0cyL8RG5Vy2eHvv7yefoDUIci/mHjnJrPD7791nxQ+CizIv6Yz
jI9mh++/NsCZcpRAyL/BqdVgzQ7vv7uEabUlasi/+JVoA5sd7r8YKSPgS7/I
v2dujkg2O+y/c4YnSzNyyb9+fiO+RSXov8bU4lLKI8u/hi0gPAMW6L8Nv+UF
pSrLv43cHLrABui/wbodAYQxy7+cOha2O+jnvxHRPONOP8u/uvYIrjGr57/X
B2ndGFvLv/Vu7p0dMee/VMEq/oGTy79sX7l99Tzmv6dvemLNB8y/WkBPPaVU
5L9nnFORjP/Mv2U4n1yvReS/8rse8nsHzb9wMO97uTbkv9L7wt5wD82/hiCP
us0Y5L++CM53ax/Nv7MAzzf23OO/NthycaQ/zb8MwU4yR2Xjv3mJxfUrgc2/
vkFOJ+l14r80+aP2xwjOvyNDTREtl+C/OOCguiIsz7+rYEqU8obgv9DunfqG
Ns+/M35HF7h24L/LLIx09EDPv0O5QR1DVuC//7J4U+tVz79jLzYpWRXgv5O3
3nJKgM+/Rzc+ggon37/n6tlp3NbPv0jo4eG6H92/mxF0BeVF0L9YI9znRf/c
v+iaEDO7S9C/aF7W7dDe3L8A0K4dl1HQv4jUyvnmndy/COzZVGBd0L/IwLMR
Exzcv7/ZMX45ddC/SZmFQWsY278bVs3DEKbQv0pKKaEbEdm/X+2v1qoM0b/o
OnAn0fLYv7S1IULeEtG/hiu3rYbU2L8DlyoUGBnRv8MMRbrxl9i/7tZEH58l
0b8AYmG3IUjYv9xXBERINtG/7+Ndcw==
"]],
Line[CompressedData["
1:eJwVzX081AcAx3FEdtlUxmtIHmKJhnDoQdMpEbl62aK88tDMYzNlQp5GZyLz
NE6sa450WAmLMk/fiDyMyz383INzhES2NOx4cc3aH5/X+8+P0VdRXsFKCgoK
lPf971v+Ra1LJCFWgpr1vz/KgYa/asSgK4HqwKDnuRMc1FOpb9PMCITb6lLu
veKA6kSPdVAjIH9jtXX4DQfZhsa0CjYfOqlX1W3fcaA89Tkj/gwfK5OJfwTq
ciELjWWbBPFgrSEdivTmQnT5pU1yCgcey6foywQXl2szUmv83n9VadnrUi5I
c6ZswpED8+iVta2zXBwIjAi3XB9Gv6Bv7sIaF6XUhbLxuGEUe8fUPzDg4aH3
ok76JBuiK4c3aUbyMD1EbpIw2Zi3D89WjeNB0yXutF0AG4zgAZpaGg8xtvKM
mdEhjPm3s1zoPJC3bV52Iwahp1n5aVYHD439OuyP+gYwM0ZV/kGTj+kj58ND
MgYQnOb8lGHAh2bzL8o4NgDl+zLdfnM+YljGhy519qOF1CMMpPBhR7Oo5rb0
YT/TTUqP4uORI+XazdpnKL4XtTtsmI/HdWH2RoVdkCgcogtZBGTuq973vbpA
1p+QqzcRIM9cj3PQ6EKRUWhW2FMCv+lVNXsWdOJKb7x25gSBB1kvDybkPYE8
vo+dpzeCE73dKaxP2qGROkQqZIzg2bsptBW3oTxa9Xxo7QiOkTcp8rTa8HWR
zty3HSM4Uk6hbXzcioBzil/ufDEC+8SO62e3/Q5jRmH2LjMBTKya87eQmiAo
U98d2SNARbCAY5jZiItFy5+5iQUwZMg0HFQb0VRSdThuQYAdJDt6kMpDHErz
dZXqCqEx1VDaptiAhkFWvV2sEPk6HDE3tR5+vjeqtXKF0GVOOHA36pBUMV4Q
zhJie4Kf4155LaK6GXtoQiH+tfBxGVuuga/27A3royKs/UzvJS1Voy/Z2yQo
QIR/VPkn7P+uwt4JFuGcJMKfL05T8/66i+PkFYP9zSK8ouYNt85XosRmR0qI
QITJ1iGv2bk7kDV0SmNWRBDR3X0oM+V4Xq7TEXNQDL5Slihymoml+QXXHD8x
mOO5j8k9ZTjDzezhp4mRU5j5ZKb9Fvx3mcddYIuRHqnS49RSis3Krwdfy8RI
cL3WX/LoJkg+Zg0WRqMIW0/kutcVgiDtVGtJHIWzZfeoB7sA9brJ/tY1o7Dv
0h4oFefBdjFqQ080ijnTGskt7R/hcPZOo1RNAkbOgYXb3pkQ7yu6ukyR4NRS
vyKzKB2NGUSQSpIESud8NSu4qVit1D++0iJBRDLh6WaUALnpFqaWwhiG3WTR
J29Ho6auM8Pfcwzf7LHcV24TAhV7I4EVawwT8o65u7+eRF+L4Xcm26X48AsV
dr6ah1NN7uIHqz9J8R9O5Ey0
"]],
Line[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAATO4jl9oNcz8sZ1qEo/DfvwCuATJJ
wYQ/bSkeOhrZ379NSHEfR4OIP7EX5kc50d+/muLgDEVFjD/udB4iWMnfv5oL
4HOg5JE/r68YO5W53780QL9OnGiZP5TwrPkMmt+/tNQ+Ako4pD9qMDN88lrf
v0e7mn3JKKU/jZ8BOQ5T37/aofb4SBmmP8IFAL8pS9+/AW+u70f6pz93KLIl
YDvfv04JHt1FvKs/HE7gV8ob37/0nv7bIKCxP/xx+h2U3N6/jtPdthwkuT9s
RSqU+13ev/CaIleBprk/14M5+WRV3r9TYmf35Si6P0zXBRXOTN6/GPHwN68t
uz9jZYVvnzvev6EOBLlBN70/KqXOpj4Z3r/aJJVdM6XAP/PzHtJu1N2/7l+7
X1i4xD/91cmYk0rdvxXWB2Si3sw/lFZTmtg13L+m/SIj+wrWP/1LrY3JLNq/
ao6dalSA3T8r4l/NoibYv16wwu39y+I/R1ekdmjo1b/B55+cgZLmP5nSWDEK
wNO/6r8zYCyq6j/EKvYw+1XRvydX9c6uru4/jC2fkNT8zb9PHhCa8DbxP6o0
n49D3Mm/buEAVx0/8z/ZN19pTJ7Fv6pLJg+iJPU/TugHdtzRwb9JBqdRujL3
PzfDWx+srru/cqC+aT43+T9dxp2NZh20v7jhCn0aGfs/MRYXYwyJqr9ic7Ia
iiP9P4yXOhj4WJi/KayOs1EL/z8xI8dgfXhXPz3iAJHCdABAzL3rroK3mT+X
FmgNJngBQDkBsBS6Wak/gJ5phzVqAkDjW2GQMCyyP5vOmMaOcANAxPVVOkrJ
tz+VDUdMe2IEQAq5QKmnuLw/Vqs+Vg==
"]],
Line[CompressedData["
1:eJwVlHlYTdsbx1Oa65x1ztZwU2m+FKVBpvK+aJATKSGlkBQ5VGRIoiiS0rmF
e1Ap5xoikSm/SHOiQac6eyc0XLco3ORGN/3Sb//+2M96Ps96nnft9Xm/6zUO
jvDZKi8nJ3eV/f6/zi1LivcOn4w2YWtmful+Av2bp+uuD1bEraf1lngNlMPJ
8YHJnaFK+EbszvBTquDRJ/dBjr8yvrg4oVHPrYWbgsjqvctU8Kmw12Uipw6a
fWqDLASqKJt7b+a5uHpIvPXw+1EnNcz8bPpyi1MTbL/TtnrGEnXs2RoacT+3
Gd4qpRXGOmqgAH4mW6i1gHYjGVaw0MSSJrE/CWuFhIWVP2UzOHg9r/C7m7QN
ksPffb80i4PycUUBAXQbiM5PHtxuy0HjytLXO1+3Qe6IW9f4PA4ePjBZN623
Dcrv1ZeZL+NgWfLNj/dG20Bupix+bygHO9//YZxjLIPD+h/ktSQcNHjOSy6J
kMFxgepY51X2vIFLk09Ey+D0Qct/rt/gYGHsO9mqGBnktAvfOd3loOIy2u/N
URmUnhmqCqng4FUXiXrLWRn8V2Ms8X4XB+9KCuxsH8vg4Limsq8+F+833alO
UKDB5N1SiwgjLrpZnatxU6Ghvi7GNcWMizZ97quVNWnQP9N7rHwmF6UOhW8P
atNQZlkqN8uZi0+2ehlZzqBhsp/wh2IQF1O8PF2zVtCQfvfF5+JLXPymuqvf
P4OGeWI5zVYJu6/0vWL3ORq64xxn/n2NrX/FUT7xAg12HpfDze5wcazbNiTj
Mg1tXTHvReVctFPY4rrhLg16mjN6tvdwseS8mo2omYaqr0FySb1cXLB6f6t9
Gw3C9jPTcvu5qPiaG/KSoaFUIhdED3ExXvm/nZ87aZhtINxpPIkg0chbWPOJ
hpZ7SwfSeAR3RMetrFZi4Ljz/d7fKII6pUGG9aoMLHhm1nNWi+DgPc2NdRoM
XO5QbM/+hWBpwMCDK3wGoibV1dwyJtguVJ//wYABs1PzKopMCYbPi+ddMmKg
fUr+kwfmBL32Z6wVmDKA01Pulc4gOGdeQ9ax6QwQL8+8RluClh1rFkXYMVDd
/iRLak9w6pi3pNGBgQPBs8SyOQTXnSpbazSXge69nPS38wmqT/D4lxcycDur
+dDnxQS3ur2W8F0YCLZYfGBoKcFtj1KXcd0Y0L5TtOebK0GnfxMUJtwZOFyV
ET7uQfC453XdYgEDKwd8/TR92P/JVLNL8mFAPrpmNc+XrX+zclzLl4GH43O8
tNYS/LnJMF28hgFDno6bgT/ByNK+1bv9GGi5cGKx8QaC5Q5GNs/Xs/7M/nUy
DyI4wM+exgtg4PPcV/azggmu2MWk7glkILfCw8Y2hGDCn1a304IY8BWUWM4J
Jbj50aiteCMDKjJLi/nbCA6XHnyfsYmBJ0EXjZ3DCbZeeZgXt5mByA/qBouF
BHvHT9j5BbO+dx/Sdd1FMDMib4fJFtb32CfKI5KgSJBp+Ibl1KRA7ordrN8t
Uv2kENY/t0nNO5rgLNv/zDXYysCweJHSmn0EHXzF+AfL101uT1p/gODCDfdU
9EIZCCiYNr7hIEHHz56bD7PMcRT9u+kQweXzbk2VslxZJjcccpigfeMMVX4Y
A/s8oga3xROcWTNrDFm2bO0ZEB4lWLhsSVUgy50bfPoiEwmqRunYb2M5o6+y
J/o4wZLjafqbWHaLtH97IJmtn/3U25XlH6OS9kMpBKekqVzRYbnw2JS2+FR2
X6DTT7PnB2smvUw8TXB27uCXoyxr//7tRbKIoMvCH+lTWX5uFFqbmkHwpRn3
Qi57P7Mu6S+7zhCs1MrX1Wf5cLbzTq9zBGt9VF2Os35eBeSXzxazeZp2drST
9eegpzWFf4FgkraljgXL6e3xYf9cJLgp6tfYANb/wLlPJW3ZBMOS9k8+wvYn
l6re/HsewblGNxVFbD/HpDYPDkgI7jXfsyiO7fda0UUV/ysEgxfuMPRj86Ch
uee2fj7BrlhRIO3PQFh9p/zPGwS7VdKPxbB5qjy5fG1XAUF5+X2dqmzeDiiZ
jOfdISjI9HkxxOaztTpt1bG7BHucNs7wWM2A9bFRSch9gsnPxevTvBn4a6J5
+a+PCD6ctEH2egUD8NQpR6WEoHvP1ZFeNv8XDl0f6n/M+oopFr/xYGDV6BFx
QRl7v6cO/HRXBm4Wf/yYVkFQL2t3/fKlDCjtWwcRVawvb+uar8jm86t1n+0z
gsa6VgJlJwamf3prX9xEMEdnvGCxLQPHbnicEDcTHPWeKQyyZvu/7UFHTAv7
nvTdHcOsGDjTm5rgRBP8kV076GTOgFzXwpcVbwkqX/eMHdVh85d9zUTSRVAt
ZLnq/insewyg9iX2ELw9zbWjmzDsvBvQd+8l+Mj+VmIMO6/apefDGz4RtB1P
Na0YpcFepPj01t8E9UV+f13+RsPplVG89C/sfCpYdT5qiAaX+mWPvIcJrnqg
FUh/oOFO9YgiM0YwIj3GtIKmIbl4TV6PGg+LPihsw9s0OEgFyR81eBj55YFl
Rj4NXQOLI75xeDjLSChtltDgaGjtrErxMCTQ8ruWmIZ3iUqvZk/lYbPwlHXd
ERoW+RSTeCsebv/j1mMtTxqGP+nGG3ry8GvVSvWmDhlsMnkTFJDGw9CPlfUd
79pg4qHNVCtlPq4XbDBKMGkFu6zvNSqqfNxeMWaqo98KIQmlkX1qfMxjokKL
tFqhTiCozePwcaO1+e2vKq0g6g6N0tXm45mRl/uvD7aAkVrOM0VzPlq0m5zr
KW0BDNSI7l7CR2EkpZwc2ALxCv0NZw/zkSwzvOGSLwV5lwXqWfF8zLgqHx0h
kUJS4imPy0f5+H7IoConWwopita1hcf56Nlh2q2WIYVM5T1lz07z8e7oxRzd
WClcVR8vGs3h45XdJ3YorZRCI8X7PbCMj8+tars0RppBz2z+ZnM5Cqtr15xq
822G2F1rh9ViKGyfdynyZ2YTGDmG1FnEUmj2W7jh9lNNUD0elbUkjsJXWJf9
6mgTcNLSXA4mUKiev2qkPqoJLt+sPtN/kkJlr9nB37yaoO6D3Zy6CxRe25h5
fo1mE2hv4e5LekLh0kU3hMapjfDY0mB53lMKnT16QxckNsKmr5aGpeUUWtVp
RPsdaoQbCW61w9UUWuzcWyQRNoJzbpx2SCOF0zfeMNm3ohFC3n58uKSTwuQj
Pu5KpBFUr4ymBHVTqLlu4NtOlUYoFCpvPPgnhU9F00M65BphZMxE+W4fhdqS
mh0VQw2Qoue/zniQQtsK95xnrQ1g82eYlfMQhTv8r5b7NjRAW/7eCb9/KOzP
Lontq24Aw/m/XRONUFiyRTNf52EDVMldii0YpbDUvodXXNgA2+oKvOrGKNRx
OCsXcK0BNEQlpn+NU7jrZGKkQm4DFK2rG5mYoFCvkwTeETfA/wAh/qr8
"]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-0.49906242299185766`,
0.4740139128819521}},
"Frame" -> {{False, False}, {False, False}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio},
"Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-0.49906242299185766`,
0.4740139128819521}}, "Frame" -> {{False, False}, {False, False}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio},
"Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" ->
GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]],
Line[{{-0.9999998775510204, -0.13762921123959704`}, \
{-0.9981596924766423, -0.13770766021306138`}, {-0.996319507402264, \
-0.13778621157438717`}, {-0.9926391372535077, -0.1379436223879897}, \
{-0.9852783969559951, -0.13825968291601204`}, {-0.9705569163609696, \
-0.13889681256415162`}, {-0.9411139551709189, -0.1401915415776846}, \
{-0.8822280327908175, -0.14286655650219973`}, {-0.754549857487248, \
-0.1490982481019447}, {-0.6353326985790873, -0.1555344402030519}, \
{-0.5184541070867436, -0.16254510294504526`}, {-0.3916691850510331, \
-0.1711280507455069}, {-0.3794025698494181, -0.17202274324157726`}}],
Line[CompressedData["
1:eJwB8QEO/iFib1JlAgAAAB4AAAACAAAA8NRrFXAJ2L8CU9hGEg7Gv3GthoCp
XdG/1IaqVMcax78J6SfO1TzRvwb4WotOIMe/OWBqaS770L9FZ4++aCvHv5lO
75/fd9C/fu43Ac1Bx7+zVvIZhOLOvzJ2Cnlbb8e/tMkZzg3Iyr/7e13Vys3H
v+RAXGlmhsq/VO53DtrTx78UuJ4Ev0TKv/tKqUPu2ce/dKYjO3DByb+gb7HQ
JebHvzWDLajSusi/QJshx9L+x7+2PEGCl63Gv50o4o4vMci/t69oNiGTwr/1
JSTxYJrIv/ZK+FasUsK/kRsgAAyhyL805od3NxLCv4KkMd+9p8i/shynuE2R
wb9ggWxsNrXIv66J5Tp6j8C/O0rGhH3QyL9Jx8R+phe9v/hCtJR8CMm/xv3j
v7yWvL8lsI6BoQ/Jv0Q0AwHTFby/3CWEI88Wyb9AoUGD/xO7v6L6MCpFJcm/
Nnu+h1gQub/dFK8boULJvyQvuJAKCbW//RblW0Z/yb+iZdfRIIi0v/qjpQMO
h8m/IJz2EjcHtL/42zD34Y7JvxsJNZVjBbO/rooWHLCeyb8S47GZvAGxv8hm
Awjwvsm//i1XRd30qb/KIJYpbALKv2j7e9JKr5O/FrsRST2cyr/svQfOkAtL
P5d9WgCkKcu/Uh0HzA==
"]],
Line[CompressedData["
1:eJwV1Hk0lO0bB3CUbcge1dumiERZkkpcyDtS1hIT4U0USiGV0yJLi1+LCC8p
ky0tpDItmiZXNLSQ0HieFFIn66xGyhJ+z/vHfZ7zOef+47mv+3t/9UMObg2T
k5GRuUKt/763bQ1yPs86BLwd45wsvwacTSiGFnU1Ar44dWHGsSYsnVyydIJG
gLFMqUKGSzMO9DmkNhsT4MYdc5re0oymrUHCm3QCLDKuR0V7NWNlad5Tr2QC
6N49VwN2NGO1p5Zb6RgBNofrirfva0ayUPawdz8J13qizb9cbkYlenf9rbp2
UJ93eqfTl2aMTMuP9EnshDLHidp1J1qQZbZLiVXQCW+qTjHFSS34p9GgVLOm
E67GG/fcOdeCl1XKvzXJdoFl+gR3RWYLPkplM1xTukDoE/J32N0WnE4m6fZn
v0JBxFVRZXsLvnueqqlT3w1ZrpfiebatGPSgVjjZ8B0+BPfy29U+Yk3fjetJ
V3ohXUp7NvyWh0tsKly6i3rh7KVRg48tPEw+y5Has3qheG6ZD6udh86G7Zv+
fOyFS1rLnA8P8LA+RGvkyOw+OGmkPz6m1IaNnafd9+f2QdbmwWHCpQ2JjxFT
vsx+sPEK69F91YZrlsbfeVzRDxZFfFreuzbMiT3ro4P9oK1/9OTs1jZkaBbf
bfnaD1sq1PqGu9vwi0eHr5v+AJgGygqcp9qw+63HfceSAVjHOsLuXUOgw9xA
/4JHAyDHvVH/yo7AwvB98tPcARhhH9me6UxgiGJqAKdnAFIC955W2kpgj3ON
oo3RILBj9sx03E/gIFr9Y3p3EJ4FrTK/nk+gS70owp49CNaV/zYFFBNY0njn
kNe7QdjuvMlM+Q6BQe2LzsUNDsL6z+Yapo8IbJWqVHBM+KCw1Ur3wlsCV43V
P21azwcbGfr2h00EXpxOqunezAf9kmGvVx8JpKuO8mbu44OyHrvkTieBzwx/
TLiV8eHe8o2exyQE6prekA9+zoeYQ50/R38SGGvprx7TwIfeGrPvu8YINIXm
Jdl8PhhvXKkklSWxgMFx7VwhgCU+5RuUtEicDDq6TWwrgLpgt7dts0n0D7MM
lHUTQA/33uuLc0nUib0dbbhfADOT6V1PFpOYeiErJ6pcAOoZ9/3HzUjsyfAs
PMURgLlhzhYtCxKdcmllGY0CMKxJPqy9msQ/JYnVjwUCKOSkp7SsI3FHme2b
138EYO9SGJe2gcQnD3+1tKsK4WlufNVqIDG6en/PpKkQnEa54XbOJL7nGonV
7YRQucRCeoNOoknD91F9dyFMMKyVBJtI/EEyVOlRQhjMExs5upPo2KWtyzgp
hKngTzs3e5LI/NG0KPKSEBw/3Yiz8yaRMeRslXZPCCcCLj765kPi49/TGwpe
CCG1arVOpi+JWlNseuV7IWQaFtetZJB4cOYRL26nEO6kj/Q92kFiI83CnxAK
4Sbt7DXDABKXawp2908KwTjsi2zSThLP6t2KGp8lAteRq3avA0l0MFiQtHCl
CBx3L6jT+YfEfJNP583tRTC3wyZg/i4Sx80zs5w8RFB7zzVAPYREPxsPpk+Q
CGZIygVCyo/slG/vOSCC5pXJNlW7SdR05j6MTxBBWWtR6IFQEg9sPvX8fJoI
ponMfI0wEt95ra+7zhRBfku86g3KRn4jTRUVIphyV+yYu4dEjtz53LIXIjiu
NvLlGOWtFQtDbjeKwDiBp91AuX8Ha8XNLyJYCZG3aHtJTJDfNFI4KAJzXj17
HWWdhx3VzDERrPphH8ugfHdnTOo1JTGMsXdL91B2UFLYmqsnhm0Kf4LDKBOs
vL+yl4lh4MOfr9so7w9e1ZNhLYZBVnKOJWU5FW5FmrMYFvs0lMlSzn3CiL+w
TQwLFFc51VD/YxYidEwNEYP2q3mJMZRrZyWrnIkRQ+VG2gUtyoxnum1JiWKI
iUxOLaHOKwotYyZcFkP8JxWmEeXTGg7hx5li8K4xG7pGzWseh2cRf08MR0fC
b8lSfrA3YiKOIwbeUqteBjVfuvYUN6ZBDGre0tZCav4d1VfSDnwWQ2nK6JUO
6r5iI40Y+wbEwCo+tUWZspIuRz98VAz6l27qG1P3m/ck9rO5igT4rCL2hiAS
w1Tt4L6WBJ6ylV5bUnkwD1EsMZsnAYV0g9N/UXmpn3U9ymS5BB4LawvrqHwN
hdbJGLhIQCP7OCORyieHfTmsyEMCl02Y7erbqHxp+L9b7CsBnUXXjTOpPM/n
iDIXhEngeUIA+7AHiZu05xjppUjg95yHYRUuJGpHfL+QfV4CiUxTje6/Seyq
LpdoX5GAC388W4F6X3GRjmyNQmq/msxjSweqH2oi3WkoAS1zdzZtLYn79Kwr
U+slsFhO9nmvNYlroqZ1FZsk0MdZfaXKinoPc7K6Z3RKYJo3Zmu/isTRgy8O
TY5LYEmgqJJnSKLnQo08yZohiFru20nXJHHntxnumjAErnlvvLaqkRhe8nva
wmUI7Eo6OrapkJho8jXskN8QdPnxq9fJk1i5psLi19Eh0O400ckapfrO0+3t
RNUQJD1doJBP9WHXqdRRBVsp8JtGH3MKqX52OlFmtFEKn9wUNGupfv4tHx20
aYsU0k19m19eJVDjoh/3fwFSWJFp+uFuBkH11bJ01RNSkJSrKFglEVj6gGuk
9UIKxAvhOsNgAg98k/FbAMPwYHxNB02PQL2j3yJY9GGoPLFW+YEWgS9Va0+4
egyDT5zE01uNQK21KUWHA4fhVw7TN1WewCdp8qL3x4ehusT6yNvhNpy0pZ1J
qBqGqSbjyYIPbXjxX23WV4ufkCxfNNF7ug3vblmmXmQwAn3PAzaf7+Ohq8It
b7blb9jj5hDhduwjxhZUR9jbjIGp98nlvnKtWPWNdnLe3Ako8VDJ7spvxpBD
lfPOL50E1feb65TXNuHy8jSWt8o0bN+xMVo5tgHtvstk1MbJOLSErPDJevcG
c3TDZy2Ll3WwmX/G30K2HhOZEeesI+UcLEPdlPoTXuG1ptz6tOgZDsXuob5P
Pr/E7FkubsdDZjpY7d1uKunm4P8BVz/d1w==
"]],
Line[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAN7+FgFFqBEAOuUCpp7i8v+lhKBhZ
YgVA1PZdvMGot7+J/eoE3mYGQCvZXVMJFLK/uOxH7w5aB0CiAmCs9xipv6tL
cMR1SAhAcKuN2vZBm7/QUsZeJksJQKdD6ofh0FC/hK229oI8CkBMTw3v5IGY
P2mw1FMpQgtAHk636nakqj/dBo2uezYMQN+0lUuXRLQ/Fs0Q9AMmDUDo9uto
gki7P4E7wv7VKQ5AnKzSHWKQwT96/Q0HVBwPQCWp3BRkWcU/0rND6o0REEAD
S885cp/JP8kgZsaMkhBATc+O0NsOzj+It1Wh4QoRQDXMcEdUONE/YCLcXluN
EUCX7dMEtKDTP/+2LxsrBxJA2vOSMpvO1T+AA+nMlX4SQEWNHalb4dc/GiQ5
YSUAE0DIS089yxTaP3tuVvQKeRNAnvSXGJoa3D8gNmTIJnsTQAV8146UI9w/
xP1xnEJ9E0BqZeuZjizcPw6NjUR6gRNAVm/UcIE+3D+iq8SU6YkTQPSFSjFi
Ytw/yOgyNciaE0CxtkN2EKrcPxZjD3aFvBNAa820pyM53T+7Kh1Kob4TQNdL
/L0RQt0/YPIqHr3AE0C6tE15/0rdP6qBRsb0xBNA8vfX4Nlc3T89oH0WZM0T
QP+24H+KgN0/ZN3rtkLeE0BQ7OBd28fdPwml+Ype4BNAYWXF+MPQ3T+ubAdf
euITQJmqfz+s2d0/9/siB7LmE0A4cA7Se+vdP4oaWlch7xNAj3ybFhcP3j8v
4mcrPfETQNr1ORv9F94/1Kl1/1jzE0AJ2s3O4iDePx45kaeQ9xNA/M9YRK0y
3j/DAJ97rPkTQLyzDweSO94/aMisT8j7E0BQqTt6dkTePwyQuiPk/RNA2vs6
nlpN3j+xV8j3//8TQJlTa3M+Vt4/HNdCHA==
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Line[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAAir1Cvv//778at1XpqBfIv07sa5js
8O+/r2Iycb0cyL8RG5Vy2eHvv7yefoDUIci/mHjnJrPD7791nxQ+CizIv6Yz
jI9mh++/NsCZcpRAyL/BqdVgzQ7vv7uEabUlasi/+JVoA5sd7r8YKSPgS7/I
v2dujkg2O+y/c4YnSzNyyb9+fiO+RSXov8bU4lLKI8u/hi0gPAMW6L8Nv+UF
pSrLv43cHLrABui/wbodAYQxy7+cOha2O+jnvxHRPONOP8u/uvYIrjGr57/X
B2ndGFvLv/Vu7p0dMee/VMEq/oGTy79sX7l99Tzmv6dvemLNB8y/WkBPPaVU
5L9nnFORjP/Mv2U4n1yvReS/8rse8nsHzb9wMO97uTbkv9L7wt5wD82/hiCP
us0Y5L++CM53ax/Nv7MAzzf23OO/NthycaQ/zb8MwU4yR2Xjv3mJxfUrgc2/
vkFOJ+l14r80+aP2xwjOvyNDTREtl+C/OOCguiIsz7+rYEqU8obgv9DunfqG
Ns+/M35HF7h24L/LLIx09EDPv0O5QR1DVuC//7J4U+tVz79jLzYpWRXgv5O3
3nJKgM+/Rzc+ggon37/n6tlp3NbPv0jo4eG6H92/mxF0BeVF0L9YI9znRf/c
v+iaEDO7S9C/aF7W7dDe3L8A0K4dl1HQv4jUyvnmndy/COzZVGBd0L/IwLMR
Exzcv7/ZMX45ddC/SZmFQWsY278bVs3DEKbQv0pKKaEbEdm/X+2v1qoM0b/o
OnAn0fLYv7S1IULeEtG/hiu3rYbU2L8DlyoUGBnRv8MMRbrxl9i/7tZEH58l
0b8AYmG3IUjYv9xXBERINtG/7+Ndcw==
"]],
Line[CompressedData["
1:eJwVzX081AcAx3FEdtlUxmtIHmKJhnDoQdMpEbl62aK88tDMYzNlQp5GZyLz
NE6sa450WAmLMk/fiDyMyz383INzhES2NOx4cc3aH5/X+8+P0VdRXsFKCgoK
lPf971v+Ra1LJCFWgpr1vz/KgYa/asSgK4HqwKDnuRMc1FOpb9PMCITb6lLu
veKA6kSPdVAjIH9jtXX4DQfZhsa0CjYfOqlX1W3fcaA89Tkj/gwfK5OJfwTq
ciELjWWbBPFgrSEdivTmQnT5pU1yCgcey6foywQXl2szUmv83n9VadnrUi5I
c6ZswpED8+iVta2zXBwIjAi3XB9Gv6Bv7sIaF6XUhbLxuGEUe8fUPzDg4aH3
ok76JBuiK4c3aUbyMD1EbpIw2Zi3D89WjeNB0yXutF0AG4zgAZpaGg8xtvKM
mdEhjPm3s1zoPJC3bV52Iwahp1n5aVYHD439OuyP+gYwM0ZV/kGTj+kj58ND
MgYQnOb8lGHAh2bzL8o4NgDl+zLdfnM+YljGhy519qOF1CMMpPBhR7Oo5rb0
YT/TTUqP4uORI+XazdpnKL4XtTtsmI/HdWH2RoVdkCgcogtZBGTuq973vbpA
1p+QqzcRIM9cj3PQ6EKRUWhW2FMCv+lVNXsWdOJKb7x25gSBB1kvDybkPYE8
vo+dpzeCE73dKaxP2qGROkQqZIzg2bsptBW3oTxa9Xxo7QiOkTcp8rTa8HWR
zty3HSM4Uk6hbXzcioBzil/ufDEC+8SO62e3/Q5jRmH2LjMBTKya87eQmiAo
U98d2SNARbCAY5jZiItFy5+5iQUwZMg0HFQb0VRSdThuQYAdJDt6kMpDHErz
dZXqCqEx1VDaptiAhkFWvV2sEPk6HDE3tR5+vjeqtXKF0GVOOHA36pBUMV4Q
zhJie4Kf4155LaK6GXtoQiH+tfBxGVuuga/27A3royKs/UzvJS1Voy/Z2yQo
QIR/VPkn7P+uwt4JFuGcJMKfL05T8/66i+PkFYP9zSK8ouYNt85XosRmR0qI
QITJ1iGv2bk7kDV0SmNWRBDR3X0oM+V4Xq7TEXNQDL5Slihymoml+QXXHD8x
mOO5j8k9ZTjDzezhp4mRU5j5ZKb9Fvx3mcddYIuRHqnS49RSis3Krwdfy8RI
cL3WX/LoJkg+Zg0WRqMIW0/kutcVgiDtVGtJHIWzZfeoB7sA9brJ/tY1o7Dv
0h4oFefBdjFqQ080ijnTGskt7R/hcPZOo1RNAkbOgYXb3pkQ7yu6ukyR4NRS
vyKzKB2NGUSQSpIESud8NSu4qVit1D++0iJBRDLh6WaUALnpFqaWwhiG3WTR
J29Ho6auM8Pfcwzf7LHcV24TAhV7I4EVawwT8o65u7+eRF+L4Xcm26X48AsV
dr6ah1NN7uIHqz9J8R9O5Ey0
"]],
Line[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAATO4jl9oNcz8sZ1qEo/DfvwCuATJJ
wYQ/bSkeOhrZ379NSHEfR4OIP7EX5kc50d+/muLgDEVFjD/udB4iWMnfv5oL
4HOg5JE/r68YO5W53780QL9OnGiZP5TwrPkMmt+/tNQ+Ako4pD9qMDN88lrf
v0e7mn3JKKU/jZ8BOQ5T37/aofb4SBmmP8IFAL8pS9+/AW+u70f6pz93KLIl
YDvfv04JHt1FvKs/HE7gV8ob37/0nv7bIKCxP/xx+h2U3N6/jtPdthwkuT9s
RSqU+13ev/CaIleBprk/14M5+WRV3r9TYmf35Si6P0zXBRXOTN6/GPHwN68t
uz9jZYVvnzvev6EOBLlBN70/KqXOpj4Z3r/aJJVdM6XAP/PzHtJu1N2/7l+7
X1i4xD/91cmYk0rdvxXWB2Si3sw/lFZTmtg13L+m/SIj+wrWP/1LrY3JLNq/
ao6dalSA3T8r4l/NoibYv16wwu39y+I/R1ekdmjo1b/B55+cgZLmP5nSWDEK
wNO/6r8zYCyq6j/EKvYw+1XRvydX9c6uru4/jC2fkNT8zb9PHhCa8DbxP6o0
n49D3Mm/buEAVx0/8z/ZN19pTJ7Fv6pLJg+iJPU/TugHdtzRwb9JBqdRujL3
PzfDWx+srru/cqC+aT43+T9dxp2NZh20v7jhCn0aGfs/MRYXYwyJqr9ic7Ia
iiP9P4yXOhj4WJi/KayOs1EL/z8xI8dgfXhXPz3iAJHCdABAzL3rroK3mT+X
FmgNJngBQDkBsBS6Wak/gJ5phzVqAkDjW2GQMCyyP5vOmMaOcANAxPVVOkrJ
tz+VDUdMe2IEQAq5QKmnuLw/Vqs+Vg==
"]],
Line[CompressedData["
1:eJwVlHlYTdsbx1Oa65x1ztZwU2m+FKVBpvK+aJATKSGlkBQ5VGRIoiiS0rmF
e1Ap5xoikSm/SHOiQac6eyc0XLco3ORGN/3Sb//+2M96Ps96nnft9Xm/6zUO
jvDZKi8nJ3eV/f6/zi1LivcOn4w2YWtmful+Av2bp+uuD1bEraf1lngNlMPJ
8YHJnaFK+EbszvBTquDRJ/dBjr8yvrg4oVHPrYWbgsjqvctU8Kmw12Uipw6a
fWqDLASqKJt7b+a5uHpIvPXw+1EnNcz8bPpyi1MTbL/TtnrGEnXs2RoacT+3
Gd4qpRXGOmqgAH4mW6i1gHYjGVaw0MSSJrE/CWuFhIWVP2UzOHg9r/C7m7QN
ksPffb80i4PycUUBAXQbiM5PHtxuy0HjytLXO1+3Qe6IW9f4PA4ePjBZN623
Dcrv1ZeZL+NgWfLNj/dG20Bupix+bygHO9//YZxjLIPD+h/ktSQcNHjOSy6J
kMFxgepY51X2vIFLk09Ey+D0Qct/rt/gYGHsO9mqGBnktAvfOd3loOIy2u/N
URmUnhmqCqng4FUXiXrLWRn8V2Ms8X4XB+9KCuxsH8vg4Limsq8+F+833alO
UKDB5N1SiwgjLrpZnatxU6Ghvi7GNcWMizZ97quVNWnQP9N7rHwmF6UOhW8P
atNQZlkqN8uZi0+2ehlZzqBhsp/wh2IQF1O8PF2zVtCQfvfF5+JLXPymuqvf
P4OGeWI5zVYJu6/0vWL3ORq64xxn/n2NrX/FUT7xAg12HpfDze5wcazbNiTj
Mg1tXTHvReVctFPY4rrhLg16mjN6tvdwseS8mo2omYaqr0FySb1cXLB6f6t9
Gw3C9jPTcvu5qPiaG/KSoaFUIhdED3ExXvm/nZ87aZhtINxpPIkg0chbWPOJ
hpZ7SwfSeAR3RMetrFZi4Ljz/d7fKII6pUGG9aoMLHhm1nNWi+DgPc2NdRoM
XO5QbM/+hWBpwMCDK3wGoibV1dwyJtguVJ//wYABs1PzKopMCYbPi+ddMmKg
fUr+kwfmBL32Z6wVmDKA01Pulc4gOGdeQ9ax6QwQL8+8RluClh1rFkXYMVDd
/iRLak9w6pi3pNGBgQPBs8SyOQTXnSpbazSXge69nPS38wmqT/D4lxcycDur
+dDnxQS3ur2W8F0YCLZYfGBoKcFtj1KXcd0Y0L5TtOebK0GnfxMUJtwZOFyV
ET7uQfC453XdYgEDKwd8/TR92P/JVLNL8mFAPrpmNc+XrX+zclzLl4GH43O8
tNYS/LnJMF28hgFDno6bgT/ByNK+1bv9GGi5cGKx8QaC5Q5GNs/Xs/7M/nUy
DyI4wM+exgtg4PPcV/azggmu2MWk7glkILfCw8Y2hGDCn1a304IY8BWUWM4J
Jbj50aiteCMDKjJLi/nbCA6XHnyfsYmBJ0EXjZ3DCbZeeZgXt5mByA/qBouF
BHvHT9j5BbO+dx/Sdd1FMDMib4fJFtb32CfKI5KgSJBp+Ibl1KRA7ordrN8t
Uv2kENY/t0nNO5rgLNv/zDXYysCweJHSmn0EHXzF+AfL101uT1p/gODCDfdU
9EIZCCiYNr7hIEHHz56bD7PMcRT9u+kQweXzbk2VslxZJjcccpigfeMMVX4Y
A/s8oga3xROcWTNrDFm2bO0ZEB4lWLhsSVUgy50bfPoiEwmqRunYb2M5o6+y
J/o4wZLjafqbWHaLtH97IJmtn/3U25XlH6OS9kMpBKekqVzRYbnw2JS2+FR2
X6DTT7PnB2smvUw8TXB27uCXoyxr//7tRbKIoMvCH+lTWX5uFFqbmkHwpRn3
Qi57P7Mu6S+7zhCs1MrX1Wf5cLbzTq9zBGt9VF2Os35eBeSXzxazeZp2drST
9eegpzWFf4FgkraljgXL6e3xYf9cJLgp6tfYANb/wLlPJW3ZBMOS9k8+wvYn
l6re/HsewblGNxVFbD/HpDYPDkgI7jXfsyiO7fda0UUV/ysEgxfuMPRj86Ch
uee2fj7BrlhRIO3PQFh9p/zPGwS7VdKPxbB5qjy5fG1XAUF5+X2dqmzeDiiZ
jOfdISjI9HkxxOaztTpt1bG7BHucNs7wWM2A9bFRSch9gsnPxevTvBn4a6J5
+a+PCD6ctEH2egUD8NQpR6WEoHvP1ZFeNv8XDl0f6n/M+oopFr/xYGDV6BFx
QRl7v6cO/HRXBm4Wf/yYVkFQL2t3/fKlDCjtWwcRVawvb+uar8jm86t1n+0z
gsa6VgJlJwamf3prX9xEMEdnvGCxLQPHbnicEDcTHPWeKQyyZvu/7UFHTAv7
nvTdHcOsGDjTm5rgRBP8kV076GTOgFzXwpcVbwkqX/eMHdVh85d9zUTSRVAt
ZLnq/insewyg9iX2ELw9zbWjmzDsvBvQd+8l+Mj+VmIMO6/apefDGz4RtB1P
Na0YpcFepPj01t8E9UV+f13+RsPplVG89C/sfCpYdT5qiAaX+mWPvIcJrnqg
FUh/oOFO9YgiM0YwIj3GtIKmIbl4TV6PGg+LPihsw9s0OEgFyR81eBj55YFl
Rj4NXQOLI75xeDjLSChtltDgaGjtrErxMCTQ8ruWmIZ3iUqvZk/lYbPwlHXd
ERoW+RSTeCsebv/j1mMtTxqGP+nGG3ry8GvVSvWmDhlsMnkTFJDGw9CPlfUd
79pg4qHNVCtlPq4XbDBKMGkFu6zvNSqqfNxeMWaqo98KIQmlkX1qfMxjokKL
tFqhTiCozePwcaO1+e2vKq0g6g6N0tXm45mRl/uvD7aAkVrOM0VzPlq0m5zr
KW0BDNSI7l7CR2EkpZwc2ALxCv0NZw/zkSwzvOGSLwV5lwXqWfF8zLgqHx0h
kUJS4imPy0f5+H7IoConWwopita1hcf56Nlh2q2WIYVM5T1lz07z8e7oxRzd
WClcVR8vGs3h45XdJ3YorZRCI8X7PbCMj8+tars0RppBz2z+ZnM5Cqtr15xq
822G2F1rh9ViKGyfdynyZ2YTGDmG1FnEUmj2W7jh9lNNUD0elbUkjsJXWJf9
6mgTcNLSXA4mUKiev2qkPqoJLt+sPtN/kkJlr9nB37yaoO6D3Zy6CxRe25h5
fo1mE2hv4e5LekLh0kU3hMapjfDY0mB53lMKnT16QxckNsKmr5aGpeUUWtVp
RPsdaoQbCW61w9UUWuzcWyQRNoJzbpx2SCOF0zfeMNm3ohFC3n58uKSTwuQj
Pu5KpBFUr4ymBHVTqLlu4NtOlUYoFCpvPPgnhU9F00M65BphZMxE+W4fhdqS
mh0VQw2Qoue/zniQQtsK95xnrQ1g82eYlfMQhTv8r5b7NjRAW/7eCb9/KOzP
Lontq24Aw/m/XRONUFiyRTNf52EDVMldii0YpbDUvodXXNgA2+oKvOrGKNRx
OCsXcK0BNEQlpn+NU7jrZGKkQm4DFK2rG5mYoFCvkwTeETfA/wAh/qr8
"]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-1, 5}, {-0.49906242299185766`, 0.4740139128819521}},
"Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
"ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
"LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[2]],
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[2]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 5}, {-0.49906242299185766`, 0.4740139128819521}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.90896291355421*^9, 3.908964919077633*^9,
3.908965367529688*^9, 3.927208542650475*^9},
CellLabel->"Out[6]=",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
FractionBox["1", "\[Pi]"],
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[",
RowBox[{"{", "2", "}"}], "]"}], "]"}]}], "/.", "testparams"}], "]"}],
",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "5.1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.9272688935024977`*^9, 3.927268908990179*^9}},
CellLabel->"In[81]:=",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"],
Cell[BoxData[
RowBox[{"{", "1.0000004135826488`", "}"}]], "Output",
CellChangeTimes->{3.9272689093816767`*^9},
CellLabel->"Out[81]=",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Rho]semi", "[", "x_", "]"}], ":=",
RowBox[{"Re", "[",
RowBox[{
FractionBox["1",
RowBox[{"4", "\[Pi]"}]],
SqrtBox[
RowBox[{"4", "-",
SuperscriptBox[
RowBox[{"(", "x", ")"}], "2"]}]]}], "]"}]}]], "Input",
CellChangeTimes->{{3.927269827522519*^9, 3.927269854631955*^9}, {
3.9272698952649117`*^9, 3.927269922225238*^9}},
CellLabel->
"In[154]:=",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mplot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"\[Rho]semi", "[",
RowBox[{"\[Lambda]", "-", "2"}], "]"}], "+",
RowBox[{"\[Rho]semi", "[",
RowBox[{"\[Lambda]", "-",
RowBox[{"28", "/", "10"}]}], "]"}]}], ",",
RowBox[{
RowBox[{
RowBox[{
FractionBox["1", "\[Pi]"],
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[",
RowBox[{"{", "2", "}"}], "]"}], "]"}]}], "/.", "testparams0"}],
",",
RowBox[{
RowBox[{
RowBox[{
FractionBox["1", "\[Pi]"],
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[",
RowBox[{"{", "2", "}"}], "]"}], "]"}]}], "/.", "testparams"}], ",",
RowBox[{
RowBox[{
RowBox[{
FractionBox["1", "\[Pi]"],
RowBox[{"Abs", "@",
RowBox[{"Im", "[",
RowBox[{
SubscriptBox["q", "11"], "+",
SubscriptBox["q", "22"]}], "]"}]}]}], "/.",
RowBox[{"s1", "[",
RowBox[{"[",
RowBox[{"{", "2", "}"}], "]"}], "]"}]}], "/.", "testparams2"}]}],
"}"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "0.25"}], ",", "6"}], "}"}], ",",
RowBox[{"WorkingPrecision", "->", "20"}], ",",
RowBox[{"Evaluate", "@", "labelStyle"}], ",",
RowBox[{"ImageSize", "->", "165"}], ",",
RowBox[{"FrameLabel", "->",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{", "0", "}"}], ",",
RowBox[{"{", "0", "}"}]}], "}"}]}], ",",
RowBox[{"GridLinesStyle", "->", "Black"}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "[", "3", "]"}], ",",
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "[", "5", "]"}], ",",
RowBox[{
RowBox[{"ColorData", "[", "97", "]"}], "[", "7", "]"}]}], "}"}]}],
",",
RowBox[{"Exclusions", "->", "None"}], ",",
RowBox[{"AspectRatio", "->", "1.0"}], ",",
RowBox[{"PlotRange", "->",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.025"}], ",", "0.39"}], "}"}]}], "}"}]}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.905943230252966*^9, 3.9059432467651*^9}, {
3.905943323183587*^9, 3.905943323270744*^9}, {3.905943370808155*^9,
3.905943387776013*^9}, {3.905943727471215*^9, 3.905943760471752*^9}, {
3.905944276841634*^9, 3.905944326314445*^9}, {3.905944480869431*^9,
3.905944528445614*^9}, {3.905944676440977*^9, 3.905944705441844*^9}, {
3.906013502132628*^9, 3.906013504515706*^9}, {3.90895821588421*^9,
3.908958232123577*^9}, {3.9089583127657337`*^9, 3.908958313693019*^9}, {
3.908958440432317*^9, 3.908958463311868*^9}, {3.908958876048376*^9,
3.90895892446454*^9}, {3.908960283322644*^9, 3.908960286665975*^9}, {
3.908960657809402*^9, 3.908960676705145*^9}, {3.908960842373774*^9,
3.908960851628831*^9}, {3.927208593914703*^9, 3.927208595633608*^9}, {
3.9272087115440598`*^9, 3.927208726455944*^9}, {3.927210840506917*^9,
3.9272108596866693`*^9}, {3.9272687745884247`*^9, 3.927268883501584*^9}, {
3.927268918319013*^9, 3.9272689680074663`*^9}, {3.927269021865239*^9,
3.927269028296701*^9}, {3.927269060313438*^9, 3.9272691074981613`*^9}, {
3.9272692402772408`*^9, 3.927269258765091*^9}, {3.9272694181220818`*^9,
3.927269454425047*^9}, {3.927269614236217*^9, 3.927269615108109*^9},
3.9272698197446957`*^9, {3.9272698586251287`*^9, 3.927269939986577*^9}, {
3.927269991827999*^9, 3.9272700136675997`*^9}, {3.9272702891457*^9,
3.927270291753561*^9}, {3.927270348363011*^9, 3.927270354818643*^9}, {
3.927273940047409*^9, 3.927273996696007*^9}},
CellLabel->
"In[225]:=",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"],
Cell[BoxData[
GraphicsBox[
InterpretationBox[{
TagBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN2nk01N8bOHBmxr4MI9mlVFKIQkKeK5IlKgpF9iJSSJItUVSEkApZskTJ
TtaMdWQ3U58IWZI9JGT3e3/P+f3ymz9mzuvMc5733Pu+7+e595zZaXPD8DKO
jo7OCXv73yeZd/v0xmZ7Fd3/fU2/r95zsHrLIlrOlywDtuzlUddSRdiy/Fe3
d/4sbf/85kW7A46n5Z/DhB79YNjb+M9mO9e62E+R/9ne3+DBPNOWRz+q25YE
V/0zv0rINpPbH//5zmHR29HGFf+sultTlchb8s8BbGJPWHbn/HN+8FW1DJ7s
f/6BL5jRwr//Z821E4b3h97+M9MvJ77NpPR/Fnh1Q2NcJX5r/M9w6XuFYv+5
98kzZruV5/+c4Ffe+r0k6p9PkjlzM5yC/pk1T/6W+P6Af36hUeSu2un9z1oc
saTTMZf/+bg6JX4MHf9n3e5rD4smTUFUIXS7g9MdiM1MyJnxdgbJnxY+ZSGB
oH0zUB+nfhtudfTGkx8/hIr5SEL64buAW3pXOegUCvwqnX27owJh5557fpyf
w4G6alrqERoMA6IrVjY3n8KTioHoxgchML53Pc+jNxK0fR1cBO+Gw17++BhW
qWig37G0R7HiKSwQd0i1XXkG5f136R8WPYPAo+c/vX37HPjJGjOy+c/hg9ch
zbMlL8AjiamvO/slpLl7Pcgtewmy1uElBzJewd/O3+d9X8eBoWv7B/vW15Bw
yPzoze2J4G+dJ1PRnAKTUr8fb/5IhJyzUWlcTamwo+VxwF7jJGA/ZBJV2pAO
uOHYhVN8ydAw9/06G/kt7Gwd5KK79xpElP9GmlzIg/1iWdfsmNNA/pBD272u
PIjdecr/mVEanNrfzZJlkg9HGRwFsl+lgZdguT+dcQGMeqi8qpZJh64Vv+uZ
hkWQSFpb8jvxBiLLGXVX9UrhrrKvPdepTAgUDfE/nUiGvETHXsehLKB75mCU
1kcGO+XCN6Hb34MPm9beVaFqqDqrcFRT9z24L9G1pL+ohkDSoLFv7nu4QvXg
23hag92vVaYzntmgHWSTnXW/DqxTTisz/c0B9umjvSyOjXC5PeyE+aU8eGjH
l2OZ0Qim7lnxZm55QOiZv1c00ghPE6QOqgbnwTolR8La9hP0q7mWvs7Ng+nk
PTdLzJvAfuxTGRcuHzrOc7Pan26B27K3s2sT86HJYl7IRrADPpE8JssbC+Bl
MVFPTrUDip9tCyT2FoAD5wEvOosOaD7cGqY7UwBMH627EpI7YJ5HTdiTtxA0
Rdqje/Z1AkUg36PEqhA+9mRynD9ChV36ovoMfwoh39Ry8+S5z/DF1j/pDHMx
xBo2DUmHdUFEJ+8zvs0PsMA36VH+vgv0QlvTutlL4EwfG5tOaxdQyqhZ4YIl
wOigf9iOvRtCYgNmviqUwE3fjsDYx90gvNx7q8epBE5l/LebKfgbhIo3KFR9
KYHN9aErA3d7Iaf2/OTN5FLI/+x765PSANzqrxygCpVDxgM7myGdAajjfmtH
2FcOCYp6p1cvDsBOwcjtUvLl8PgFv6S07wB8oKtTsjhVDrbmBb0R1QMw0nb5
u4FPOWwbHtMw1R2EeftHgde+lYPHHyPSqNkQdIu0fxkPrwAV0v4cwt1h2PdS
XWfHUCW00V/81Bo+DLd2PCLhpyrB6vejHzFJw+Bhb9nYv1AJ9zvG+SRrhuHO
yWje+ywfoS0s01+f4SeEZ/Muesp+BCs2ScOYkJ9wTm70tYDvR7hP2Lcg8WIE
0gpbcmy4q2D7vAnxd8YIaCx+jXQRrIKMH8GSZaUjwOkmLOkpXgWtNaOXTvWM
AEu91AN3BSz+3psGF9FRePVCJXLXhSrIXN/7ojR1FNKXymNME6tA9ZdxfkDR
KMCRr/sIGVXQ1hvUotcwCitXlKszc6tgrnyE7vvoKPSbmvH/qMbivdKv4g6M
Acta6QjnMBa/uEdFL28M8oR5wt/wkGHvq67gP+QxaD8DusF8ZPDTCPkc1zEG
YUeFQu2EyHAwYtZ5amYMqsfW3vKJk+GhYkpZ9OYY/N58GPJrLxkGes8zHSOO
g+GdzmXyfjJESJYnPZEZB4v0B0FWh8gw1u78S0FtHFCEdYaUIhmQh5jyd/1x
OHvum8XiUTK8EKYFBV0ah99Gye8qj5Hhd80DmozzOOB0L0cEqJNB96qS2Fef
cfA8Q+U8cYIMr4mT1+6GjsP3n0/3MeiQYaXoValE/DiI2cgu9GaQwdD8DGPH
Oyxe6qmnkVY1vMXhjTzLxyGtl9vQOqUacJlFiWLN47DTs3BN7Fc1XDztMNX4
bRxUy4FkLVUDBQuCR10nxuHcgYyhWrsaYI9vfSCwgo2POMar8KIG7I77U6tZ
JuBBuCDXd0oNbAv/6USSnIDMg53H34vWwjWFFyVlShMQdE+xuFqrFup6dBls
tSfgRqtUK7tzLdzal5tQYD8BzUo1kZJFtfBftVfnufQJsKm/rJV2pA5kHKRF
14smQGKjMoreuA6COAcc0+onwHlsyCX+Zh0cMTtBWByegNqZscKGrDp4MU88
8lx8Ei6+oTTu4a+HixJp8d1Jk7Ccxhyb110P+a0m4/dyJ2HMqTlXf7YeWN1Z
FfeTJyG5zCwrnrEBysk32r36J+FAxo1XlocaQPiiMk5YdArOBsc8qQtqgO+h
7fYWcVMQ4FsqOLabAnfvmX41zZoC/spfVnZHKSDmMahlVDkFGh9jFLP0KWBj
+WePdv8U8J3repN6iwI/5fiG5cR/QXPrX0nLWgpM/WdhxfDuF2h8Oyu0btwI
y2LTplll01DintNIsfsEsby3G9ObpyEvQPdAnvsnUGalU0runYbRCqlZ//uf
wOcPN1/MxjSkPS4/+yXlE9A1KHy5e3wGtI9vf2E++AkYnXzPGjXNwE1/8l4F
0yZ4fJFxz/q1WXgnc5pX8EgzqMmyL467z8KFN+lO4RrN8JuBRPnPZxaGNuQv
L55uBtM8kau5obPAylPS89KhGfYwK7y3zZqFHaqCA8ovm4FcZKvQNDkLqQtf
T+GXmmGRq/rEc8ffwB77ZM4vqwVsKd5X5BzmwHX04pDyYivYqe41WLwxBwSW
+1VVm61wJa9Dofz2HFyOIdirsrSBQ9wehhPBc/DU8pi2iHAbXL/RnmKaPgeB
1SO5fupt4MUnPnh3eA5GA0yCmh63QaR9k1mb1R+I2wx1pfK1QzWTwFmnC/NA
4rd2pnF2wEiKjG639TwIf0ltYOPpAHakqXHScR66LTlfI74OMPW8oSDuPQ/t
Ep4ziTs6YGasXqAnfh64lq2NFGQ7QKTJbUh3YB6azFKjP57pgDuhLTf32y/A
iUarOtvwDpDj9o8Zd1/E6sThgDR8J5Qxf91H8VkEjsGwD32MnXCcTqY89f4i
WOdIh/KwdsK5mZ5+y+hFkLB6KOjJ1QkerUck/ytYhFNTChu7RTqh4tFMec3c
Ihzsu+pIVOwEbZzlYJzLX2CVuOBx6EonWP05JmVwbQlsnthzM5A7gYNE1/HZ
fQlcifYrEzXY9WVrbpr5LkHhglpwW30nbLuuVe4QtgRybc6RYc2d0DhmoBuY
uwROd6aez/3XCbLfLR1K5pfAhF48Se9XJ9B9upe6y3cZ2Kx0DujxUyE5oV74
75MVOPnZYn+9PRXizaW+no9ZgeVnVkY8jlR4IRj1tDBhBT6MityzvEaFsBgr
RrecFSjN95n+7UIFr7DVmamOFXggfG7/5h0qGPrJ1Q7xrILQJnG6PIQKBItX
V9terkKh+Pe4uvdU2BQi7JZ+vQoXFCXYv+RQYaXb8XvI21X4ATvjf+RRYfa8
kpFO+SqcuXtIdLWICn36NNW63lVIaeuo4vlIheJjLFxlO9YgUsdXZKqVCvYi
t4rT0tZgPMxeWm2KCg2KIqzu79dAzEHn0vwvKuw+U3/peNEaNFNKNjJmqDAQ
wMvQX7cGDEd1X3D8oYLpWJER//AavI8ylq9bpoJ2weLs413rIEUs9xtlpIGk
jucBl8R1oESKZbOI0eChjdhdtTfrYPDkwWbYThqMeDdS2XPWYeKPdydJnAav
s/m9Mj+uQ7Q+dYl3Lw0Et5U2DvWtg7XukhWrFA1Y+5cvnxfegHcLrX/eHaHB
pLt3kvLLDdiZeWPisz4NrheFMeQnb0CY06elk6dpMLuQ7Cj5dgOWcoYNS8/Q
YN6jUZ6/fAPyFeSmYoxosOHJ+2mhdwNuqBVWHbtAAy7fnN+5YptwOibplLId
DRQf/DgukbEJJwQWJ3970qCkfvFNQu4mKFm3aB30ooEKIyvH9tJNaBNKWnH0
pgEKlv1KaNoES//y632+NNB55Os0NLkJHo50UdkBNMhuYGtq46NDK/4FQrhQ
GlQ3pc09MqNDXYFTT1xe0aCQv8PV15IOzbad4XNIoEH6lZVZF1s6ZGoWcNQi
kQahuNMzJk5Y/KETOlrJNDBWXprc402HbriuxDOk0WAqU/dndSwdGrxioKOe
RYPtj2a+LnfTIb6FFvXsUhowfxUw+dVHhwJuaZ2/U0aD1d2a/w0M0qGDog+Z
NcppMEB+8ZkyToc2RSRPUyto8G5JvfPZMh3SUJGzGajCxucQ3SQnQI940uMa
y+pp4HTyaOVVU3r0SCKl9WoHNt/7BOrzzOnRt4IDt7Z30sCddbll2YoezbE+
e1CN2a+1pPfRVXrUVvNpkESjQaSR0lqmFz3akP0e+voLNr+WR1Qm4ulR1oby
l1vfaHBMnU/jUDI9Iq3piLH00KBm119drzR6RO9E/zUWc/PP4ous2fQofBfb
w9JeGnx3UvTaX0WPVOq+rf34TgOCp0Kp4yA9ymd3Mfw1RINHF3ir83/SI6IJ
naP9Dxpwqiw0rozTIyWmxzP9mPk2Crsez9EjzyWOEy3DNNh/X37pLR6HZDIv
iUSO0CDn8ja6P0w41EpVz9jELH9ynkmFHYcOBwq/dhqlgRprIV/zNhzie3bg
h9oYDc5GHD4yuQeH3gVTX1HHafCfKw8c3o9DFzkiUg5P0OCi0R8tbxkcOtSz
WyAKs932AmO2Izg0aqx6Tn+SBp7xhzwOaOOQ3JMh9pwpGiRkyBU5OeLQk5D4
eIkZGjR12zYmXsehKzktFtcxL7LG9NDccMg0PTWpALO+8wq9qjcO7TCMTjk6
S4M1uVoD9lAc6jpsnHH4Nw322S5Yowgc+mzw7up1zOeiJW65R+PQ7usy795g
zloMieuNxyEB7ZVs3jkamJWfG8t6j0OckofL+zEHTQWtDuThUMLUg7ucf2iQ
L1LKyVuMQ6khN+tUMLP6iyj4fsShPh2DjqeYFfNOa+fV4JDG8NnnZZhthu6Z
/WzAoZQzIv2DmMs0R+7pt+PQIw353wfmsfpwi//ZPRoOce+MKjfATHqjm1H0
FYfy/AYYXTBfZclpExnA5oP/qlg25mjlwcGzwzhk9qhwugkz2Yln4cEYDvn9
4FQbwczfdltoehaHTtxgt+JfoIHmZqbMrgUcul9YceggZhfZXnXjZRyyYI0J
0sQcb815/vE6DiXTJZiZYm6MRA4f6fHoQG13niPm+Vo37zkGPJoWMHjkjVls
ITVsLyserTtsDj7GfGrv1+SLnHgUlvu7/AXm2yYsRWEkPKJ7so8vDfPrhyqN
NdvxaEjxzZ8czG2lzj2Lgni0GOBythTzykTi9P4deKQ0FCRbjXmvMJXeUhyP
+qynIiiYDfUJvFESeGT67rVbC2Y/P8V9lAN4ZEV496Ud89scB5XVg3g0acBY
1on5v4FYg4PyeKTIUrSDihlHarW2VcIjsv4Hxv99L6Ox6f5cFY/0aew32jBf
dJd72IzwaGyq0LQJ84M027hNTez6j7Jr6zDn/vcs+7AOHpUqLOVUYu5laqy2
18cjPf4IkSLMzEdXPsedxaPEhZvs7zDLO0qNtZ/HoyXpZJ9EzFZxFqv4i3jU
WbnteiTm0JYITiULPOo61jwQiLlkvWbnNRs8Ghkif76JeVhmQT7pCh6t+v7W
scHMZSWh/dkRmx8fU3Qas+rTC2bMN/CoZ2T2gzLmqD+V91xu41HcoaT9HP+7
v9QIa3NvPMorvNK/gK0Hgzxbde27eGTSO6PVh5n5Bgu9WDAehXodlsn43/rT
7x1gC8Gjt0OD70Mw10rlkP+G4ZEdTXnAGbPfxDn/9hg84pjpMJfBbPZJwqo8
Fo90szbT2TErZazAmwQ8yt5ekTKOre8/l5M2/dLx6AStsjARs8PgpJ9MMR7R
2/85vIY9T1rkjxaCZXhUJ5zE3YFZPPGpGuNHPKoOjEx+jfm7+ZGNvnrMlaJd
GpiNugJ8n3zBo5LwpAQP7HmV/XD+0p1ubL6jtDkQZs6Yfccu9+HR00M90syY
G43a1lR/4lEh4cn9aKweqLUL+EzNY/Pt+S7oFVYvhLKnzLqW8Mj516FAc8xL
oVUqdWt4VJGjKCeIuUD38mocgYAUVDySn05j9aMh10tvGwEJaAl2uvyiAWNa
4MUj/AR0SrTZZA/mH4HGyuLCBFQe7xHe9b/6pb62vCJOQMK/PbhVMPNUnrzz
9jABdcSLWMxi9W82TvBCzBEC8nVOd4zF3Ob1SylAhYDMS6MlNDA/VIpauqBB
QATTs/kRWD3dKPh+m8WIgML9GFmEsXo79vaWh4MbAVEeKmf8weq3qcjG9wwP
Ajo9T0m8i5kSHnRy3AvLf1WajRVzuvtzfsdAAvqmT3dMEKv/dmqlZU7RBNQS
I8WybxDrh51rG9eLCeggp+2eZay/nNF8YJ9TRkDPw+/rXsNcVczRMfORgLzC
dAf7sH6UECea7EIhoGMxErYVWP8yv4w03LoISCeyvuBKFw2+LgUG31ohoLZ4
kp0L1v+0nNhnizYICEkciWii0qC4L9p0EceA7rVcOCCOObomTfI2GwO6Wtb/
vh3rr4ahlGZPYQbUqkn+ztuGzc8ONi4fNQb0fai7zriRBg1akS8CAhiQmneg
XCbWz0evlLd6BTEgHx0m9X6s3zMHD+NuPmZAnLG7fvFg1qUoOttGMqBLYCx4
pwTLd7JHXfM1A3IxFqg9VESDL9q7JxlqGFDhfoKYbTb2/OkWH3tEz4jeREkH
FGP7EQanfrd7DIxo2DuivArbr+wNYc64w8KIWFx9HlOw/YxD80WSIzcjihOY
G6XGYfsTvc0R3Z2MyCTIILbrOVY/T2lHsKszItkc2ZTEcBrgT38bCvdnRMVX
vKwF/bD+9vG8uPt9RsQw7Bmy6oPtF2Q6bU0fMmK/J/tMD7bf2sXZOCwWwYjE
G5+/i7lDg+OtRSN5iYyoQ04nbs2dBgF6TydoHxnRmaiSHQ+csHqnrT3Ht86I
skJJT4NMsPwfag+t0TGhM7yHQpSNsfwScHOAwISMJ723/zqH5WdSnM9gZ0J7
vKT69Q2x/A3ii0eFmdBrB8WDG6ew/Jqby2YqTMiwcfiOwHEsv3oxfdIdJjTe
dk1E6QB2/zVHm7p8mZBoxSnjV5LY/T3JH80dwITIF2Q76fbRwNHAa2/gYyYU
1DH8uGY3DWhmanpX4piQbwl+U1aUBqkeDdFSlUxIetP6RikXtl6y/pMopWNG
zOiCs/s8FR7z/dWnBjMjYqp+4Y1iKsQ0Nv6oCWFG63zKfwMLsfPJndg7BeHM
SJqeEBmTT4WSnmNp0c+Z0Sfety3F2VQYTby/ZvyGGa3RWWv+SKeC5j7Su54G
ZtTecvPdZAwVNpSkmX8ysCB34/LooltUcLtoW/M3kAXFm9apEmSowJU4MaD6
kAX95Dsj73GACtk/XDfvhbKgzHIPupF9VBi/5q/K/owFdSlMcFeJU8Hq7qti
sXQWFDR0dslYgAoGqV/f6jSyIBNcWa0wgQr7p/Wi4thZkZ6a6tW/Xzvhxz15
O3jGij6YspW+9OyEfds5w1xesiJpvdLp+7c64drb0Q/Jr1jRzKBJgbNbJyxS
Y9kI6azoj4D/0JFrncC6m76gsZgVaTTefJNtiZ3nGlrpDbtY0Y7Lbkq7tTrB
h9U+0U6IDZlq6wvv4u6E7VEvvz1KZkONlnbOswnYefgLT6dbGhuauK8t5BLX
ATi+MIpZJhvKbr0p/es5dh6ODSiUzmND/vVKt/ojOqDxtVNYJ5kNaZmEnk4N
6ACv/GPHBQbY0EaHDeP7yx3Q3zmYmSHKjvIX9ZgyJDsgg2v/HUocO8ot0JyQ
P9sOsiMXlghJ7IiWzDlGr90OpeWPbh9PZUeyjOd/Nqi1Q9OV8VuVWewoK14t
X0mqHaYqMtwKKtnRoVaXC2WM7XDwqsS1xH52FNCvFXygrA2Kq3db3hbnQCN9
mj6Ogm2g9vzc90IJDiTzQlBtB1cbUK7dvzR3gAOlw17DJoY26OIbNnOW50DN
d51l8L9bYdk5xdT2BAdC7tC93tAKqoK7DE/bcyCHmnxpJtdWqHXbcULiHQfy
Gl6Q7K1ogbWFmQjhHA70SPFG2FpeCyjeIfdyF3CgQyEHj5LetMDbu9bua2Uc
SLyvjFnkaQtEhqakdDZh8YxFHNl2LWCTLoHzmeBAJk+mTmWwtADdt4NVHZKc
6CQpef6objMoX6Jja5DmRE90tLvajzWD+0CHcbkcJ9JcFjtvItcMYyOu02lH
OZH1rg4vZf5m6PhTIOKtw4lOJJePnfrZBIkcSj57rnKic+elar18mkBNHR31
yuBEBzwP+Pu/+gQ7ttlGmGVxIn+662/lwj8B3eiDUdVcTvTt5Ty+zf8T1IQ2
P9v8wImuaj1Za7D9BFpdxnP3KZxopWnbvdx9n0D/hvO78BFO5Gsl/Jg9uxFk
jkfgXCc4kYMrw2PNhEbg5C24YDjNiRh7D2pZhzVCR9kSE+8iJ/KpG/usdb0R
zjHet4tlIKLPxzfM86UawfxVrEjabiKKNrm2cTuFAsdcKt2D9hERn4KnUu5T
CohqDDTbSxHRMfX1nuq7FBgY2+O1X56IGOZ/WDmbUcBOPu+/HA0svl0wq4GL
AteaKeFlNkR0Xk+w0dStAfQTJkbirhDR132NdhGXGkDGlUPN15GIOlUiKx9p
N8DsdqMpcCMig1GrIyUiDeBu8127/h4Ryc2XNJfU1YP38jx9RxIRXX0opiOO
q4dpy9ZBhjQi2j6n5JP8sw5sGtKqVTKJ6PJmYF1gYx1oRxnfe5NHRMHklSta
oXVQvixj3VdERLbCq41sznUgY8WkzlNGREbjxbkbp+pgm3QJ3d0aIvI8eNhE
lLUOgqMiBgobiOjb+qKW0GgtrCw7kCeaiGh0qNp8uKYWBhoE/I1pRFSw6+9V
8KgFI+k5y9CvRPS+kTX4mn4tNEQ1QU0PEbllx6k+21ULWVbem9LDRPRnid5D
p74GdlCM+m3HiCjqTlhF1tMaiJSWqno5RURocb/Aows1wBBNSGyfJSIV6vqM
nlANeK70+jEsEFGc4WS79OdqmLQqslBZJiL13ZS5k37VYEF5oua6TsTW673u
XsZqGNt+OJxGx4V8Na96R+qSYZfujrvTOC400R5f+liLDOa+bDdYGLhQqcrz
w/7HyfAs96/FbiYulLl4ctRNjQzMfB1qF9m4kEWK55/TimSY+eG/Uc/DhZaN
Ge3G9pBhH5/z9AAvF5rrL3Oh7CSDje6F76t8XChl/870FBEy/Jcr91FOmAtN
MqkEGPGSocJ3yPfVbi4k+M64OoJAhod8muvuClzow6WmDxt1VbBTj2lN3IQL
yeeWmykpVYH8Fw2q4AUuVP3tsjD1YBVoWfpncJtxIcYUvO0ViSpwvLl8btOC
C9X36bj4ba+CwrjJ99+ucKE/zrHs1+Y/gtZUu+VTDy4EZ3LVjuZ8BMcnL2o3
nnGhfJfbZnfEPkJhu2RI92cutJKQdNZytgIixKvTVv7DxjOg+D3uZwU43TYl
C3VzId3haKOObxWwa0fwwqU+LuTkcPizWH0FhF8fthz6yYWOJKhIWr6sAEeO
RPnJRS6E83av1EYVIKa37fsaPzeiRqQ9Dw4uh9CGDVmxS9zoQlS3kcByKSDX
ETkRS27UtnNB++tUKcwLtR0StOZG58X33AkZKAVz11fy2y5zI6bHrYb/UUpB
WlhVidmZG5laiJvNPyuFNtc7MOvDjb42PSrTlC0FLpF5fXI8N2LdEHWsNy+B
OkqPQWUCN+JWOREgdboEPN1qT5clcSOi9xA5WL0EBiiRZwtTuVHLmoC14N4S
yHOTO5+RxY2SXsZPvZ/+AIaN180jKrgRV4KarrfvB4i6Oe5o1cuNNG+9ucj8
tBgEtbxcjb5zo7MzzenbAorhNT+bp9YANxpcz3pJulkM+ZVSD6SGsfFmdG4O
nSuGDiaXxKVJblSugUKofMXAGb9Ii1jlRk+fb+fujC2Ch3X4Y9WCJHTkcqnl
uehC4HoerVEoTEJWMXFHzwUWwvOre3TfiJKQWiRFVN2tENI5T5o82UVC5YkR
eoOnC6He9LHrhf0kxOHQVKPAWgi4X1zpv4+SUKOgyQc67wLw4RUl7rpAQtKX
mXRc9fKhNY/lIpiR0LQLJfOPQj6IGiykml8iIXkHvv3GYvlQFdSi/NyahFr/
06gonc8D3JLXFXZHEvpgMvDzV1weBH/7WrnoRUL53JWOz37kQpdHLfM2XxIK
GEhl7WvOhX08OUZyd0mopH+BZa0gF5r0gsadAkko8FepXWVgLrBXyvMOhpDQ
NTlNjqM7cyEy8em15ngSGkgNffchPRt+qPh+GEsgIeFHjEburtkg3+WAY0wm
IU37r621KtnwhQu9QGkkJHj4AD2p/T3wB0zXFr0nIcWYnZQ9s1mQYKcnlPSR
hDJ+XqxKE3gHM3RHrlSSSYg+ICxLs/ctoFe78r7VkNBeSnSaZsJbGPyyrMVL
ISFDa6A3FnsLu09muD1uJ6FktaEcBeFMyJRkaHIfIKGiDGvnwl/pQBVWX3Ue
wuKrJwOLM9JhjegrZT9MQu33l3532qSDweJ82IUxEppUJgsc+pwG8zXDRmqz
JJRa05EQ8DYVRIvFHhyZI6G3CpeuHruUCiczzYtl50no751fjmWcqRAb/plf
fImExFfcUj86pwAyr+tjouNB0s+jJtcEXoPjaToiPY4H7QybFeslJ0PUcVW0
gudBY7cICT2Xk2FkX+HrKSYexCj+lI6cmQRcwrO0nyw8SN4zxsZCOwmOEqUY
+tl4ELXka5bIp0QIXUix7yTyoL1ZkSUUyQQoHut/0cTNg24kGf2QOvsK+nuE
mmp5eJCtAPfLMdd4OFQTJVXMx4M4v3RvI8fHgnlR+6UcAR70A38Sp5b2Eh5k
sIVnCPGgRFkr0YaUF9AVFvg7dgcPetB0hRDhGwO4gKpd0Tt5UL9E2xnN88/g
wK1VoyfiPGj1p3hJslA0nHM48iBoDw/i+JDdrtkaCX5mN4vvSvAgm5hj7IGX
n0KGQc6opyQPWr5k8021PBw61Sf53Q7woInUbjsr41BYkZfQdZLmQQqVG0x7
7jyE3ftsve0O8qDPY5k/KH2BYCCUmHVJjgeFC0l0azzzhtucPX3Gh3nQ//t/
SBI9H/GMwpab5g2RzpEt/xkNcz1+dMvCPU2vVVS2fKP6OIMMbPlFoZ+ihPqW
a96U2YtpbHlb2KEm0sktl13cFf7XYMuM8/QC1RZbXsp9ETZsteVJ54MEZtst
d4yazxjYbzm250N9740ty9Q6uy35b9k4srv5YMqW38jm+SWMblnS5q3BuvO2
f+7RKc0/P7llaoqXNNzk3fp9BWdVd81tebPErSjo+vZ/1pPVOuGzsGXKpYNX
nW7y/TPJ1qH81a0tWzgkc3Tc3vKiG0++vM+Wdz/8u7J+f8v++VWhETFbVmY6
k1tUuuUg9ke4sfItd3LXnBP8uGUHYfllv5otP5fjP67dvOV5swHat94tI2uB
vRz9Ww65YugJg1ve5VonnPpzy2eDMi47T285PmTwQ+LslsciBFmpc//feOJC
sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc=
"]]},
Annotation[#, "Charting`Private`Tag#1"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ
lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD
A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6
s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth
fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8
yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv
LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f
sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq
LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc
EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU
X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9
PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS
fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z
uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0
D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR
1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH
Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V
go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r
lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+
jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj
2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX
7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH
28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg
5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ
FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG
YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m
H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF
o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx
qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1
bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1
CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC
uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur
Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93
sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd
DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV
ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3
tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/
guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w
COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh
VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm
ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u
zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz
4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu
gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu
AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn
IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP
FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf
4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO
BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O
J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD
49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y
9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz
fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f
22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P
75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n
95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6
tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4
8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU
sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6
tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg
Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22
BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD
dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw
Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2
6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB
UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G
bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc
ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM
+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ
EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X
W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4
NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v
es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/
NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd
wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00
17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z
THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5
r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS
H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG
ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84
jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo
nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l
YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1
BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc
xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg
zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl
0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8
93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23
l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E
R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/
u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885
8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL
dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ
HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux
hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q
gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17
bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3
0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt
v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM
zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb
n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71
T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf
P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM
u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y
PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm
SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho
4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm
SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd
r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl
6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij
Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R
gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb
raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+
OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0
kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv
LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK
zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ
3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN
MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG
HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch
gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns
miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t
Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf
Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv
5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL
xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO
ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ
3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7
/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm
1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h
kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7
gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB
Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6
D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju
N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW
xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X
z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84
vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl
ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN
UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6
0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8
sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5
uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ
9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu
H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw
oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h
AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/
tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64
aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm
40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO
HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO
uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn
BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E
+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td
CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK
Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4
8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4
Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM
laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1
7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN
uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX
J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU
751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE
umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS
0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7
EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc
Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL
dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW
Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h
906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ
2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K
zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6
5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W
QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8
s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J
PZTesUp3fqH9v/V1uv8PDbcwUQ==
"]]},
Annotation[#, "Charting`Private`Tag#2"]& ],
TagBox[
{RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN2nk8VF/4OHDLWGfsQpYSooRSKRWeIxGS9iJLUZayZQ+VJUUlFZItkrIL
2cmaZQxzh5SlKEmW7LKN9Xs/v9fvm68/xuv9cubce8495znPc1+2WDqdtmJi
YGAoxz/++121QWh8dY1WyfD/f8azqrfurF63hI6D2aWAdXt71DZXEta9t8Ml
w48D++eUKJotk0DzP4eKPfjFIkv+Z5Mty50kg6p/tvEzvDfDtu7BCs0rxUGV
/yxy6JHgBc+Kf/bas8kz4vyHf1aTOaLGs6H4nwOIko85ZLL/+X3QNY1UgXf/
/Is5b0KHOeufjyxrnw7sS/9ntjE74bVXyf+88aWT1vChuPXxP2dKlhWL+efu
x8/Zry6++Of4O2XU78Xh/3y0ijsn1e7+P3Pm7nWXlg/45yitAje1Vp9/1uGK
4T8RafXPhzUb4obQ4X/W77IPLhgxgoPuRe+qZf0gJi0+e8LHAXjIvlFCX4NB
1/XucSZNT9imursiWfUJfJgJIyTv8YXAQz7jFkJhIHKotUcm/C5ET9N7BY5E
wKcloxKPkCAQ5O3VGjoUCY8/9EaQ7z2C8Ke7r28iRoHubdsbor5PYHacl/lY
aTQwbl7Yuu/DM7ghlGNtdiIWyn74MgYXPIdI+QiK2aF4EKnSmtj1/gVsb77T
xBWVAB6v2Hq63kWDjElskrHrK9hl8aR4R+pLWECOwJqTCKedaUU21NcgSXvN
VDKZBH4WuUofmpKgVOlvp5XnG8g+Ff6Wl/IGKC5/dbsX3wBp94XwkvpkqJxl
GyPR30L99HdHYlU6cGggm4cdKSBxcD7sgnEuiJZWkbcfyIC9u20x/85cMMv/
JhwanwEG8l0cmRfeQ9rAjwupTJngLVrmx3A+DyL9PxSpNGRC5+Idx7TTBVB+
me8Oq9Y7CCtj1V86VgI2HGX5K/dz4O6mR34nEqpg5QujIMaTBwzPbc+87amC
xF8sJ8+q5MEtoo7sklg1uOyOrn59MQ/cFhiak6OqQb7Tpfjlmzyw/uQhvPqs
BriMpYN37ssH3fuW7zIDa+Hk66+j5ScLgDR+oJvjOhlMngacqr5WBBTzGTFL
0RZQBdpfXYMyiDlN6VMM7YScE42+IXbVMCs84lGW1Ql1WW5P025Ww8keIlGP
2gkYJDtW3qsGVtvje66SusB7UMj/S0I1uN5uuRvzsAvCnTZ6p7dVg0Fquwxb
0FdYvWP66O+BGlhb6bPu9e2G5vqKlJ8MH+H959vujaq9sM36OMXasxZS7121
7NPrhd3n9o8H3a2F+H3HTixd7AUuxeHyhCe18DBKZLvi7V4Q97GyzEuphSum
ed1Pq3thOZ398/WOWhDsH9Iy0v8JixzLjmIqdeDx9wz/oEkfRN6NSgwbroND
/PLZBN9+uLvGFJC4vwEwxouN1Cf9sIHFY+isZgNcnnrwK/JVPwg+lVBgONYA
gS3Dwttr+qHJw/yShjnePjTN7zjLb2D1/Uy4GIi3J24/HfnoNzAIydP4aXh7
wrZZuagBSPVX/vTOnAzY3NZDx3KH4KheRHauTSPIvuwM+ls1BA+2avqvOjbC
Ha1Hn2NbhoDXlclY26MRdj6ddBidGIJeK0b56sBGeLq97NVjpWEQefijzDmx
EU6bnmRtyRiG2QzvvpKuRmiv9m49m/wHxiQSQte0KfA9hGZjHjsKaRflpTdx
N4Gvv1GHUeYoWDLdCgsSbAJJj586Z8pHwa8ubO6PaBNYXvq7VffHKCS5P8xI
kGuC38rC/crSY+Bo1qVQjZpgtN38MkvGGGw5mPFy0LkJ6JLjRpml42DCpZbX
RWuCmA2e5OSmcWCr+GoW/KUJDnIyqCZ2j8N8r7WN8rcmuPWXTzhydRw4hLST
XAaagKFe5Yvv4QmwCmfme7/cBKx2t0+doUzA4OUGA7ltzfDwIuvWFftJ2NPp
GLfq3Qwau0hzw26TEE75UZrm2wxTLPwN7bcmIWWjjfrJwGYwypW4lhMyCRMu
+R5PHjfDVnaVrCuZk1Bn6jvVntAMVQVXVCgjkzD/+VHRo4/NMMdbrf3i+hRo
nmOyjWajQvpAvVCgyxQY+Ua+yydSwexD8+AN7ynIGvMKb+KhQq1N5wP9h1Mg
vK1YY1SYCs8qJqgraVNw47mGLl2OCgr2m85fHZ6CETGZYK2jVLjS4GOtbDsN
4e/EDyQFUOGqmqzhnNM01Br8PSV9nwrWuS0qZZ7T8NZA3zLhARVsY7eyaAdN
Q76Es+Ojp1RwdKIlGSVPA4/L2Pk98VTwFpb+6ds/DcHJg64fi6kQZkMxwS7/
BYmlU42jf6gQ0e2mFW77F3pe/uAbH6PC81Obdxjd+AuK80nuI5NUiDrktvjT
9y+UHa4M+zpHhXieTdGz8X9h5xYjjYdMGKQXObeL9/yFFHYfxV0bMahm23jK
zngG1uw1Y+O0MBhIUtLvspgBsenpz8Y6GJDQEa2j12dAb4kthl8PA6ObTirS
PjMg8ngnxcMQg4mhuo3f4mZA3Du7m8MYAwmKS59+7wyoSRyNMHHA4LB18Lfi
oRk4f6ZrqtUJA1um+M+yUzNgp84wrOWCQf7Bxnompllov3okRdQTg2MZmzNK
pWehSzvDK9wPA6+QZld5m1ng87HflBeGQfy2Pvsop1kwbGV2/hWBQW3tvBXr
zVngkGe8xvMCA94VKaO+4FkoP9h67GIsBikOXmox6Xh774rxsiQMvhjKsnCO
z8JTtY27s/MwUObzixx2m4P7Yhd8jFswKGXv2NZwaw543kd7/2rF759BqexN
4By82MxTca0Ng7MT335cipiDC2ot/HbtGHhQ929vz5uDzA1rS6gbgw8PJspq
pufgrLwW58FBDLT9dQxfLc6BzkSgY/AQBtjNl723meaB+aSyWNswBj9sjrEc
4J+HmybxhmajGDDppBhmK8/Dnn3q0tpTGOgyXfoZe2MexDBqmuUiBq30Alev
m/MQm6iW7r6EwcUpEusFv3mQOJ0+G7iMgV1vqTz/03m4qjLuELWKQWiFkFtw
9jxI8eQMhDHRQLjQgdW6aB4eohLNYGYavMqqjdKqnAfLAschLwINcuNcylex
edAREtp4mpUGn70xVvfxeSga9GNv56CBmcvW6NNz8+D8ZUtNFicNBq7d2rFr
dR529OQ1+BNpMG8kf3KEawEehLwr3MRFA9H996MtFBcgrLVEWoGXBklKPTtA
ZQHq7NLVBnAryO6tEFdfgAYR28Q4Phqob+jr6zBYACH7jYar/DS4/FddwdB+
Ac6MxO9+voEGXPwMLZ/dFqCWd98rDSEalO6qcTW5vQCV8Wx5v3ALOuqU2YYu
QOGb9gZJERpUh7BfmohcgKulIY3FuB0zKEweCQtQ4DLuZLCRBuQhQ/27OQvQ
95GUbi1KA3c2vnGOkgVofuGkPoZbSrbt2dPqBWC6S3FzEqPBrSsXul5+WgCZ
vFjMWpwGu75fsi2eWYCI80+2bdlEg57lLSRYWQC338lfAnE/FOvPrmOhg83V
Xpl+3P1GtvOfhOgg3puY+nwzDZ55yscab6aDsHFU9yBujchRjV45OiQWP85V
kaRBVNuN+2OqdIg2UFWvxa09vVveTZMOowp6fwlbaDDNO0td1KODix6vnibu
hJ1Fzv6n6fAgVEXDC7eBodcGdhM6SDww/5SJm25/qCT0Ch0CrZRYunEnP1ox
3WBPh1Pj2u2sUjQ4g6eucW502PpIS1sRN0Oj/xup23RwhY+nTuDOGtTSTbtH
B9008yV73BdZWUd3htKBjSFL8z5utq3kJ4WRdNgkoCUTiztf6+Ee9QQ6lOnm
vc7AbWFp0PExhQ434x5/KMLN7c/to59Dh7WXl5wrcZcltGxqLaZDplN+VQ1u
24qwmgvVdNhWJ5hejXtDz1nr7410WP7JqvgBd82SEKfVJzpsieLWe4/bSbQr
a+QrPn6drJUk3OIHYk+5/KJDUoeF/jPcjRfMZhdG6PClMlXJG7eHx+Zo3xk6
zC4tpZnjln7+U411hQ4feNrKNHC35CX1hrAsggIh6Yoo7tufrAIFuBdh2er7
qyl8/uSn5LbFCC3ChNasSy3uDp4/TZKbF0FF8VxXGO5ApUynFLlFKNp5rc0U
t/JxRwGlXYtg0x59WQr3d7tdRfmqi/BA7rjfL/z5qqblr1brLYISanAzwv27
weO17ulFGLQ/rkvCHTagqkO7uAg9nF8yyvD1Mipd/rjbbhGMTI5JcuGOPuyr
fMVtEYJYfu/MxtebjoXml+Fbi3CT1N5sgDsxvk58/vEiKH6cz/CWoEGcqULH
uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql
aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1
COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW
IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC
X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS
WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7
CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1
DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt
MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf
tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E
WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90
5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif
SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251
TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9
e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s
qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5
uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE
CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF
yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN
/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS
zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG
ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu
BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh
1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4
wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im
VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ
6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3
6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX
32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml
P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG
FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h
Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv
ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2
mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV
RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K
ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN
yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1
St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX
iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT
LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7
YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE
lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS
izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ
aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA
Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA
F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw
64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo
OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8
gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa
8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK
UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB
bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN
CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF
wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU
pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv
GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2
7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA
tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI
Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw
qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L
Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj
wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa
UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT
QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK
OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7
kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe
VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu
es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9
hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/
QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM
rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi
SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ
AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5
EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k
RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U
E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0
JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p
QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+
Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P
Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9
42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn
748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe
0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1
3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI
ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL
kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd
H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG
A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7
0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz
EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF
NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS
ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS
E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG
Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE
iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI
tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh
xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb
Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m
NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9
Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8
gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge
L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i
EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad
Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M
+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC
x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX
MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI
/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu
wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt
aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P
Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H
X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL
rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+
h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0
0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50
cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i
7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a
HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9
G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd
finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i
9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+
7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg
n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh
gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp
TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP
rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe
JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze
ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O
qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg
XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj
T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe
/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45
9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG
JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V
5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n
DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6
mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv
731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf
Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu
LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg
mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV
RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R
26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8
606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ
OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k
SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9
PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB
RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR
RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55
MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr
eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/
M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ
uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj
3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f
/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8=
"]]},
Annotation[#, "Charting`Private`Tag#3"]& ],
TagBox[
{RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2],
Opacity[1.], LineBox[CompressedData["
1:eJxN2Xc4le//AHB7j2PPRNG0KlrU+yYkFU0piqjMIitkpowSoqysZI/svdfB
OeeRNtmSJNmOze/5XNfvytc/rtd1nus59/u+7/f7fT/PkTK1vXCbjoaGRoue
hua//3UCghPrG+9raf7/byKnXkahftNbtO5eN360aTfnJkotw6aVvtlnebO2
/3Na1HsLOj7KPweLBf5g3NH6z4ZSq50cZ+r+2dxb98kc86Z/1aiZlfnX/rOw
yjP+Kw9q/tn1gMSDl/pV/6wqraHKLVD2z4/YJZ+zSuf+c4G/5fF0vnf//IO+
cFKLPuefNVY1Lzweyvxn5r/WQhuJqf8sEmd74rdK7Gb8r+hSd4jF/HPP81cs
t5Yj/znesxLrKwv/55N1XHnp1n7/zJav5LR9z6N/jjpR7Kj64eE/a3HG8OpF
3P5ndbWW2FGk/s86XTYBxX8MwM4x5/IQkx/EZMTnTj68CwXToR5xk6Gg7eB7
lk7tAUhHFld7n3gFVXNhDKkHvMBWyzL3ZUIUCKt86JUO94W/GkeyGsNew8cV
g3LnIH/wqBXd8UElHp5XDbxsffIMjOzIwff0E0Hbw8JO1CsEzhOPaH1yeQO0
WxdlDla9AA6V4S07A5Ogst+LNqD4FeiEvXiQ65kMwnUnJhULImHyiJztV/MU
cE5k7u16Fw0d9a9mFU+mguLNkLK96XHwaHVOrWY8DS7cf19qjiXBqOwby12j
meB9M1++ivwW7nUXy4RHZ0Hu+fAUAikZNG8319toZQPH/ivh5cRUePU8zjMz
PAeIM3332OsyQbBCwTSJNg+2HF0Iu3I1H16djB8flS8Apf0W7T6d+dCo7+cU
YlsAZ/Z0sWZfKYC+ANcUlFsAbqKV3jT6heB8T3FhdG8hdC573su4UAzemdUb
R8WKIKySSWfldDm8ObVNovZbMWQUPngiQy6H/R0xCn4cJVCXNVqnp1MBB+ce
plejEph8TTqUrF0JeVM+x56nlcAZ92CZs5rV4D4s7cdjWwq+Es+89RLqwPk7
sVJ3tAxoXllcTOmtg3D6it4K/nJwZ9fasSJWD2lm6WJtqBwcF2koqVH1UC7u
4fApshzufHQWWn/RACYHiokdahWg7Wf6LvtxE3ANyYiT/CqBY+JID6tVK9ye
FF2x6K2GgFtCucbprfB3jDPuM00NMHTP+RSPtEJAu7kmq3QNrLXk7rxp1gb2
6pyJHZY1MPFGxqHMiARRXoqaf2ZqoOMyD5u5HgVco00fDa7UAunGnJipaAe0
JzQduUKtg+gS7tP7VDuA6LB61JGpHiy49rrR3OiALUOshIeC9cBcc7Mz/k0H
rMUl7T15sB40trx/2b3rA5CPqiT2O9ZDTXcG5+VDH+HDwVdpahP1UGBgvHHy
0mdoS21OEP3UAD55bvJCzp/BB1OU+TrQAOdYIq6PRH4GSr2isc9EA0yWUiof
d38Gwy5l9zTWRpAVOupSb/oFfH9IsB+ERkj9wj999P5XaFNKNHJJa4SYC6Qh
ueBOeHumNuLq3SaYF/rjXJnTCblnqMNuLk1wrped/RTWCed+mXO88G0CJouz
B25xdME+68vysdFN4ODR4RvztAuMuGtSFJqb4Ez6V2lm/+8wlSoxc1W0GTbW
hu4MePVAiBxv847qZrjWSL9yN6EHrG2cxelamqEkQDpkpaYHQvfVyH7uaAYb
vjulgus9UBRsmGE03Aydu34zn3XvhYuFKrdp2IlQcHEyvdylD3aWvuON08f9
2cOp7fAA1CSnJDn/IkL6k1umQ6cGYG+wVvzyFBHiD57WW7k2AJdZX51wWibC
0yjh3XIeA8DIkVmmy9kCZkaFPaH1A/Bzx+nH4ftbgH949ISBziD4VdrT3nvY
As6zF3l/GQ6BikLPsWymVrBJPrqxYTME19tq7ES4W8H0stS4sOcQLHB2+nkK
tYJu6USzTuIQ1HuNeijuaoWdDwNd3w0PwcbWLw+VTrVCJ13tgNPdHxAYwxfb
GNgKKrx7chm8hiGa8w/jfsY2aKe91oaFDIOpfUeYP0cbmEwH/ohIHIbkbyNy
X/na4HHHb6HdDcNwJvJc6o1t+PXBGd5nGX9CpgvNiS2AX8+++0LEs5+wn9dI
TP8Bfj3DrvmdUSNgmplv2z3UBoJzV7in00egM9LW8PrvNkj/4b+7onwEZG78
Xu2cbAOs4df1M90jYOl7waF6Fb/eJ41oJ/ELuicpWSqCJMhY2xFVnvwLLJ7Q
b+HRJkE7VUbldP4ofDLd1amaRoIdcZ3+s3WjcOnm9FBMNgk8Tzz7/LpjFG7a
J/+czSeBQujU3fHJUdDyvtkXUUWC0N2Vic/lf0P6M/W/iR9IcMHoHFNH1m84
e8pmqmWZBF/r3T5cSh0D+2R+LsdTZJC3kJNYKx6DnwxMVw7qksGPa8AqpXkM
Wifs/8xeIMMhQ00G6vAY+Iwy0dw0IkPUHPehyO1/QFN8lzC9LRmu7UyJ7Ur8
A/nlDQsW4WToC3pvfuP1OPRwupwkdZLBy8fgm0H2OPBRGO9d6iWDpPOg1sXq
cVg8u9Owa5AMpsazMtr948D/OC7s0xgZfu4TGt63/S+UvUgoDVwlw/jXGyaM
WX9BKjL9y7oEBZYkJwyyKyYAVS7cEDOhQIzAg9ZU8gQIClW/prtFgaNsNIff
9EwAc3/m0LA5BdxneYQi1ifgOvOdiBhbCtAQlb94qU/Ccc4rrSRPCjBZe5y/
SJoEO4x7CGIp8PQak8yazRT4vNELD/hEgeOKHNTfjlPQLS37MPYrBaYZeVu+
uk+BI//KsewuChjkb7HMC5oC1wqeq7X9FJBhUc4xy56C9/bMjEV/KFBXbKZM
+jMFqSNBezvpMKAS6jUjraaB3aSfyiuPQeYIUfCx/TTU+wbrJSticL2K8svO
bRrq6vvf7juAQZN5Z6DO02mY7fqjjg5j8KJmElvLmIbt1RR7OXUMZG0k9G/9
nobz7usXtS9jYNby8M4+ixmYZvB9/MQFg1uqO3SptjOwu0zL9bkbBnfyO5Qr
H8wAMztzxgt3DCxeyzBq+s/AN+feymBvDO7Zvn9rkDoD21W21hoGYOAmtH3Q
a3gGXr0/WqYWiYF7ENaqMT4D/Kl2iZzRGHjQuuSxzs3AqaprlC8xGHj/oXiF
08+CLt3x6WvxGPjVOkukbZuFyBRf98MpGISZkwzbTWZB8mXWGirA4GWP44lw
i1nQmBI2+FCIwavzW/ca2M0Cr+qJtevFGESpOC4Pes3CZc0ru23KMIjnloie
j5+FCxl9vEY1+PyV3v8q3jsLzAl7XJ+2YZAtK14zODwLNdw8mf0kDHLeEFNS
x2dh7yexvfsoGOQ9E3NSXJ0Fix11Em3tGJQYN/NpiM2Bysa3T5RPGNQzi5y3
vjoH47eKs7f3YjDyVl6n6+YcXBr7+fFyHwYcSOPESas56NJ3SPXtx8DAxVZ5
+8M5KFJ+pf9xEIPJ0WaR7tg5cBXmGlQZwYD/STfvqZQ56OPRdTn9C4OjUtPs
pTlzcNgkvEZ/FJ+fq+LrYTVzsEupy8BkDIMtJPshnYE5mCz3b4UJDNTvBHSX
jc7BBftDPbKT+HrRxX/eMT0H7TTsiQJTGBQdbSPS0c2DMPvjw9+nMTidtTWr
Yvs8xD7jzVWYx8DupHLyLtl5YCzS0FrGHfFDJy5CaR7yKxSC66gYDIk5h9hr
zkOe1AVFtIiBaxDFYY/5PDiYqtawr+DzvWvIJsp2HmaCyroLcTc1LdxmcpmH
aM2ljCurGBDWthkMBcxDv3WKQdgaBgejD58/92IeJtaXDu9ex8BIWVenJnoe
wqx+tlXiTrvrqhqTOQ8/rVXWPm1gQGENUWYpnIe7kx4JV2naYSYlWd65ch7e
7mCe+Y77eN97yQuUeQj5/CStg7YdvujuYGSbmIe/qsPnAujbYXlMZf0BdR44
H4nZ/8Et6X9+4ef6PHwOfaGuw9AONrXuv+u5qXBrImhqGXeYYdiQgjAVOFEJ
doaxHcoW0rrjJKnAZnLnagxuesVPmOs+KvRvefZwF1M77KKMEn8doULDuTAe
S9y6Fuu1l9WpQHHTvJyC25GBv7xRhwqHbS20enHHJO4u2HeRClc7qoYJzO1Q
pwpZCYb4/bjoFBHukc5LyZy3qLDNcn6nNW4OJ6u4hzZUuDF2nvIC9z4e74jf
jlSYsewQL8JdwfJtV4s7FXoNhI524Fanka9MfkyF8ybnw0Zxkxcen30URAUL
D5BZw31psrvf+CUVzDYSZzhZ2qFnZL/9sVgq8PgfWBbFfbsvkEEsmQqyTIUq
0rgnvgxELGZRoaimq2Q3bmfs0O6vhVTQVDex3ot7oym4srCSCpb31wz++zyg
6ufZF41UGHO747UdN6FIdeAemQpbu3X7RHBHZ4Xbn/lEBXlDCycO3NvejjHs
6aaCPsFMYwUfX2aMWiTzD/z7Df/qjOA+EBa1++cYFbpHCgMw3FWBk5UNM1Qw
SL+5lodb00dLN3GZCnG9CemhuNtd4gY86BbgC4fgUxvc+nZz9oZsC/CU3uqN
Bu5+89OMR3gX4NMXmBDGbWGcFCkougCOvUfsfuPrM6W/tHtOagHoyxd3lOCm
00rTzd33n4/v08D97Nj6QNCRBcixWvdlxM2vfNnBSm0BelnmWBvx/SEjTR8l
c34BPCf6cvbjfid2bQ/91QWga14nDeP76yBfftWAyQIcTs4QCcetTWc8+Npu
AY4cGTo1jO/PD0vFDq4uC2BtErTHH/e1aQ6mK94LwHh/+egO3NYDFXt4Qxfg
55uTvw3o2mHuG0/1ZOQCGMwp+Y3j+9/9vYUelrAAF8PozrvjDq4RdAzIXYBz
l0/eC8XzRajkLtOd0gVIOlVTy487Macp6kTtApTLCBx7hedbfqx99Xr7Argj
3fKneD5+dmtncppYADbLpfSTeD5ft5eJvkDF56vAXycHz/cRS/e9iusLwBQV
x8eNe8Fgz7k/nIvwlIZHtGUJA9FDftE35RZBbJ/vL5YFDExmj8nq2izC1TzK
0ke8PnHy0nR8dlwEz9Rg51G8flUoNjgYeixCZEWa6RJe3/jvaVVaBC9Chsn5
J5x/MWgd1dXxzVuEpDzW7nW8Pjox80ywli9CrpVE+SReP7ft+PQitH4RrAp2
bnTj9dXd7EpX3MdFYL+yvzZ1GAPFPmOLsrlFSD+rMcswgEHvqhQHrC1CsYzc
fAdev5+KDec2My7B5ytU/Si8vg8bWCx8FFyC1YrfyiLdeL/5ZOf39/AS9J6d
Uf/xBQOaNp/kbR5LoHCnNzbyv37y64R2xpMl4KIDIRG831xjYhpXCF4CZm7Z
/lcteD0+8fTAsYQlkGPKvODThNfrmrCGK/VL0OAXlrwV71cdhW8HghiXIbw/
g+KSh8Gb+GbxhefLIHpDQjv8BQaxRrLfLkcsg0OyeNKTEHw8ouEviuKXgZOu
TdvhOQbBESZM9rnLoCHe54QC8f4cvDI53rEMZGXRbUl4/77gua9xiG8Fjin5
nvO5hwHDjTjL9ugVCNwlWpKkhcGGGIO0XNIKqG14XF45gcFyl1Xfs8wVMBE6
zaKnhsHU5cMXT1WuwIDlYsIvFXz+zn5SbepZge3Jsdd78fNJyTFWQsXWVSCz
71bqEsHAfItTSUrKKihyHXKlG6UA8eAWNsecVeDjzBSbGaaA9Lnm6+rFq7Df
/ZNy7yAFBh4JMPY3rYJDxOfWlG78/DRafFF4eBX0D/jK0byngHYhderptjXA
2uUZOososPuUy167hDU4o2ydRO9BgQBTSa/jaWvQQTT8et2VAiMPWz9y5K7B
Ru6Dg4VOFEh6J+yWUbMGTgsv7fTuUUCUv7x1qHcNWtQ4fM4aU4Ctf+n2ZfF1
uJNTk3YdUeCP48PEo9Hr8POuZkL5OhnuFQczFrxZB4atQRxCy2SYmn9jtTtz
HZ4w8xndmyfDnHOrknDlOlQZfwxlGyfDuotA23zPOgz7NH1bxM+7BI/c6TzJ
DYiOvjmbnk+Gg09+qO9M34A8VVvZgzfIUNZMTYvP24DzdaKTRAMyqDCxcQqW
b0BEgOnSuYtkQP6K3xhIG+AonNt+TpsMpwI9rIf+bMCL9dW+9X1keEdkJ7UL
0SAjaeXH3AxkqCelzAQa0iDdV4qJ35JIUCTccd/DmAapN8WVT8eSIPXO8pSd
GQ26dWFemzGSBEF0epNXrGnQZVVSvvAzEugfXfwj85AG6UcLMEzZk2A8Q+dn
fQwN2h4eigzVSCAYOPltqYsG2ZIDhuc724Dlm8iVv7006G+V8Zn9H9tgRVrj
68AgDQrJS7xgTm6Dgbqozy2/adCNDj2xyuo2yFpU+/BqiQaluC7XsiS1AbJ4
SdonQovs5UrllC3bwPrkkWpLA1pUMZMk/2q6FaZ2iTTnG9GipntV7+R/t4Ij
2xJlyYQW7e8U3l8z0AqeWFlPoCUt8jgpx1n7vhXCLh5ezXCjRVm26RFaOa1Q
ZnxIZSyWFmH5hn4md1qBwUW53GqQFknmhoZd7GiBwKsC9QU/aVGUoNrLUGIL
cKnMty7/pkUX+0/E1le1gNB6UefTGVpks9fZfiO9BfY8VlrMpKdD2PEmwqh3
C5wPPXDojwwdGqyl5zSUb4H49H3F1lZ0SM5hYc9uLyKQusxaE+7RocTq+9tn
HIhAZYvo/mRPh27wc9ZkWxDh7N1lWtWHdKitM8yaep4Iq/sadTmC6BDDUFRI
53YiGFZeGs3OoUMfEwT6q5uaQbj9gdjEFB2SNVqX277cBBobGfLb5unQ+TOS
VUPjTWCn2KOmv0SHDLLiIkL6m6A1DFnU0NKjMyzlnnlNTfDgCmtxMC89Uj5f
wscW3ARfB2J0FZTokRxLn+W0eBOEz1b72D2gR7NW2TPMexrB7mPoTaOH9IhD
iDdhi1gj6OabqWl70aMxreo4cY5GYLFlpZX0p0ffjvQFf/nbAJ5jl7zfR9Aj
TnuTH3vzGsBi8I+nfAk9at158+sexQbQqqu5IVpBj+YPFTkWbW2A7QkvjjPV
0KPDPy8VbuNugD6jQ+u9zfTowee6zKy/9XCx85HH8y/0KKPtu9rtjHo4/l7E
fXyOHpls5SrdIlYPYu/GDTsX6ZGPSH9LA0s9LAbVqjSt0qP+9alPmtQ6KNS5
vfKagQE9fLXx+UdHHewi5rmd5mdAoQFxHnaP64Cv+qRr5gEGdHC1rCmktRZG
M52cLewZUFS2blcwfTUYbFnvS3dmQO6c7nwZ76ugJcTv5G83BqSxcJ324Osq
SHWMFLbyZUBFiKIVo1gFt46XV1i/ZEB7nNJMpC9VwsCH1fV7JQzIlX/6sblb
OZzTeGKeW8GA3qiVpZWolENtCWfHZA0Dingamrx3tQziX0u8sWthQOm26+5W
bmVgdBudsO9kQHpHZajXrEvh26Kvv9MyA1J7YHB9l2AxaFlzTBWvM6C6RizA
sLkISnpfGlDpGNGlhG91S/ZF8LIhZfcDdkak/7XcSrqtEC4EtZBdxBmR9gH3
ox43CqBhXU+pXJIRwVkWA8P1fNh3vzN2SZoR+b/PrKp7nQ8E/d933eQYkagK
86W77XnQvpWd4H6cEQU+Yfs5I/IOjoeFu1SpM6JO2emP0TI5kMMgPriqxYjW
bycPf9iZDUG/ZQs89BhRihmt5HP2TFg1LBatuciIYtDLfvWxdLBuP+a7foUR
iZXTezaXp4FOoe4lLxNGxLasfblcMgUqZL5V1d7C47ml5V+R9xZ2RxnL0Fji
nx9mzMuRSoIottHn6C4jui0eKVpslQgsHnZU7/uM6CFtx6zmSiy4TC7eqHdi
RCeF10RYH0XBr5s+LbRujGjGgqPWcDkM9D+zKqp7MqL8XrU6seYnQNQKi3r0
iBH9+33gTiXm5rdpFv9hOoenm9ZpOXjXLGzT7Se71TSSNv1FW/oPY8Omh3VK
jgXSMv0zo3W/vQ/jpnc8Y0l3Zd20BfkarxXPpsdPb4zoSG167ox2KIfapun1
vg+FeG+aVHN5u+PjTYfJfzAzCNj0Nq7WYcnQTatjxSP5CZt+dPrF2KeaTetU
cuwta9g0794A61jippPYvMZvtW+6oc1mYr5300+PjMp/H9z0hQwz25qfmxYV
6c9N+s2Esrv0xXOzn8BQwLUpv79MiGCwUOZmHgaZi18UraeZ0P5MnWjf5Eiw
tzh/X2+eCdn6ZWjF/HwNRzsp+QeWmFAorT2b3osEoNPWnhFaY0KnlHwiHlm/
AVJp4/5VGmZUbRahkDKaBGE7wWGAgRkNk63kb2knwzbmg3PpHMzox/jbn2lN
qTDmnK/0nMCMyC1bbu0fTYOCEVmn+/zMSLJh0FhvLR3UidupR8SZ0c1ctG8n
fRawHUw4KCHJjPIThNsCqVnwMUX0AZ00M6oRGreeH8gG0yc8i6S9zCiaqYMk
Ff8OHmlsLBmqMKNrxrnPLv3MA50it6MImFF48mClpEY+8EpT3aRPMKOP7ySW
whLzIYn+78q4DjPyEbQMW76A52/D9zWPa8zINLycWehNIdCpldAmujIjj/R3
Vdfni8FI4xep04MZxc9k8sqiEig5KfyS5xEz+r5G+FEWWAJWum47fJ8yI20e
Wz0kUgqfDI+fvvOaGdXPh0mq7i2DZGfiS9lqZjwfXYuytlXAuuvC9dv1zOg4
3zLt0vUKMPDYtTO+mRl5vZaiPIuqAI7HT8u52/H7hWtcjmCvBKcXun0zfcyo
J+jPoYbflaCV/XVnOQ0LmojeVz0TWA2JuczT0wwsyHm/QmNkZTUsFxyu2MPK
glTu2lyrHa+Gd+UxZ2J5WNC1sZ6uxLM1INRy477XNhYU6BNhOMOK1+vBkQpN
DRZkpt4maHSoDp4KLZz96M+C1Kt/fnRzq4eI1tYfDc9Y0IttA5MSQfXwxjXG
tTCEBc2SSgST4+qhrPtYystIFhSQrCB3sa4efiU8XtVPY0FyCnapegwNoLGL
N6ubyIKIM9zrfP4NsH5YjuUnIyva+bBh55prI7CNrcd9YWVF4Gc7aB3QCAKv
Ow4QOVnRbZFvD5ojGkF2zcE4TYAVXTtyWuRoYSMY1leUWMqwIqukR5wKfxqh
7JT27QkNVvSKeLbK4UoT2F8za1jwZUXfzwnvT9jWDISEsQHVAFa0PwDTa1No
hnc/7m/4BLEi7wnZjQHVZvht463K8YoVGcREVnTpN4OJV1yJZCoravBUEpgP
bAbd5G+Zp1pZ0Y3M3oG58WbYM3E6/DUHG/JKMSCypBGhdf+n/AECG1rl77Hf
W0CEOw+udcgIsOH1dPoHVBPhDY0lZ94WNnTgdaz78U9EEObz82+SZ0P03ocu
vFonAtPhuod/z7GhaR2t9poLLfDDR+kWvGJDavNaSa+nW2CXIFewXTQbGtgY
u7Kw3AI2mb9K38SxIYqk1sxJhlagfoxhZ0hlQ137/YRaBVuBTZq2sLWEDW03
cxjTVGkFRSJGe6ET/35+J13NR63gzmaecEuMHXGcZjAvZWmD+njU9morO2IJ
bnpLIbQB0wHRWeJ2drRedSqgU7gNQgwxrd2y7AjtjnzweVcbJGUfmPiryo7o
Lc7tu6HdBm26NMce3GBHwzbkhoYnbSAYHv098A07Ul6QsBVebgOOL3wf7FPY
0SWLUeEEGhLQCQW3GGawo15ZhUoJZhJMxjwqksvHP6dKM7Lyk6A1yTr4Qx07
IkSM33sqRwK3gmPqIgPsaP6dpbWWMQn6PwxmpEtwoB9eZ+raq0nwlc8o8cU2
DuR6sXvOu5EElMtfI9x2cKCmrI0R2TYSlHWRfM/IcyAfJlsR+88kCBssvD51
jAPpnL6gUzBGAo3pJzyHr3Mgmat/LnEJkiGdsMe15TUHgmufSPoWZFAcubrI
kMiBHBKeCRXfJUN5ZeAD9WQOZHdbrpLDgQykO7+dqrM5UCjJSjzdgwzjVen2
hdUcKIGG0BUSRgYFy502Cf0cKI55PWNnJRlK6qWNH2znRF8VnhJimClwPPJS
X9FOTiTV3Fsry0GBFpvH12f2ciKT8CKjcgIFOoWGDe8qcSKfzwa2dSIUWLr7
1sBMkxMNPcy29NtLAVXRbRf0zDnRPonfUvNnKdBov1VzZxYnWlLtDHkQTIHV
+clQ8VxOdCMulZsrjAIHXet6eAo5kfKv+MyEVxTI9LrpuFrBidon3FSLYikQ
FvT27QcSJ+qx/yr0NpMCpqk76dzHOJGTb2BvdDMFaL4r1Hbs5kIP6NePry5Q
4Oh1GnaiHBdS9jPsXl6mgONAh37lPi6kYvihd26NAqMj9ydSjnCh7HrdLd30
+PP6bOGWh6e4UPiO8lo7bgwSOA+7y1hyoSo/I70GGQyOq6EjbulcaIolk8iu
h8FWfrNQw2wuFPGtOOPeeQxofj35pZrHhd77D17FLmLQEER+tVHKhVyheaen
AQZanfozj1u4kMbK5eScmxictb2bFTLCheavi9hoOmAgrx5Kd3+MC33J8/l8
2wkDLoHCqxcmuBDrTWepRw/w8VUsMgtQuZCzufe9dw8xuMT0+FYMIzeCjOHl
L74YGMXFbEmR5kb5o310puEYHLOrdvTbxY0Wo3ZeVHuFgcSJAbK5LDf68702
VjwSg4FRGbc9StxIQLJMsiUGg1tK+V9zT3CjHXcVOMffYGBDbgmpMOVGolXJ
D51z8fHGj428vsONthJv/hXIx8d7n/O4hxU3cuypscovwGBK8OI42HOjLYdi
g3qKMXA07dNu9uHGz8MqT+mrMHi4NEfbkciNUtj9zv33/mTCGBtkTOFGgyUX
KHxtGJgSU+pVMriRGFW48DkJA+1wfZ+0fG405X6O6IBhwC9XRuPVwI28fda2
s37CwD88dKCIyI3iFI4Jm33GYHnJom6MxI2oQuneZV/w+Igi3vqfuNGEjmnB
5U4Msk0ebsgNc6O3Lp6lV3vx9Wu52G82yo3a2NWtQ/owCJOTrY0e50b3enNe
1/Vj4LLc48k4z42u2QY4CwxhsE1nq9cEHQHpSi0pBI5gMPnDe72Zj4Cuyz3y
i57AYJfQ3YkBAQJayLnn4j+Jx6NztW9FiIC6+qnzdlMYfM3bV7NPnIDOV6lE
HpzBoMpjyCNOmoD8DQsCg+YxoOa13y3bQUC/7DIm9akYKAxXXP+0i4BU16t+
iS9gkKQTfoxVjoAkhXRevF7EIEBIY81RmYCELH/2ma3g+01H8W/IIQJ6PFEx
xraKwYqHeG/mEQL61PE8OAf3veG5qoFjBMT19G/izzUM0oUGs1eAgBbhC+Hh
OgaDOlisoDoBWfLbiXFs4PsrP8X9jBbu89fopWjaIXj4hY25NgEdMpgeTMbd
IuRp9EiHgLyrSdeladvhqKe+apkuATmklSsI0rWD1Gnm1e1XCMgi6ODZZvp2
UPpy4qPoVQIi+VIoWxnaQcvYO53HkIC+a3F5OeO2cli6tHGDgGqHr3gIM7aD
+5ryXqoJAWkWqpLMcIf429P+NcXn56D/6SzcRa//5Hy/Q0BX1mbH5ZnagSiz
6/EHC3w9DvzktMbdmXvrWqsVAX1k+n7rLe6xI28Ua20IqD9KeeYb7rXGXqaS
ewRkoHe1hIW5HQi6or3ZdgSU9iU5Xxn3tk79wrf2BJS9xXn4Bm4l0/DAGEcC
SjDZrfcYt9b4e+MXzgQ0slVkJgW3gTPHwQAXAhqXiccacVvRnOLwcsPn1497
qBe3+9MnQ07uBLTypkFhDncIf0OZjScBXZZiL2ViaYek+PVgM2/8+1eOugjg
LtqlcvvaIwIKckxykMRNLHigcv4xAd3cEpqxE3enahGPth8BrX45J/rf+/sx
4tSv4wH4emEKxD24V8/J1Sg/JaCoR845O3BzdVu+lA0iIIFmmw4J3FK3U622
BxNQfrGBAh9upckhJBpKQLItniR63FquW4V4wgiop0Yqaeq/+OiN/jK/JKBz
xY9Kuv6L73lU4/orAhoTHGSu/S8+oS/R85EE5JXsFpGIO/gNj914NAH9dXhm
6ok7ca+u1o/XBJQzddbGAHdh8VPx73EEZNqzXCiPmwgtMx0JBGSj13aEFndn
G31byxt8/5RPrL3H12u1192pOIWAeEfZ1U1xc1mUn85OI6ABjTsNMrilZual
3mbg+6mtx+cnvj+0mGzbQ3MISO7Sh5qruA1Cs5L9c/H8q01W5cJtJTrq5plP
QDxbYbkG338h8jd32hTj8djfVBbAnVQWt2ZaSkAofV9hBb5/i9S/f7pajs/v
5av3jXB36l/0PlmNr88rudyX+H4fGwjRP15LQIfPCyjsxb1mRZFVricg4lfS
ZDWeH9u8NLu2NeP14zW9UieeP0qsj3JFWgiofq6o1Bi3VnjNE0Ibfr+zoe4/
8PyzTju0f51CQMna3KR+PD+L3u9+1vWZgLabdztl4fkcur0+ZfkrAR3vjD7A
gtv6gUGdWBcBPRlhfmaC14NtW/3nr/fi8QlwMTMsYxByb9h46CcBNS/SKwni
9cSq4aEb/SgBMaLQWj283mgJ8r2SHiOgH5atw4/xerRarUa6M0FAc8yE1cFZ
/HrOBKU/VAI69lbbyByvZ1o3D+pxLOH7vTuk0AOvd1LFmKXcCgGxCk69DcHr
YafRarztBh7/a3+91HEMNLOvss4x8yDigGV7/CgGkqf5+1aFeVCrzhWtKrze
rsZnLW4R40H8a7PiQXg9/jajzgdbePD+9iXwCl6vg2Pua/tI8aDa3bdkBr/j
9e13ewHjHh70pZTfqBav918DAv25VHhQm0SgbxrePwp6JJMUjvGg3TcvvFbE
+8tzxbKqc8CDerh1NIrx/qPROTIddoIH5XAraOc3YZC/U8NI6AwP0l88yOFY
g0EQcV1R8joPqijtlZTG+x26P7JvizEPKjRMa/LF++GcWPt+0Zs8SIfl2eP+
HLz/3o9T4r/Ng/Ie9+o/y8RATlz1MMtdHqSrOn+46C0G7fddYcqdBxnY7fXX
wfsxYcvc2bpYHvS87WfQE7zfN7V061bH4/F2T5aY4+cBF/tGvYpEHhQW6fpH
8z7ez1rCzhcl86Abu67dp9rg47Xfdzk9mwel0zP27ryFwYXWe0ahVTzoLUkp
nIyfR8IdfluZ9PCg88Ec7Dx7MBDVcrt/sY8H2eoZH/PeifcTYXYXrQEelELZ
EfhHGp+vatknssM86Cl9uGXJVvy8wWyXsPiHB6mtjCptEcDPI7HUT6EreDyX
pHbKb1AgoIn+WL0oL0qV/x6l30EBQuTLE0XivGiI9ZzkSYwCkZYyOmkSvIhB
7fCbAyQKpHKdvPJ8Gy8qV8Se0jRRoNng6f2re3jR+la/HstSCtD9JaROH+FF
vVl291zjKOAuIMG97SovavwWYOt7hwJYPus1MORF574eEnprSgEJ3flko+u8
aNSG/KH6BgVq/ShHI2/yImXvAy7D+vj9Ft3ucFjxIoWvRy9TtSjg//1bNdUN
t5RS3J4d+Hky4YUNOZYXmeyxWyUOkOGHikfpaDwvaomRltDsIYNSpwUd0xte
5CHZwF3zjYx3SRSFUnhRHVHlamI7GYQfTTQW5/Ci7J81ajuqyBB/67RYYg0v
uiF15LhyBBkydjOSHAd4UZEebdBZLTJ8FFdbuTvEi3xdQo+7qpFhldtD1nyY
Fz2y370tUZUMutS54KujvKjp0jv7/v1kmGsYvnh8ihedHHw0u30rGZBRUy8z
DR9yDHc90kAlQWew73TMVj7EsnWKSS0Jf355VLvtpRQfKnjM3IzFkmCv08rF
59v5kAkHZnQ5kgSehg4lXjv5kGSgBOflIBJI7zJ7eEuBD9HMNogIOpPAtl6d
UR74kKGXplCsNgmY5mhF6m/wIU/lLvrE322wmBcVPGzCh5Zjt5xcH2qDP3cV
GFjM+NBK18zq5Z426PhlNKlrzoc+DEdlT7e3QUx3aXOPLR+a/R4W0lXYBvKN
d+0XvflQvNCd/jvubaAf1kVWeMuH9vGsy53Hn/e09ezULqbwIZ2yveafaNpA
hYO51DmND9VXJhnrLrWCpJ9SUnUWH/otUOwoP9YKY64hLqeL+JCsiJpLBLkV
PG9qypg386HGta/LG0GtkKaY7xn/iw91CB3QZ2JrhXsC00ulv/lQjvQlkwra
VlBaVnT68IcPSW0/GXhnqQXqGvOsGab4kCbnYaG00Ra8vucZWC3yoWftoqqt
xBZg8cjdf5CVHz0m68r7+rSARVvOCLaHH5H2Shi9niKC/Lu/N3/J8iMxgsa6
2i8izIXJ9dIo8KNrxxTD+nuJ4G2U8+nAAX4UJyFjtkEiQtRkdl20Cj9iaX9x
tyMZf14XyI65fYYfrT9p6M/RJ8Ju00zdtbv86Ba5VmatoBla447mzdjyoxQu
zyuSGc1wp4vEM3qfH0kpzaoeTWiG5HN/Pn904kfC25Wnzj9rBkmQNUz34EcB
n+ODuM2aQVD8nfnF5/wo6qlBcymhGei+5ntnZPMjX1/6v5duNcEbHvWh+Hf8
CDyLWQ5cbQJ09uOJl3n86KWq2AyjbhN4NM0weRXxo5MpJ4YDDzXBYsGB55eq
+JG2fIwSC1sTTIQUR2+Q+dEspWsnlt0I3afKCy7/wednlOZd32gDqOslGzj9
5UdvDxori3U3QOalkPWXk/zonVvW4ZNYA7gZ39b5PMuPsl5pSt3NbwBRJ56h
C6v86PQvgtG4SwMYJFrynOMUQN1b7hm/YmiAr1QROx0FAeQxdvjDOc56OL7K
IGi1TwAN5VArdq3VQSrtVGXgAQGUpiElNjZeB84cROa2QwLopPm1o7sodSCw
zT7hJBJA39fuBTwNrINLZ0ntGucFkPxFTYLuRi18fOsmBw4C6ACbYGpJTjXw
0pSUH3USQE8MCA+2B1bDRaNpzYMPBJDQWGn0pVvV8Jnf4obcQwEUratylka0
Gr49uRwi5iuAthb13TZ7VAU95orTC2ECiCu02ui+ViWIN1l7zL4UQC7xkm5Z
WyrhumQa62SEAOp7wRAcNVcBfZ1bto3ECCDhXil2vzcVMHCK/eLnJAHkVn1y
5PFCOfzcO1KUVyCAzK9nFEaHlcGOACm17CIBVN76XUbtVhncGTbC0koEkOSx
tiFP5TIYjf30M75CAIk3+gYUfi2FMc56wecNAqhM376/lK8UJiZfu1h+FEAH
72YXP3AqBvkz3xhufxZAv+6we0lBMdim874w+SqAWGkPB+1lKYYpk8CMK98F
UCrpvfOZqCKY/eD8XXNIAJ0V8PWTySuExcLzqttmBBBzDNFKqCwfOA4fbOeb
E0Bxu7gHGZzzQbJK1ISRKoBkAq4K9+3PB+2mH76jSwLofHfIw60ZeRD92Yn8
jlYQZZ+tFzXiyIV3BteuJ9ILIr2avVOxDu+goef45AtGQXRtsPxD7LccGBtm
5nNiFUTcmjKt9K+y4eh89DUVHkFUEXF4i0hfBui6eo7L8gkiXgfCdh7pDDBd
M/WUEBBEgYujv9GtdHjKKJtEK4Lfv6zjyWpHKsQHEpRmRQXRLWPtq5KrKVDA
Od88LC6IGB2FT8dJpEC3QM3vFklBRHfa0WVC4y1MRSc9LN8miMgzYfbpmknA
IOHPmSUtiHyeF/KeOvQGhJOsE2J3CKIbbPWR3wQTQXbHuX3BuwQRg7amrENd
HKBMpUavPYLokOLy4ILoa7gkL3L5vqwgMrst5k7aEwUWBWsjpvKCKE1+j/HN
jpfgfnDI5ZKiIOpMOzQeQQmF0Aoim9Z+QRTn++tH3LAfJB/Pij2kJPjv/XtZ
Q4j87oObpmg51oke3vQAyeACx9FNz+keG15T2fSWK0wsg7Dp/d1j0R/VNq1l
/H5v04lN3zOP0ks7uemaB3si7+pt+uMK127j85se8ZqtOHdx01wBVX0Hrmz6
RpTujuUbm94osy/2u7fpHqaCZ0l2m664NH2zxn7TjlO2XFTnTY/uvGt+2+t/
xhNhLqIRuukURyMP2oJNn1bU0nSf33TLdQVLawehf+Y1s6iMc9r0DYs3nB0P
Nk215ytQct+0dMDC8trjTXsX1AaFRmz6KPO5vOLyTftxBNKNVm76A0/DJdGa
TVuIKy15Nmw6cp+wujZ503OGA5++92wa3RTZwdm/6Wd3LrjA4Ka33W8ST/65
6fN+6bfvTmw69tlgacLUpkdDRdk+zvxPPK+D3h1c2DQlsZnGcmnTQqnrF16v
bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ==
"]]},
Annotation[#, "Charting`Private`Tag#4"]& ]}, {}},
{"WolframDynamicHighlight", <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
StyleBox[
DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
Slot["HighlightElements"],
Slot["LayoutOptions"],
Slot["Meta"],
Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.368417, 0.506779, 0.709798]],
Line[CompressedData["
1:eJxN2nk01N8bOHBmxr4MI9mlVFKIQkKeK5IlKgpF9iJSSJItUVSEkApZskTJ
TtaMdWQ3U58IWZI9JGT3e3/P+f3ymz9mzuvMc5733Pu+7+e595zZaXPD8DKO
jo7OCXv73yeZd/v0xmZ7Fd3/fU2/r95zsHrLIlrOlywDtuzlUddSRdiy/Fe3
d/4sbf/85kW7A46n5Z/DhB79YNjb+M9mO9e62E+R/9ne3+DBPNOWRz+q25YE
V/0zv0rINpPbH//5zmHR29HGFf+sultTlchb8s8BbGJPWHbn/HN+8FW1DJ7s
f/6BL5jRwr//Z821E4b3h97+M9MvJ77NpPR/Fnh1Q2NcJX5r/M9w6XuFYv+5
98kzZruV5/+c4Ffe+r0k6p9PkjlzM5yC/pk1T/6W+P6Af36hUeSu2un9z1oc
saTTMZf/+bg6JX4MHf9n3e5rD4smTUFUIXS7g9MdiM1MyJnxdgbJnxY+ZSGB
oH0zUB+nfhtudfTGkx8/hIr5SEL64buAW3pXOegUCvwqnX27owJh5557fpyf
w4G6alrqERoMA6IrVjY3n8KTioHoxgchML53Pc+jNxK0fR1cBO+Gw17++BhW
qWig37G0R7HiKSwQd0i1XXkG5f136R8WPYPAo+c/vX37HPjJGjOy+c/hg9ch
zbMlL8AjiamvO/slpLl7Pcgtewmy1uElBzJewd/O3+d9X8eBoWv7B/vW15Bw
yPzoze2J4G+dJ1PRnAKTUr8fb/5IhJyzUWlcTamwo+VxwF7jJGA/ZBJV2pAO
uOHYhVN8ydAw9/06G/kt7Gwd5KK79xpElP9GmlzIg/1iWdfsmNNA/pBD272u
PIjdecr/mVEanNrfzZJlkg9HGRwFsl+lgZdguT+dcQGMeqi8qpZJh64Vv+uZ
hkWQSFpb8jvxBiLLGXVX9UrhrrKvPdepTAgUDfE/nUiGvETHXsehLKB75mCU
1kcGO+XCN6Hb34MPm9beVaFqqDqrcFRT9z24L9G1pL+ohkDSoLFv7nu4QvXg
23hag92vVaYzntmgHWSTnXW/DqxTTisz/c0B9umjvSyOjXC5PeyE+aU8eGjH
l2OZ0Qim7lnxZm55QOiZv1c00ghPE6QOqgbnwTolR8La9hP0q7mWvs7Ng+nk
PTdLzJvAfuxTGRcuHzrOc7Pan26B27K3s2sT86HJYl7IRrADPpE8JssbC+Bl
MVFPTrUDip9tCyT2FoAD5wEvOosOaD7cGqY7UwBMH627EpI7YJ5HTdiTtxA0
Rdqje/Z1AkUg36PEqhA+9mRynD9ChV36ovoMfwoh39Ry8+S5z/DF1j/pDHMx
xBo2DUmHdUFEJ+8zvs0PsMA36VH+vgv0QlvTutlL4EwfG5tOaxdQyqhZ4YIl
wOigf9iOvRtCYgNmviqUwE3fjsDYx90gvNx7q8epBE5l/LebKfgbhIo3KFR9
KYHN9aErA3d7Iaf2/OTN5FLI/+x765PSANzqrxygCpVDxgM7myGdAajjfmtH
2FcOCYp6p1cvDsBOwcjtUvLl8PgFv6S07wB8oKtTsjhVDrbmBb0R1QMw0nb5
u4FPOWwbHtMw1R2EeftHgde+lYPHHyPSqNkQdIu0fxkPrwAV0v4cwt1h2PdS
XWfHUCW00V/81Bo+DLd2PCLhpyrB6vejHzFJw+Bhb9nYv1AJ9zvG+SRrhuHO
yWje+ywfoS0s01+f4SeEZ/Muesp+BCs2ScOYkJ9wTm70tYDvR7hP2Lcg8WIE
0gpbcmy4q2D7vAnxd8YIaCx+jXQRrIKMH8GSZaUjwOkmLOkpXgWtNaOXTvWM
AEu91AN3BSz+3psGF9FRePVCJXLXhSrIXN/7ojR1FNKXymNME6tA9ZdxfkDR
KMCRr/sIGVXQ1hvUotcwCitXlKszc6tgrnyE7vvoKPSbmvH/qMbivdKv4g6M
Acta6QjnMBa/uEdFL28M8oR5wt/wkGHvq67gP+QxaD8DusF8ZPDTCPkc1zEG
YUeFQu2EyHAwYtZ5amYMqsfW3vKJk+GhYkpZ9OYY/N58GPJrLxkGes8zHSOO
g+GdzmXyfjJESJYnPZEZB4v0B0FWh8gw1u78S0FtHFCEdYaUIhmQh5jyd/1x
OHvum8XiUTK8EKYFBV0ah99Gye8qj5Hhd80DmozzOOB0L0cEqJNB96qS2Fef
cfA8Q+U8cYIMr4mT1+6GjsP3n0/3MeiQYaXoValE/DiI2cgu9GaQwdD8DGPH
Oyxe6qmnkVY1vMXhjTzLxyGtl9vQOqUacJlFiWLN47DTs3BN7Fc1XDztMNX4
bRxUy4FkLVUDBQuCR10nxuHcgYyhWrsaYI9vfSCwgo2POMar8KIG7I77U6tZ
JuBBuCDXd0oNbAv/6USSnIDMg53H34vWwjWFFyVlShMQdE+xuFqrFup6dBls
tSfgRqtUK7tzLdzal5tQYD8BzUo1kZJFtfBftVfnufQJsKm/rJV2pA5kHKRF
14smQGKjMoreuA6COAcc0+onwHlsyCX+Zh0cMTtBWByegNqZscKGrDp4MU88
8lx8Ei6+oTTu4a+HixJp8d1Jk7Ccxhyb110P+a0m4/dyJ2HMqTlXf7YeWN1Z
FfeTJyG5zCwrnrEBysk32r36J+FAxo1XlocaQPiiMk5YdArOBsc8qQtqgO+h
7fYWcVMQ4FsqOLabAnfvmX41zZoC/spfVnZHKSDmMahlVDkFGh9jFLP0KWBj
+WePdv8U8J3repN6iwI/5fiG5cR/QXPrX0nLWgpM/WdhxfDuF2h8Oyu0btwI
y2LTplll01DintNIsfsEsby3G9ObpyEvQPdAnvsnUGalU0runYbRCqlZ//uf
wOcPN1/MxjSkPS4/+yXlE9A1KHy5e3wGtI9vf2E++AkYnXzPGjXNwE1/8l4F
0yZ4fJFxz/q1WXgnc5pX8EgzqMmyL467z8KFN+lO4RrN8JuBRPnPZxaGNuQv
L55uBtM8kau5obPAylPS89KhGfYwK7y3zZqFHaqCA8ovm4FcZKvQNDkLqQtf
T+GXmmGRq/rEc8ffwB77ZM4vqwVsKd5X5BzmwHX04pDyYivYqe41WLwxBwSW
+1VVm61wJa9Dofz2HFyOIdirsrSBQ9wehhPBc/DU8pi2iHAbXL/RnmKaPgeB
1SO5fupt4MUnPnh3eA5GA0yCmh63QaR9k1mb1R+I2wx1pfK1QzWTwFmnC/NA
4rd2pnF2wEiKjG639TwIf0ltYOPpAHakqXHScR66LTlfI74OMPW8oSDuPQ/t
Ep4ziTs6YGasXqAnfh64lq2NFGQ7QKTJbUh3YB6azFKjP57pgDuhLTf32y/A
iUarOtvwDpDj9o8Zd1/E6sThgDR8J5Qxf91H8VkEjsGwD32MnXCcTqY89f4i
WOdIh/KwdsK5mZ5+y+hFkLB6KOjJ1QkerUck/ytYhFNTChu7RTqh4tFMec3c
Ihzsu+pIVOwEbZzlYJzLX2CVuOBx6EonWP05JmVwbQlsnthzM5A7gYNE1/HZ
fQlcifYrEzXY9WVrbpr5LkHhglpwW30nbLuuVe4QtgRybc6RYc2d0DhmoBuY
uwROd6aez/3XCbLfLR1K5pfAhF48Se9XJ9B9upe6y3cZ2Kx0DujxUyE5oV74
75MVOPnZYn+9PRXizaW+no9ZgeVnVkY8jlR4IRj1tDBhBT6MityzvEaFsBgr
RrecFSjN95n+7UIFr7DVmamOFXggfG7/5h0qGPrJ1Q7xrILQJnG6PIQKBItX
V9terkKh+Pe4uvdU2BQi7JZ+vQoXFCXYv+RQYaXb8XvI21X4ATvjf+RRYfa8
kpFO+SqcuXtIdLWICn36NNW63lVIaeuo4vlIheJjLFxlO9YgUsdXZKqVCvYi
t4rT0tZgPMxeWm2KCg2KIqzu79dAzEHn0vwvKuw+U3/peNEaNFNKNjJmqDAQ
wMvQX7cGDEd1X3D8oYLpWJER//AavI8ylq9bpoJ2weLs413rIEUs9xtlpIGk
jucBl8R1oESKZbOI0eChjdhdtTfrYPDkwWbYThqMeDdS2XPWYeKPdydJnAav
s/m9Mj+uQ7Q+dYl3Lw0Et5U2DvWtg7XukhWrFA1Y+5cvnxfegHcLrX/eHaHB
pLt3kvLLDdiZeWPisz4NrheFMeQnb0CY06elk6dpMLuQ7Cj5dgOWcoYNS8/Q
YN6jUZ6/fAPyFeSmYoxosOHJ+2mhdwNuqBVWHbtAAy7fnN+5YptwOibplLId
DRQf/DgukbEJJwQWJ3970qCkfvFNQu4mKFm3aB30ooEKIyvH9tJNaBNKWnH0
pgEKlv1KaNoES//y632+NNB55Os0NLkJHo50UdkBNMhuYGtq46NDK/4FQrhQ
GlQ3pc09MqNDXYFTT1xe0aCQv8PV15IOzbad4XNIoEH6lZVZF1s6ZGoWcNQi
kQahuNMzJk5Y/KETOlrJNDBWXprc402HbriuxDOk0WAqU/dndSwdGrxioKOe
RYPtj2a+LnfTIb6FFvXsUhowfxUw+dVHhwJuaZ2/U0aD1d2a/w0M0qGDog+Z
NcppMEB+8ZkyToc2RSRPUyto8G5JvfPZMh3SUJGzGajCxucQ3SQnQI940uMa
y+pp4HTyaOVVU3r0SCKl9WoHNt/7BOrzzOnRt4IDt7Z30sCddbll2YoezbE+
e1CN2a+1pPfRVXrUVvNpkESjQaSR0lqmFz3akP0e+voLNr+WR1Qm4ulR1oby
l1vfaHBMnU/jUDI9Iq3piLH00KBm119drzR6RO9E/zUWc/PP4ous2fQofBfb
w9JeGnx3UvTaX0WPVOq+rf34TgOCp0Kp4yA9ymd3Mfw1RINHF3ir83/SI6IJ
naP9Dxpwqiw0rozTIyWmxzP9mPk2Crsez9EjzyWOEy3DNNh/X37pLR6HZDIv
iUSO0CDn8ja6P0w41EpVz9jELH9ynkmFHYcOBwq/dhqlgRprIV/zNhzie3bg
h9oYDc5GHD4yuQeH3gVTX1HHafCfKw8c3o9DFzkiUg5P0OCi0R8tbxkcOtSz
WyAKs932AmO2Izg0aqx6Tn+SBp7xhzwOaOOQ3JMh9pwpGiRkyBU5OeLQk5D4
eIkZGjR12zYmXsehKzktFtcxL7LG9NDccMg0PTWpALO+8wq9qjcO7TCMTjk6
S4M1uVoD9lAc6jpsnHH4Nw322S5Yowgc+mzw7up1zOeiJW65R+PQ7usy795g
zloMieuNxyEB7ZVs3jkamJWfG8t6j0OckofL+zEHTQWtDuThUMLUg7ucf2iQ
L1LKyVuMQ6khN+tUMLP6iyj4fsShPh2DjqeYFfNOa+fV4JDG8NnnZZhthu6Z
/WzAoZQzIv2DmMs0R+7pt+PQIw353wfmsfpwi//ZPRoOce+MKjfATHqjm1H0
FYfy/AYYXTBfZclpExnA5oP/qlg25mjlwcGzwzhk9qhwugkz2Yln4cEYDvn9
4FQbwczfdltoehaHTtxgt+JfoIHmZqbMrgUcul9YceggZhfZXnXjZRyyYI0J
0sQcb815/vE6DiXTJZiZYm6MRA4f6fHoQG13niPm+Vo37zkGPJoWMHjkjVls
ITVsLyserTtsDj7GfGrv1+SLnHgUlvu7/AXm2yYsRWEkPKJ7so8vDfPrhyqN
NdvxaEjxzZ8czG2lzj2Lgni0GOBythTzykTi9P4deKQ0FCRbjXmvMJXeUhyP
+qynIiiYDfUJvFESeGT67rVbC2Y/P8V9lAN4ZEV496Ud89scB5XVg3g0acBY
1on5v4FYg4PyeKTIUrSDihlHarW2VcIjsv4Hxv99L6Ox6f5cFY/0aew32jBf
dJd72IzwaGyq0LQJ84M027hNTez6j7Jr6zDn/vcs+7AOHpUqLOVUYu5laqy2
18cjPf4IkSLMzEdXPsedxaPEhZvs7zDLO0qNtZ/HoyXpZJ9EzFZxFqv4i3jU
WbnteiTm0JYITiULPOo61jwQiLlkvWbnNRs8Ghkif76JeVhmQT7pCh6t+v7W
scHMZSWh/dkRmx8fU3Qas+rTC2bMN/CoZ2T2gzLmqD+V91xu41HcoaT9HP+7
v9QIa3NvPMorvNK/gK0Hgzxbde27eGTSO6PVh5n5Bgu9WDAehXodlsn43/rT
7x1gC8Gjt0OD70Mw10rlkP+G4ZEdTXnAGbPfxDn/9hg84pjpMJfBbPZJwqo8
Fo90szbT2TErZazAmwQ8yt5ekTKOre8/l5M2/dLx6AStsjARs8PgpJ9MMR7R
2/85vIY9T1rkjxaCZXhUJ5zE3YFZPPGpGuNHPKoOjEx+jfm7+ZGNvnrMlaJd
GpiNugJ8n3zBo5LwpAQP7HmV/XD+0p1ubL6jtDkQZs6Yfccu9+HR00M90syY
G43a1lR/4lEh4cn9aKweqLUL+EzNY/Pt+S7oFVYvhLKnzLqW8Mj516FAc8xL
oVUqdWt4VJGjKCeIuUD38mocgYAUVDySn05j9aMh10tvGwEJaAl2uvyiAWNa
4MUj/AR0SrTZZA/mH4HGyuLCBFQe7xHe9b/6pb62vCJOQMK/PbhVMPNUnrzz
9jABdcSLWMxi9W82TvBCzBEC8nVOd4zF3Ob1SylAhYDMS6MlNDA/VIpauqBB
QATTs/kRWD3dKPh+m8WIgML9GFmEsXo79vaWh4MbAVEeKmf8weq3qcjG9wwP
Ajo9T0m8i5kSHnRy3AvLf1WajRVzuvtzfsdAAvqmT3dMEKv/dmqlZU7RBNQS
I8WybxDrh51rG9eLCeggp+2eZay/nNF8YJ9TRkDPw+/rXsNcVczRMfORgLzC
dAf7sH6UECea7EIhoGMxErYVWP8yv4w03LoISCeyvuBKFw2+LgUG31ohoLZ4
kp0L1v+0nNhnizYICEkciWii0qC4L9p0EceA7rVcOCCOObomTfI2GwO6Wtb/
vh3rr4ahlGZPYQbUqkn+ztuGzc8ONi4fNQb0fai7zriRBg1akS8CAhiQmneg
XCbWz0evlLd6BTEgHx0m9X6s3zMHD+NuPmZAnLG7fvFg1qUoOttGMqBLYCx4
pwTLd7JHXfM1A3IxFqg9VESDL9q7JxlqGFDhfoKYbTb2/OkWH3tEz4jeREkH
FGP7EQanfrd7DIxo2DuivArbr+wNYc64w8KIWFx9HlOw/YxD80WSIzcjihOY
G6XGYfsTvc0R3Z2MyCTIILbrOVY/T2lHsKszItkc2ZTEcBrgT38bCvdnRMVX
vKwF/bD+9vG8uPt9RsQw7Bmy6oPtF2Q6bU0fMmK/J/tMD7bf2sXZOCwWwYjE
G5+/i7lDg+OtRSN5iYyoQ04nbs2dBgF6TydoHxnRmaiSHQ+csHqnrT3Ht86I
skJJT4NMsPwfag+t0TGhM7yHQpSNsfwScHOAwISMJ723/zqH5WdSnM9gZ0J7
vKT69Q2x/A3ii0eFmdBrB8WDG6ew/Jqby2YqTMiwcfiOwHEsv3oxfdIdJjTe
dk1E6QB2/zVHm7p8mZBoxSnjV5LY/T3JH80dwITIF2Q76fbRwNHAa2/gYyYU
1DH8uGY3DWhmanpX4piQbwl+U1aUBqkeDdFSlUxIetP6RikXtl6y/pMopWNG
zOiCs/s8FR7z/dWnBjMjYqp+4Y1iKsQ0Nv6oCWFG63zKfwMLsfPJndg7BeHM
SJqeEBmTT4WSnmNp0c+Z0Sfety3F2VQYTby/ZvyGGa3RWWv+SKeC5j7Su54G
ZtTecvPdZAwVNpSkmX8ysCB34/LooltUcLtoW/M3kAXFm9apEmSowJU4MaD6
kAX95Dsj73GACtk/XDfvhbKgzHIPupF9VBi/5q/K/owFdSlMcFeJU8Hq7qti
sXQWFDR0dslYgAoGqV/f6jSyIBNcWa0wgQr7p/Wi4thZkZ6a6tW/Xzvhxz15
O3jGij6YspW+9OyEfds5w1xesiJpvdLp+7c64drb0Q/Jr1jRzKBJgbNbJyxS
Y9kI6azoj4D/0JFrncC6m76gsZgVaTTefJNtiZ3nGlrpDbtY0Y7Lbkq7tTrB
h9U+0U6IDZlq6wvv4u6E7VEvvz1KZkONlnbOswnYefgLT6dbGhuauK8t5BLX
ATi+MIpZJhvKbr0p/es5dh6ODSiUzmND/vVKt/ojOqDxtVNYJ5kNaZmEnk4N
6ACv/GPHBQbY0EaHDeP7yx3Q3zmYmSHKjvIX9ZgyJDsgg2v/HUocO8ot0JyQ
P9sOsiMXlghJ7IiWzDlGr90OpeWPbh9PZUeyjOd/Nqi1Q9OV8VuVWewoK14t
X0mqHaYqMtwKKtnRoVaXC2WM7XDwqsS1xH52FNCvFXygrA2Kq3db3hbnQCN9
mj6Ogm2g9vzc90IJDiTzQlBtB1cbUK7dvzR3gAOlw17DJoY26OIbNnOW50DN
d51l8L9bYdk5xdT2BAdC7tC93tAKqoK7DE/bcyCHmnxpJtdWqHXbcULiHQfy
Gl6Q7K1ogbWFmQjhHA70SPFG2FpeCyjeIfdyF3CgQyEHj5LetMDbu9bua2Uc
SLyvjFnkaQtEhqakdDZh8YxFHNl2LWCTLoHzmeBAJk+mTmWwtADdt4NVHZKc
6CQpef6objMoX6Jja5DmRE90tLvajzWD+0CHcbkcJ9JcFjtvItcMYyOu02lH
OZH1rg4vZf5m6PhTIOKtw4lOJJePnfrZBIkcSj57rnKic+elar18mkBNHR31
yuBEBzwP+Pu/+gQ7ttlGmGVxIn+662/lwj8B3eiDUdVcTvTt5Ty+zf8T1IQ2
P9v8wImuaj1Za7D9BFpdxnP3KZxopWnbvdx9n0D/hvO78BFO5Gsl/Jg9uxFk
jkfgXCc4kYMrw2PNhEbg5C24YDjNiRh7D2pZhzVCR9kSE+8iJ/KpG/usdb0R
zjHet4tlIKLPxzfM86UawfxVrEjabiKKNrm2cTuFAsdcKt2D9hERn4KnUu5T
CohqDDTbSxHRMfX1nuq7FBgY2+O1X56IGOZ/WDmbUcBOPu+/HA0svl0wq4GL
AteaKeFlNkR0Xk+w0dStAfQTJkbirhDR132NdhGXGkDGlUPN15GIOlUiKx9p
N8DsdqMpcCMig1GrIyUiDeBu8127/h4Ryc2XNJfU1YP38jx9RxIRXX0opiOO
q4dpy9ZBhjQi2j6n5JP8sw5sGtKqVTKJ6PJmYF1gYx1oRxnfe5NHRMHklSta
oXVQvixj3VdERLbCq41sznUgY8WkzlNGREbjxbkbp+pgm3QJ3d0aIvI8eNhE
lLUOgqMiBgobiOjb+qKW0GgtrCw7kCeaiGh0qNp8uKYWBhoE/I1pRFSw6+9V
8KgFI+k5y9CvRPS+kTX4mn4tNEQ1QU0PEbllx6k+21ULWVbem9LDRPRnid5D
p74GdlCM+m3HiCjqTlhF1tMaiJSWqno5RURocb/Aows1wBBNSGyfJSIV6vqM
nlANeK70+jEsEFGc4WS79OdqmLQqslBZJiL13ZS5k37VYEF5oua6TsTW673u
XsZqGNt+OJxGx4V8Na96R+qSYZfujrvTOC400R5f+liLDOa+bDdYGLhQqcrz
w/7HyfAs96/FbiYulLl4ctRNjQzMfB1qF9m4kEWK55/TimSY+eG/Uc/DhZaN
Ge3G9pBhH5/z9AAvF5rrL3Oh7CSDje6F76t8XChl/870FBEy/Jcr91FOmAtN
MqkEGPGSocJ3yPfVbi4k+M64OoJAhod8muvuClzow6WmDxt1VbBTj2lN3IQL
yeeWmykpVYH8Fw2q4AUuVP3tsjD1YBVoWfpncJtxIcYUvO0ViSpwvLl8btOC
C9X36bj4ba+CwrjJ99+ucKE/zrHs1+Y/gtZUu+VTDy4EZ3LVjuZ8BMcnL2o3
nnGhfJfbZnfEPkJhu2RI92cutJKQdNZytgIixKvTVv7DxjOg+D3uZwU43TYl
C3VzId3haKOObxWwa0fwwqU+LuTkcPizWH0FhF8fthz6yYWOJKhIWr6sAEeO
RPnJRS6E83av1EYVIKa37fsaPzeiRqQ9Dw4uh9CGDVmxS9zoQlS3kcByKSDX
ETkRS27UtnNB++tUKcwLtR0StOZG58X33AkZKAVz11fy2y5zI6bHrYb/UUpB
WlhVidmZG5laiJvNPyuFNtc7MOvDjb42PSrTlC0FLpF5fXI8N2LdEHWsNy+B
OkqPQWUCN+JWOREgdboEPN1qT5clcSOi9xA5WL0EBiiRZwtTuVHLmoC14N4S
yHOTO5+RxY2SXsZPvZ/+AIaN180jKrgRV4KarrfvB4i6Oe5o1cuNNG+9ucj8
tBgEtbxcjb5zo7MzzenbAorhNT+bp9YANxpcz3pJulkM+ZVSD6SGsfFmdG4O
nSuGDiaXxKVJblSugUKofMXAGb9Ii1jlRk+fb+fujC2Ch3X4Y9WCJHTkcqnl
uehC4HoerVEoTEJWMXFHzwUWwvOre3TfiJKQWiRFVN2tENI5T5o82UVC5YkR
eoOnC6He9LHrhf0kxOHQVKPAWgi4X1zpv4+SUKOgyQc67wLw4RUl7rpAQtKX
mXRc9fKhNY/lIpiR0LQLJfOPQj6IGiykml8iIXkHvv3GYvlQFdSi/NyahFr/
06gonc8D3JLXFXZHEvpgMvDzV1weBH/7WrnoRUL53JWOz37kQpdHLfM2XxIK
GEhl7WvOhX08OUZyd0mopH+BZa0gF5r0gsadAkko8FepXWVgLrBXyvMOhpDQ
NTlNjqM7cyEy8em15ngSGkgNffchPRt+qPh+GEsgIeFHjEburtkg3+WAY0wm
IU37r621KtnwhQu9QGkkJHj4AD2p/T3wB0zXFr0nIcWYnZQ9s1mQYKcnlPSR
hDJ+XqxKE3gHM3RHrlSSSYg+ICxLs/ctoFe78r7VkNBeSnSaZsJbGPyyrMVL
ISFDa6A3FnsLu09muD1uJ6FktaEcBeFMyJRkaHIfIKGiDGvnwl/pQBVWX3Ue
wuKrJwOLM9JhjegrZT9MQu33l3532qSDweJ82IUxEppUJgsc+pwG8zXDRmqz
JJRa05EQ8DYVRIvFHhyZI6G3CpeuHruUCiczzYtl50no751fjmWcqRAb/plf
fImExFfcUj86pwAyr+tjouNB0s+jJtcEXoPjaToiPY4H7QybFeslJ0PUcVW0
gudBY7cICT2Xk2FkX+HrKSYexCj+lI6cmQRcwrO0nyw8SN4zxsZCOwmOEqUY
+tl4ELXka5bIp0QIXUix7yTyoL1ZkSUUyQQoHut/0cTNg24kGf2QOvsK+nuE
mmp5eJCtAPfLMdd4OFQTJVXMx4M4v3RvI8fHgnlR+6UcAR70A38Sp5b2Eh5k
sIVnCPGgRFkr0YaUF9AVFvg7dgcPetB0hRDhGwO4gKpd0Tt5UL9E2xnN88/g
wK1VoyfiPGj1p3hJslA0nHM48iBoDw/i+JDdrtkaCX5mN4vvSvAgm5hj7IGX
n0KGQc6opyQPWr5k8021PBw61Sf53Q7woInUbjsr41BYkZfQdZLmQQqVG0x7
7jyE3ftsve0O8qDPY5k/KH2BYCCUmHVJjgeFC0l0azzzhtucPX3Gh3nQ//t/
SBI9H/GMwpab5g2RzpEt/xkNcz1+dMvCPU2vVVS2fKP6OIMMbPlFoZ+ihPqW
a96U2YtpbHlb2KEm0sktl13cFf7XYMuM8/QC1RZbXsp9ETZsteVJ54MEZtst
d4yazxjYbzm250N9740ty9Q6uy35b9k4srv5YMqW38jm+SWMblnS5q3BuvO2
f+7RKc0/P7llaoqXNNzk3fp9BWdVd81tebPErSjo+vZ/1pPVOuGzsGXKpYNX
nW7y/TPJ1qH81a0tWzgkc3Tc3vKiG0++vM+Wdz/8u7J+f8v++VWhETFbVmY6
k1tUuuUg9ke4sfItd3LXnBP8uGUHYfllv5otP5fjP67dvOV5swHat94tI2uB
vRz9Ww65YugJg1ve5VonnPpzy2eDMi47T285PmTwQ+LslsciBFmpc//feOJC
sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc=
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.560181, 0.691569, 0.194885]],
Line[CompressedData["
1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ
lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD
A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6
s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth
fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8
yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv
LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f
sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq
LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc
EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU
X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9
PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS
fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z
uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0
D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR
1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH
Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V
go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r
lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+
jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj
2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX
7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH
28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg
5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ
FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG
YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m
H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF
o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx
qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1
bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1
CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC
uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur
Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93
sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd
DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV
ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3
tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/
guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w
COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh
VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm
ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u
zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz
4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu
gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu
AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn
IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP
FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf
4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO
BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O
J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD
49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y
9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz
fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f
22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P
75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n
95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6
tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4
8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU
sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6
tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg
Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22
BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD
dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw
Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2
6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB
UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G
bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc
ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM
+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ
EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X
W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4
NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v
es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/
NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd
wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00
17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z
THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5
r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS
H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG
ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84
jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo
nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l
YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1
BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc
xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg
zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl
0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8
93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23
l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E
R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/
u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885
8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL
dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ
HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux
hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q
gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17
bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3
0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt
v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM
zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb
n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71
T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf
P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM
u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y
PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm
SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho
4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm
SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd
r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl
6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij
Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R
gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb
raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+
OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0
kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv
LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK
zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ
3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN
MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG
HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch
gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns
miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t
Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf
Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv
5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL
xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO
ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ
3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7
/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm
1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h
kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7
gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB
Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6
D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju
N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW
xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X
z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84
vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl
ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN
UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6
0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8
sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5
uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ
9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu
H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw
oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h
AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/
tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64
aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm
40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO
HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO
uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn
BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E
+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td
CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK
Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4
8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4
Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM
laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1
7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN
uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX
J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU
751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE
umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS
0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7
EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc
Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL
dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW
Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h
906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ
2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K
zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6
5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W
QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8
s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J
PZTesUp3fqH9v/V1uv8PDbcwUQ==
"]]}, "Charting`Private`Tag#2"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.528488, 0.470624, 0.701351]],
Line[CompressedData["
1:eJxN2nk8VF/4OHDLWGfsQpYSooRSKRWeIxGS9iJLUZayZQ+VJUUlFZItkrIL
2cmaZQxzh5SlKEmW7LKN9Xs/v9fvm68/xuv9cubce8495znPc1+2WDqdtmJi
YGAoxz/++121QWh8dY1WyfD/f8azqrfurF63hI6D2aWAdXt71DZXEta9t8Ml
w48D++eUKJotk0DzP4eKPfjFIkv+Z5Mty50kg6p/tvEzvDfDtu7BCs0rxUGV
/yxy6JHgBc+Kf/bas8kz4vyHf1aTOaLGs6H4nwOIko85ZLL/+X3QNY1UgXf/
/Is5b0KHOeufjyxrnw7sS/9ntjE74bVXyf+88aWT1vChuPXxP2dKlhWL+efu
x8/Zry6++Of4O2XU78Xh/3y0ijsn1e7+P3Pm7nWXlg/45yitAje1Vp9/1uGK
4T8RafXPhzUb4obQ4X/W77IPLhgxgoPuRe+qZf0gJi0+e8LHAXjIvlFCX4NB
1/XucSZNT9imursiWfUJfJgJIyTv8YXAQz7jFkJhIHKotUcm/C5ET9N7BY5E
wKcloxKPkCAQ5O3VGjoUCY8/9EaQ7z2C8Ke7r28iRoHubdsbor5PYHacl/lY
aTQwbl7Yuu/DM7ghlGNtdiIWyn74MgYXPIdI+QiK2aF4EKnSmtj1/gVsb77T
xBWVAB6v2Hq63kWDjElskrHrK9hl8aR4R+pLWECOwJqTCKedaUU21NcgSXvN
VDKZBH4WuUofmpKgVOlvp5XnG8g+Ff6Wl/IGKC5/dbsX3wBp94XwkvpkqJxl
GyPR30L99HdHYlU6cGggm4cdKSBxcD7sgnEuiJZWkbcfyIC9u20x/85cMMv/
JhwanwEG8l0cmRfeQ9rAjwupTJngLVrmx3A+DyL9PxSpNGRC5+Idx7TTBVB+
me8Oq9Y7CCtj1V86VgI2HGX5K/dz4O6mR34nEqpg5QujIMaTBwzPbc+87amC
xF8sJ8+q5MEtoo7sklg1uOyOrn59MQ/cFhiak6OqQb7Tpfjlmzyw/uQhvPqs
BriMpYN37ssH3fuW7zIDa+Hk66+j5ScLgDR+oJvjOhlMngacqr5WBBTzGTFL
0RZQBdpfXYMyiDlN6VMM7YScE42+IXbVMCs84lGW1Ql1WW5P025Ww8keIlGP
2gkYJDtW3qsGVtvje66SusB7UMj/S0I1uN5uuRvzsAvCnTZ6p7dVg0Fquwxb
0FdYvWP66O+BGlhb6bPu9e2G5vqKlJ8MH+H959vujaq9sM36OMXasxZS7121
7NPrhd3n9o8H3a2F+H3HTixd7AUuxeHyhCe18DBKZLvi7V4Q97GyzEuphSum
ed1Pq3thOZ398/WOWhDsH9Iy0v8JixzLjmIqdeDx9wz/oEkfRN6NSgwbroND
/PLZBN9+uLvGFJC4vwEwxouN1Cf9sIHFY+isZgNcnnrwK/JVPwg+lVBgONYA
gS3Dwttr+qHJw/yShjnePjTN7zjLb2D1/Uy4GIi3J24/HfnoNzAIydP4aXh7
wrZZuagBSPVX/vTOnAzY3NZDx3KH4KheRHauTSPIvuwM+ls1BA+2avqvOjbC
Ha1Hn2NbhoDXlclY26MRdj6ddBidGIJeK0b56sBGeLq97NVjpWEQefijzDmx
EU6bnmRtyRiG2QzvvpKuRmiv9m49m/wHxiQSQte0KfA9hGZjHjsKaRflpTdx
N4Gvv1GHUeYoWDLdCgsSbAJJj586Z8pHwa8ubO6PaBNYXvq7VffHKCS5P8xI
kGuC38rC/crSY+Bo1qVQjZpgtN38MkvGGGw5mPFy0LkJ6JLjRpml42DCpZbX
RWuCmA2e5OSmcWCr+GoW/KUJDnIyqCZ2j8N8r7WN8rcmuPWXTzhydRw4hLST
XAaagKFe5Yvv4QmwCmfme7/cBKx2t0+doUzA4OUGA7ltzfDwIuvWFftJ2NPp
GLfq3Qwau0hzw26TEE75UZrm2wxTLPwN7bcmIWWjjfrJwGYwypW4lhMyCRMu
+R5PHjfDVnaVrCuZk1Bn6jvVntAMVQVXVCgjkzD/+VHRo4/NMMdbrf3i+hRo
nmOyjWajQvpAvVCgyxQY+Ua+yydSwexD8+AN7ynIGvMKb+KhQq1N5wP9h1Mg
vK1YY1SYCs8qJqgraVNw47mGLl2OCgr2m85fHZ6CETGZYK2jVLjS4GOtbDsN
4e/EDyQFUOGqmqzhnNM01Br8PSV9nwrWuS0qZZ7T8NZA3zLhARVsY7eyaAdN
Q76Es+Ojp1RwdKIlGSVPA4/L2Pk98VTwFpb+6ds/DcHJg64fi6kQZkMxwS7/
BYmlU42jf6gQ0e2mFW77F3pe/uAbH6PC81Obdxjd+AuK80nuI5NUiDrktvjT
9y+UHa4M+zpHhXieTdGz8X9h5xYjjYdMGKQXObeL9/yFFHYfxV0bMahm23jK
zngG1uw1Y+O0MBhIUtLvspgBsenpz8Y6GJDQEa2j12dAb4kthl8PA6ObTirS
PjMg8ngnxcMQg4mhuo3f4mZA3Du7m8MYAwmKS59+7wyoSRyNMHHA4LB18Lfi
oRk4f6ZrqtUJA1um+M+yUzNgp84wrOWCQf7Bxnompllov3okRdQTg2MZmzNK
pWehSzvDK9wPA6+QZld5m1ng87HflBeGQfy2Pvsop1kwbGV2/hWBQW3tvBXr
zVngkGe8xvMCA94VKaO+4FkoP9h67GIsBikOXmox6Xh774rxsiQMvhjKsnCO
z8JTtY27s/MwUObzixx2m4P7Yhd8jFswKGXv2NZwaw543kd7/2rF759BqexN
4By82MxTca0Ng7MT335cipiDC2ot/HbtGHhQ929vz5uDzA1rS6gbgw8PJspq
pufgrLwW58FBDLT9dQxfLc6BzkSgY/AQBtjNl723meaB+aSyWNswBj9sjrEc
4J+HmybxhmajGDDppBhmK8/Dnn3q0tpTGOgyXfoZe2MexDBqmuUiBq30Alev
m/MQm6iW7r6EwcUpEusFv3mQOJ0+G7iMgV1vqTz/03m4qjLuELWKQWiFkFtw
9jxI8eQMhDHRQLjQgdW6aB4eohLNYGYavMqqjdKqnAfLAschLwINcuNcylex
edAREtp4mpUGn70xVvfxeSga9GNv56CBmcvW6NNz8+D8ZUtNFicNBq7d2rFr
dR529OQ1+BNpMG8kf3KEawEehLwr3MRFA9H996MtFBcgrLVEWoGXBklKPTtA
ZQHq7NLVBnAryO6tEFdfgAYR28Q4Phqob+jr6zBYACH7jYar/DS4/FddwdB+
Ac6MxO9+voEGXPwMLZ/dFqCWd98rDSEalO6qcTW5vQCV8Wx5v3ALOuqU2YYu
QOGb9gZJERpUh7BfmohcgKulIY3FuB0zKEweCQtQ4DLuZLCRBuQhQ/27OQvQ
95GUbi1KA3c2vnGOkgVofuGkPoZbSrbt2dPqBWC6S3FzEqPBrSsXul5+WgCZ
vFjMWpwGu75fsi2eWYCI80+2bdlEg57lLSRYWQC338lfAnE/FOvPrmOhg83V
Xpl+3P1GtvOfhOgg3puY+nwzDZ55yscab6aDsHFU9yBujchRjV45OiQWP85V
kaRBVNuN+2OqdIg2UFWvxa09vVveTZMOowp6fwlbaDDNO0td1KODix6vnibu
hJ1Fzv6n6fAgVEXDC7eBodcGdhM6SDww/5SJm25/qCT0Ch0CrZRYunEnP1ox
3WBPh1Pj2u2sUjQ4g6eucW502PpIS1sRN0Oj/xup23RwhY+nTuDOGtTSTbtH
B9008yV73BdZWUd3htKBjSFL8z5utq3kJ4WRdNgkoCUTiztf6+Ee9QQ6lOnm
vc7AbWFp0PExhQ434x5/KMLN7c/to59Dh7WXl5wrcZcltGxqLaZDplN+VQ1u
24qwmgvVdNhWJ5hejXtDz1nr7410WP7JqvgBd82SEKfVJzpsieLWe4/bSbQr
a+QrPn6drJUk3OIHYk+5/KJDUoeF/jPcjRfMZhdG6PClMlXJG7eHx+Zo3xk6
zC4tpZnjln7+U411hQ4feNrKNHC35CX1hrAsggIh6Yoo7tufrAIFuBdh2er7
qyl8/uSn5LbFCC3ChNasSy3uDp4/TZKbF0FF8VxXGO5ApUynFLlFKNp5rc0U
t/JxRwGlXYtg0x59WQr3d7tdRfmqi/BA7rjfL/z5qqblr1brLYISanAzwv27
weO17ulFGLQ/rkvCHTagqkO7uAg9nF8yyvD1Mipd/rjbbhGMTI5JcuGOPuyr
fMVtEYJYfu/MxtebjoXml+Fbi3CT1N5sgDsxvk58/vEiKH6cz/CWoEGcqULH
uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql
aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1
COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW
IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC
X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS
WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7
CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1
DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt
MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf
tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E
WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90
5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif
SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251
TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9
e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s
qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5
uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE
CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF
yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN
/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS
zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG
ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu
BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh
1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4
wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im
VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ
6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3
6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX
32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml
P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG
FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h
Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv
ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2
mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV
RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K
ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN
yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1
St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX
iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT
LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7
YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE
lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS
izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ
aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA
Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA
F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw
64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo
OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8
gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa
8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK
UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB
bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN
CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF
wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU
pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv
GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2
7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA
tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI
Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw
qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L
Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj
wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa
UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT
QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK
OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7
kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe
VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu
es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9
hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/
QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM
rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi
SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ
AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5
EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k
RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U
E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0
JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p
QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+
Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P
Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9
42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn
748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe
0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1
3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI
ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL
kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd
H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG
A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7
0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz
EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF
NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS
ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS
E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG
Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE
iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI
tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh
xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb
Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m
NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9
Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8
gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge
L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i
EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad
Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M
+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC
x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX
MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI
/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu
wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt
aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P
Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H
X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL
rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+
h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0
0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50
cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i
7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a
HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9
G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd
finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i
9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+
7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg
n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh
gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp
TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP
rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe
JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze
ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O
qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg
XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj
T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe
/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45
9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG
JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V
5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n
DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6
mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv
731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf
Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu
LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg
mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV
RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R
26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8
606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ
OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k
SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9
PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB
RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR
RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55
MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr
eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/
M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ
uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj
3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f
/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8=
"]]}, "Charting`Private`Tag#3"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.363898, 0.618501, 0.782349]],
Line[CompressedData["
1:eJxN2Xc4le//AHB7j2PPRNG0KlrU+yYkFU0piqjMIitkpowSoqysZI/svdfB
OeeRNtmSJNmOze/5XNfvytc/rtd1nus59/u+7/f7fT/PkTK1vXCbjoaGRoue
hua//3UCghPrG+9raf7/byKnXkahftNbtO5eN360aTfnJkotw6aVvtlnebO2
/3Na1HsLOj7KPweLBf5g3NH6z4ZSq50cZ+r+2dxb98kc86Z/1aiZlfnX/rOw
yjP+Kw9q/tn1gMSDl/pV/6wqraHKLVD2z4/YJZ+zSuf+c4G/5fF0vnf//IO+
cFKLPuefNVY1Lzweyvxn5r/WQhuJqf8sEmd74rdK7Gb8r+hSd4jF/HPP81cs
t5Yj/znesxLrKwv/55N1XHnp1n7/zJav5LR9z6N/jjpR7Kj64eE/a3HG8OpF
3P5ndbWW2FGk/s86XTYBxX8MwM4x5/IQkx/EZMTnTj68CwXToR5xk6Gg7eB7
lk7tAUhHFld7n3gFVXNhDKkHvMBWyzL3ZUIUCKt86JUO94W/GkeyGsNew8cV
g3LnIH/wqBXd8UElHp5XDbxsffIMjOzIwff0E0Hbw8JO1CsEzhOPaH1yeQO0
WxdlDla9AA6V4S07A5Ogst+LNqD4FeiEvXiQ65kMwnUnJhULImHyiJztV/MU
cE5k7u16Fw0d9a9mFU+mguLNkLK96XHwaHVOrWY8DS7cf19qjiXBqOwby12j
meB9M1++ivwW7nUXy4RHZ0Hu+fAUAikZNG8319toZQPH/ivh5cRUePU8zjMz
PAeIM3332OsyQbBCwTSJNg+2HF0Iu3I1H16djB8flS8Apf0W7T6d+dCo7+cU
YlsAZ/Z0sWZfKYC+ANcUlFsAbqKV3jT6heB8T3FhdG8hdC573su4UAzemdUb
R8WKIKySSWfldDm8ObVNovZbMWQUPngiQy6H/R0xCn4cJVCXNVqnp1MBB+ce
plejEph8TTqUrF0JeVM+x56nlcAZ92CZs5rV4D4s7cdjWwq+Es+89RLqwPk7
sVJ3tAxoXllcTOmtg3D6it4K/nJwZ9fasSJWD2lm6WJtqBwcF2koqVH1UC7u
4fApshzufHQWWn/RACYHiokdahWg7Wf6LvtxE3ANyYiT/CqBY+JID6tVK9ye
FF2x6K2GgFtCucbprfB3jDPuM00NMHTP+RSPtEJAu7kmq3QNrLXk7rxp1gb2
6pyJHZY1MPFGxqHMiARRXoqaf2ZqoOMyD5u5HgVco00fDa7UAunGnJipaAe0
JzQduUKtg+gS7tP7VDuA6LB61JGpHiy49rrR3OiALUOshIeC9cBcc7Mz/k0H
rMUl7T15sB40trx/2b3rA5CPqiT2O9ZDTXcG5+VDH+HDwVdpahP1UGBgvHHy
0mdoS21OEP3UAD55bvJCzp/BB1OU+TrQAOdYIq6PRH4GSr2isc9EA0yWUiof
d38Gwy5l9zTWRpAVOupSb/oFfH9IsB+ERkj9wj999P5XaFNKNHJJa4SYC6Qh
ueBOeHumNuLq3SaYF/rjXJnTCblnqMNuLk1wrped/RTWCed+mXO88G0CJouz
B25xdME+68vysdFN4ODR4RvztAuMuGtSFJqb4Ez6V2lm/+8wlSoxc1W0GTbW
hu4MePVAiBxv847qZrjWSL9yN6EHrG2cxelamqEkQDpkpaYHQvfVyH7uaAYb
vjulgus9UBRsmGE03Aydu34zn3XvhYuFKrdp2IlQcHEyvdylD3aWvuON08f9
2cOp7fAA1CSnJDn/IkL6k1umQ6cGYG+wVvzyFBHiD57WW7k2AJdZX51wWibC
0yjh3XIeA8DIkVmmy9kCZkaFPaH1A/Bzx+nH4ftbgH949ISBziD4VdrT3nvY
As6zF3l/GQ6BikLPsWymVrBJPrqxYTME19tq7ES4W8H0stS4sOcQLHB2+nkK
tYJu6USzTuIQ1HuNeijuaoWdDwNd3w0PwcbWLw+VTrVCJ13tgNPdHxAYwxfb
GNgKKrx7chm8hiGa8w/jfsY2aKe91oaFDIOpfUeYP0cbmEwH/ohIHIbkbyNy
X/na4HHHb6HdDcNwJvJc6o1t+PXBGd5nGX9CpgvNiS2AX8+++0LEs5+wn9dI
TP8Bfj3DrvmdUSNgmplv2z3UBoJzV7in00egM9LW8PrvNkj/4b+7onwEZG78
Xu2cbAOs4df1M90jYOl7waF6Fb/eJ41oJ/ELuicpWSqCJMhY2xFVnvwLLJ7Q
b+HRJkE7VUbldP4ofDLd1amaRoIdcZ3+s3WjcOnm9FBMNgk8Tzz7/LpjFG7a
J/+czSeBQujU3fHJUdDyvtkXUUWC0N2Vic/lf0P6M/W/iR9IcMHoHFNH1m84
e8pmqmWZBF/r3T5cSh0D+2R+LsdTZJC3kJNYKx6DnwxMVw7qksGPa8AqpXkM
Wifs/8xeIMMhQ00G6vAY+Iwy0dw0IkPUHPehyO1/QFN8lzC9LRmu7UyJ7Ur8
A/nlDQsW4WToC3pvfuP1OPRwupwkdZLBy8fgm0H2OPBRGO9d6iWDpPOg1sXq
cVg8u9Owa5AMpsazMtr948D/OC7s0xgZfu4TGt63/S+UvUgoDVwlw/jXGyaM
WX9BKjL9y7oEBZYkJwyyKyYAVS7cEDOhQIzAg9ZU8gQIClW/prtFgaNsNIff
9EwAc3/m0LA5BdxneYQi1ifgOvOdiBhbCtAQlb94qU/Ccc4rrSRPCjBZe5y/
SJoEO4x7CGIp8PQak8yazRT4vNELD/hEgeOKHNTfjlPQLS37MPYrBaYZeVu+
uk+BI//KsewuChjkb7HMC5oC1wqeq7X9FJBhUc4xy56C9/bMjEV/KFBXbKZM
+jMFqSNBezvpMKAS6jUjraaB3aSfyiuPQeYIUfCx/TTU+wbrJSticL2K8svO
bRrq6vvf7juAQZN5Z6DO02mY7fqjjg5j8KJmElvLmIbt1RR7OXUMZG0k9G/9
nobz7usXtS9jYNby8M4+ixmYZvB9/MQFg1uqO3SptjOwu0zL9bkbBnfyO5Qr
H8wAMztzxgt3DCxeyzBq+s/AN+feymBvDO7Zvn9rkDoD21W21hoGYOAmtH3Q
a3gGXr0/WqYWiYF7ENaqMT4D/Kl2iZzRGHjQuuSxzs3AqaprlC8xGHj/oXiF
08+CLt3x6WvxGPjVOkukbZuFyBRf98MpGISZkwzbTWZB8mXWGirA4GWP44lw
i1nQmBI2+FCIwavzW/ca2M0Cr+qJtevFGESpOC4Pes3CZc0ru23KMIjnloie
j5+FCxl9vEY1+PyV3v8q3jsLzAl7XJ+2YZAtK14zODwLNdw8mf0kDHLeEFNS
x2dh7yexvfsoGOQ9E3NSXJ0Fix11Em3tGJQYN/NpiM2Bysa3T5RPGNQzi5y3
vjoH47eKs7f3YjDyVl6n6+YcXBr7+fFyHwYcSOPESas56NJ3SPXtx8DAxVZ5
+8M5KFJ+pf9xEIPJ0WaR7tg5cBXmGlQZwYD/STfvqZQ56OPRdTn9C4OjUtPs
pTlzcNgkvEZ/FJ+fq+LrYTVzsEupy8BkDIMtJPshnYE5mCz3b4UJDNTvBHSX
jc7BBftDPbKT+HrRxX/eMT0H7TTsiQJTGBQdbSPS0c2DMPvjw9+nMTidtTWr
Yvs8xD7jzVWYx8DupHLyLtl5YCzS0FrGHfFDJy5CaR7yKxSC66gYDIk5h9hr
zkOe1AVFtIiBaxDFYY/5PDiYqtawr+DzvWvIJsp2HmaCyroLcTc1LdxmcpmH
aM2ljCurGBDWthkMBcxDv3WKQdgaBgejD58/92IeJtaXDu9ex8BIWVenJnoe
wqx+tlXiTrvrqhqTOQ8/rVXWPm1gQGENUWYpnIe7kx4JV2naYSYlWd65ch7e
7mCe+Y77eN97yQuUeQj5/CStg7YdvujuYGSbmIe/qsPnAujbYXlMZf0BdR44
H4nZ/8Et6X9+4ef6PHwOfaGuw9AONrXuv+u5qXBrImhqGXeYYdiQgjAVOFEJ
doaxHcoW0rrjJKnAZnLnagxuesVPmOs+KvRvefZwF1M77KKMEn8doULDuTAe
S9y6Fuu1l9WpQHHTvJyC25GBv7xRhwqHbS20enHHJO4u2HeRClc7qoYJzO1Q
pwpZCYb4/bjoFBHukc5LyZy3qLDNcn6nNW4OJ6u4hzZUuDF2nvIC9z4e74jf
jlSYsewQL8JdwfJtV4s7FXoNhI524Fanka9MfkyF8ybnw0Zxkxcen30URAUL
D5BZw31psrvf+CUVzDYSZzhZ2qFnZL/9sVgq8PgfWBbFfbsvkEEsmQqyTIUq
0rgnvgxELGZRoaimq2Q3bmfs0O6vhVTQVDex3ot7oym4srCSCpb31wz++zyg
6ufZF41UGHO747UdN6FIdeAemQpbu3X7RHBHZ4Xbn/lEBXlDCycO3NvejjHs
6aaCPsFMYwUfX2aMWiTzD/z7Df/qjOA+EBa1++cYFbpHCgMw3FWBk5UNM1Qw
SL+5lodb00dLN3GZCnG9CemhuNtd4gY86BbgC4fgUxvc+nZz9oZsC/CU3uqN
Bu5+89OMR3gX4NMXmBDGbWGcFCkougCOvUfsfuPrM6W/tHtOagHoyxd3lOCm
00rTzd33n4/v08D97Nj6QNCRBcixWvdlxM2vfNnBSm0BelnmWBvx/SEjTR8l
c34BPCf6cvbjfid2bQ/91QWga14nDeP76yBfftWAyQIcTs4QCcetTWc8+Npu
AY4cGTo1jO/PD0vFDq4uC2BtErTHH/e1aQ6mK94LwHh/+egO3NYDFXt4Qxfg
55uTvw3o2mHuG0/1ZOQCGMwp+Y3j+9/9vYUelrAAF8PozrvjDq4RdAzIXYBz
l0/eC8XzRajkLtOd0gVIOlVTy487Macp6kTtApTLCBx7hedbfqx99Xr7Argj
3fKneD5+dmtncppYADbLpfSTeD5ft5eJvkDF56vAXycHz/cRS/e9iusLwBQV
x8eNe8Fgz7k/nIvwlIZHtGUJA9FDftE35RZBbJ/vL5YFDExmj8nq2izC1TzK
0ke8PnHy0nR8dlwEz9Rg51G8flUoNjgYeixCZEWa6RJe3/jvaVVaBC9Chsn5
J5x/MWgd1dXxzVuEpDzW7nW8Pjox80ywli9CrpVE+SReP7ft+PQitH4RrAp2
bnTj9dXd7EpX3MdFYL+yvzZ1GAPFPmOLsrlFSD+rMcswgEHvqhQHrC1CsYzc
fAdev5+KDec2My7B5ytU/Si8vg8bWCx8FFyC1YrfyiLdeL/5ZOf39/AS9J6d
Uf/xBQOaNp/kbR5LoHCnNzbyv37y64R2xpMl4KIDIRG831xjYhpXCF4CZm7Z
/lcteD0+8fTAsYQlkGPKvODThNfrmrCGK/VL0OAXlrwV71cdhW8HghiXIbw/
g+KSh8Gb+GbxhefLIHpDQjv8BQaxRrLfLkcsg0OyeNKTEHw8ouEviuKXgZOu
TdvhOQbBESZM9rnLoCHe54QC8f4cvDI53rEMZGXRbUl4/77gua9xiG8Fjin5
nvO5hwHDjTjL9ugVCNwlWpKkhcGGGIO0XNIKqG14XF45gcFyl1Xfs8wVMBE6
zaKnhsHU5cMXT1WuwIDlYsIvFXz+zn5SbepZge3Jsdd78fNJyTFWQsXWVSCz
71bqEsHAfItTSUrKKihyHXKlG6UA8eAWNsecVeDjzBSbGaaA9Lnm6+rFq7Df
/ZNy7yAFBh4JMPY3rYJDxOfWlG78/DRafFF4eBX0D/jK0byngHYhderptjXA
2uUZOososPuUy167hDU4o2ydRO9BgQBTSa/jaWvQQTT8et2VAiMPWz9y5K7B
Ru6Dg4VOFEh6J+yWUbMGTgsv7fTuUUCUv7x1qHcNWtQ4fM4aU4Ctf+n2ZfF1
uJNTk3YdUeCP48PEo9Hr8POuZkL5OhnuFQczFrxZB4atQRxCy2SYmn9jtTtz
HZ4w8xndmyfDnHOrknDlOlQZfwxlGyfDuotA23zPOgz7NH1bxM+7BI/c6TzJ
DYiOvjmbnk+Gg09+qO9M34A8VVvZgzfIUNZMTYvP24DzdaKTRAMyqDCxcQqW
b0BEgOnSuYtkQP6K3xhIG+AonNt+TpsMpwI9rIf+bMCL9dW+9X1keEdkJ7UL
0SAjaeXH3AxkqCelzAQa0iDdV4qJ35JIUCTccd/DmAapN8WVT8eSIPXO8pSd
GQ26dWFemzGSBEF0epNXrGnQZVVSvvAzEugfXfwj85AG6UcLMEzZk2A8Q+dn
fQwN2h4eigzVSCAYOPltqYsG2ZIDhuc724Dlm8iVv7006G+V8Zn9H9tgRVrj
68AgDQrJS7xgTm6Dgbqozy2/adCNDj2xyuo2yFpU+/BqiQaluC7XsiS1AbJ4
SdonQovs5UrllC3bwPrkkWpLA1pUMZMk/2q6FaZ2iTTnG9GipntV7+R/t4Ij
2xJlyYQW7e8U3l8z0AqeWFlPoCUt8jgpx1n7vhXCLh5ezXCjRVm26RFaOa1Q
ZnxIZSyWFmH5hn4md1qBwUW53GqQFknmhoZd7GiBwKsC9QU/aVGUoNrLUGIL
cKnMty7/pkUX+0/E1le1gNB6UefTGVpks9fZfiO9BfY8VlrMpKdD2PEmwqh3
C5wPPXDojwwdGqyl5zSUb4H49H3F1lZ0SM5hYc9uLyKQusxaE+7RocTq+9tn
HIhAZYvo/mRPh27wc9ZkWxDh7N1lWtWHdKitM8yaep4Iq/sadTmC6BDDUFRI
53YiGFZeGs3OoUMfEwT6q5uaQbj9gdjEFB2SNVqX277cBBobGfLb5unQ+TOS
VUPjTWCn2KOmv0SHDLLiIkL6m6A1DFnU0NKjMyzlnnlNTfDgCmtxMC89Uj5f
wscW3ARfB2J0FZTokRxLn+W0eBOEz1b72D2gR7NW2TPMexrB7mPoTaOH9IhD
iDdhi1gj6OabqWl70aMxreo4cY5GYLFlpZX0p0ffjvQFf/nbAJ5jl7zfR9Aj
TnuTH3vzGsBi8I+nfAk9at158+sexQbQqqu5IVpBj+YPFTkWbW2A7QkvjjPV
0KPDPy8VbuNugD6jQ+u9zfTowee6zKy/9XCx85HH8y/0KKPtu9rtjHo4/l7E
fXyOHpls5SrdIlYPYu/GDTsX6ZGPSH9LA0s9LAbVqjSt0qP+9alPmtQ6KNS5
vfKagQE9fLXx+UdHHewi5rmd5mdAoQFxHnaP64Cv+qRr5gEGdHC1rCmktRZG
M52cLewZUFS2blcwfTUYbFnvS3dmQO6c7nwZ76ugJcTv5G83BqSxcJ324Osq
SHWMFLbyZUBFiKIVo1gFt46XV1i/ZEB7nNJMpC9VwsCH1fV7JQzIlX/6sblb
OZzTeGKeW8GA3qiVpZWolENtCWfHZA0Dingamrx3tQziX0u8sWthQOm26+5W
bmVgdBudsO9kQHpHZajXrEvh26Kvv9MyA1J7YHB9l2AxaFlzTBWvM6C6RizA
sLkISnpfGlDpGNGlhG91S/ZF8LIhZfcDdkak/7XcSrqtEC4EtZBdxBmR9gH3
ox43CqBhXU+pXJIRwVkWA8P1fNh3vzN2SZoR+b/PrKp7nQ8E/d933eQYkagK
86W77XnQvpWd4H6cEQU+Yfs5I/IOjoeFu1SpM6JO2emP0TI5kMMgPriqxYjW
bycPf9iZDUG/ZQs89BhRihmt5HP2TFg1LBatuciIYtDLfvWxdLBuP+a7foUR
iZXTezaXp4FOoe4lLxNGxLasfblcMgUqZL5V1d7C47ml5V+R9xZ2RxnL0Fji
nx9mzMuRSoIottHn6C4jui0eKVpslQgsHnZU7/uM6CFtx6zmSiy4TC7eqHdi
RCeF10RYH0XBr5s+LbRujGjGgqPWcDkM9D+zKqp7MqL8XrU6seYnQNQKi3r0
iBH9+33gTiXm5rdpFv9hOoenm9ZpOXjXLGzT7Se71TSSNv1FW/oPY8Omh3VK
jgXSMv0zo3W/vQ/jpnc8Y0l3Zd20BfkarxXPpsdPb4zoSG167ox2KIfapun1
vg+FeG+aVHN5u+PjTYfJfzAzCNj0Nq7WYcnQTatjxSP5CZt+dPrF2KeaTetU
cuwta9g0794A61jippPYvMZvtW+6oc1mYr5300+PjMp/H9z0hQwz25qfmxYV
6c9N+s2Esrv0xXOzn8BQwLUpv79MiGCwUOZmHgaZi18UraeZ0P5MnWjf5Eiw
tzh/X2+eCdn6ZWjF/HwNRzsp+QeWmFAorT2b3osEoNPWnhFaY0KnlHwiHlm/
AVJp4/5VGmZUbRahkDKaBGE7wWGAgRkNk63kb2knwzbmg3PpHMzox/jbn2lN
qTDmnK/0nMCMyC1bbu0fTYOCEVmn+/zMSLJh0FhvLR3UidupR8SZ0c1ctG8n
fRawHUw4KCHJjPIThNsCqVnwMUX0AZ00M6oRGreeH8gG0yc8i6S9zCiaqYMk
Ff8OHmlsLBmqMKNrxrnPLv3MA50it6MImFF48mClpEY+8EpT3aRPMKOP7ySW
whLzIYn+78q4DjPyEbQMW76A52/D9zWPa8zINLycWehNIdCpldAmujIjj/R3
Vdfni8FI4xep04MZxc9k8sqiEig5KfyS5xEz+r5G+FEWWAJWum47fJ8yI20e
Wz0kUgqfDI+fvvOaGdXPh0mq7i2DZGfiS9lqZjwfXYuytlXAuuvC9dv1zOg4
3zLt0vUKMPDYtTO+mRl5vZaiPIuqAI7HT8u52/H7hWtcjmCvBKcXun0zfcyo
J+jPoYbflaCV/XVnOQ0LmojeVz0TWA2JuczT0wwsyHm/QmNkZTUsFxyu2MPK
glTu2lyrHa+Gd+UxZ2J5WNC1sZ6uxLM1INRy477XNhYU6BNhOMOK1+vBkQpN
DRZkpt4maHSoDp4KLZz96M+C1Kt/fnRzq4eI1tYfDc9Y0IttA5MSQfXwxjXG
tTCEBc2SSgST4+qhrPtYystIFhSQrCB3sa4efiU8XtVPY0FyCnapegwNoLGL
N6ubyIKIM9zrfP4NsH5YjuUnIyva+bBh55prI7CNrcd9YWVF4Gc7aB3QCAKv
Ow4QOVnRbZFvD5ojGkF2zcE4TYAVXTtyWuRoYSMY1leUWMqwIqukR5wKfxqh
7JT27QkNVvSKeLbK4UoT2F8za1jwZUXfzwnvT9jWDISEsQHVAFa0PwDTa1No
hnc/7m/4BLEi7wnZjQHVZvht463K8YoVGcREVnTpN4OJV1yJZCoravBUEpgP
bAbd5G+Zp1pZ0Y3M3oG58WbYM3E6/DUHG/JKMSCypBGhdf+n/AECG1rl77Hf
W0CEOw+udcgIsOH1dPoHVBPhDY0lZ94WNnTgdaz78U9EEObz82+SZ0P03ocu
vFonAtPhuod/z7GhaR2t9poLLfDDR+kWvGJDavNaSa+nW2CXIFewXTQbGtgY
u7Kw3AI2mb9K38SxIYqk1sxJhlagfoxhZ0hlQ137/YRaBVuBTZq2sLWEDW03
cxjTVGkFRSJGe6ET/35+J13NR63gzmaecEuMHXGcZjAvZWmD+njU9morO2IJ
bnpLIbQB0wHRWeJ2drRedSqgU7gNQgwxrd2y7AjtjnzweVcbJGUfmPiryo7o
Lc7tu6HdBm26NMce3GBHwzbkhoYnbSAYHv098A07Ul6QsBVebgOOL3wf7FPY
0SWLUeEEGhLQCQW3GGawo15ZhUoJZhJMxjwqksvHP6dKM7Lyk6A1yTr4Qx07
IkSM33sqRwK3gmPqIgPsaP6dpbWWMQn6PwxmpEtwoB9eZ+raq0nwlc8o8cU2
DuR6sXvOu5EElMtfI9x2cKCmrI0R2TYSlHWRfM/IcyAfJlsR+88kCBssvD51
jAPpnL6gUzBGAo3pJzyHr3Mgmat/LnEJkiGdsMe15TUHgmufSPoWZFAcubrI
kMiBHBKeCRXfJUN5ZeAD9WQOZHdbrpLDgQykO7+dqrM5UCjJSjzdgwzjVen2
hdUcKIGG0BUSRgYFy502Cf0cKI55PWNnJRlK6qWNH2znRF8VnhJimClwPPJS
X9FOTiTV3Fsry0GBFpvH12f2ciKT8CKjcgIFOoWGDe8qcSKfzwa2dSIUWLr7
1sBMkxMNPcy29NtLAVXRbRf0zDnRPonfUvNnKdBov1VzZxYnWlLtDHkQTIHV
+clQ8VxOdCMulZsrjAIHXet6eAo5kfKv+MyEVxTI9LrpuFrBidon3FSLYikQ
FvT27QcSJ+qx/yr0NpMCpqk76dzHOJGTb2BvdDMFaL4r1Hbs5kIP6NePry5Q
4Oh1GnaiHBdS9jPsXl6mgONAh37lPi6kYvihd26NAqMj9ydSjnCh7HrdLd30
+PP6bOGWh6e4UPiO8lo7bgwSOA+7y1hyoSo/I70GGQyOq6EjbulcaIolk8iu
h8FWfrNQw2wuFPGtOOPeeQxofj35pZrHhd77D17FLmLQEER+tVHKhVyheaen
AQZanfozj1u4kMbK5eScmxictb2bFTLCheavi9hoOmAgrx5Kd3+MC33J8/l8
2wkDLoHCqxcmuBDrTWepRw/w8VUsMgtQuZCzufe9dw8xuMT0+FYMIzeCjOHl
L74YGMXFbEmR5kb5o310puEYHLOrdvTbxY0Wo3ZeVHuFgcSJAbK5LDf68702
VjwSg4FRGbc9StxIQLJMsiUGg1tK+V9zT3CjHXcVOMffYGBDbgmpMOVGolXJ
D51z8fHGj428vsONthJv/hXIx8d7n/O4hxU3cuypscovwGBK8OI42HOjLYdi
g3qKMXA07dNu9uHGz8MqT+mrMHi4NEfbkciNUtj9zv33/mTCGBtkTOFGgyUX
KHxtGJgSU+pVMriRGFW48DkJA+1wfZ+0fG405X6O6IBhwC9XRuPVwI28fda2
s37CwD88dKCIyI3iFI4Jm33GYHnJom6MxI2oQuneZV/w+Igi3vqfuNGEjmnB
5U4Msk0ebsgNc6O3Lp6lV3vx9Wu52G82yo3a2NWtQ/owCJOTrY0e50b3enNe
1/Vj4LLc48k4z42u2QY4CwxhsE1nq9cEHQHpSi0pBI5gMPnDe72Zj4Cuyz3y
i57AYJfQ3YkBAQJayLnn4j+Jx6NztW9FiIC6+qnzdlMYfM3bV7NPnIDOV6lE
HpzBoMpjyCNOmoD8DQsCg+YxoOa13y3bQUC/7DIm9akYKAxXXP+0i4BU16t+
iS9gkKQTfoxVjoAkhXRevF7EIEBIY81RmYCELH/2ma3g+01H8W/IIQJ6PFEx
xraKwYqHeG/mEQL61PE8OAf3veG5qoFjBMT19G/izzUM0oUGs1eAgBbhC+Hh
OgaDOlisoDoBWfLbiXFs4PsrP8X9jBbu89fopWjaIXj4hY25NgEdMpgeTMbd
IuRp9EiHgLyrSdeladvhqKe+apkuATmklSsI0rWD1Gnm1e1XCMgi6ODZZvp2
UPpy4qPoVQIi+VIoWxnaQcvYO53HkIC+a3F5OeO2cli6tHGDgGqHr3gIM7aD
+5ryXqoJAWkWqpLMcIf429P+NcXn56D/6SzcRa//5Hy/Q0BX1mbH5ZnagSiz
6/EHC3w9DvzktMbdmXvrWqsVAX1k+n7rLe6xI28Ua20IqD9KeeYb7rXGXqaS
ewRkoHe1hIW5HQi6or3ZdgSU9iU5Xxn3tk79wrf2BJS9xXn4Bm4l0/DAGEcC
SjDZrfcYt9b4e+MXzgQ0slVkJgW3gTPHwQAXAhqXiccacVvRnOLwcsPn1497
qBe3+9MnQ07uBLTypkFhDncIf0OZjScBXZZiL2ViaYek+PVgM2/8+1eOugjg
LtqlcvvaIwIKckxykMRNLHigcv4xAd3cEpqxE3enahGPth8BrX45J/rf+/sx
4tSv4wH4emEKxD24V8/J1Sg/JaCoR845O3BzdVu+lA0iIIFmmw4J3FK3U622
BxNQfrGBAh9upckhJBpKQLItniR63FquW4V4wgiop0Yqaeq/+OiN/jK/JKBz
xY9Kuv6L73lU4/orAhoTHGSu/S8+oS/R85EE5JXsFpGIO/gNj914NAH9dXhm
6ok7ca+u1o/XBJQzddbGAHdh8VPx73EEZNqzXCiPmwgtMx0JBGSj13aEFndn
G31byxt8/5RPrL3H12u1192pOIWAeEfZ1U1xc1mUn85OI6ABjTsNMrilZual
3mbg+6mtx+cnvj+0mGzbQ3MISO7Sh5qruA1Cs5L9c/H8q01W5cJtJTrq5plP
QDxbYbkG338h8jd32hTj8djfVBbAnVQWt2ZaSkAofV9hBb5/i9S/f7pajs/v
5av3jXB36l/0PlmNr88rudyX+H4fGwjRP15LQIfPCyjsxb1mRZFVricg4lfS
ZDWeH9u8NLu2NeP14zW9UieeP0qsj3JFWgiofq6o1Bi3VnjNE0Ibfr+zoe4/
8PyzTju0f51CQMna3KR+PD+L3u9+1vWZgLabdztl4fkcur0+ZfkrAR3vjD7A
gtv6gUGdWBcBPRlhfmaC14NtW/3nr/fi8QlwMTMsYxByb9h46CcBNS/SKwni
9cSq4aEb/SgBMaLQWj283mgJ8r2SHiOgH5atw4/xerRarUa6M0FAc8yE1cFZ
/HrOBKU/VAI69lbbyByvZ1o3D+pxLOH7vTuk0AOvd1LFmKXcCgGxCk69DcHr
YafRarztBh7/a3+91HEMNLOvss4x8yDigGV7/CgGkqf5+1aFeVCrzhWtKrze
rsZnLW4R40H8a7PiQXg9/jajzgdbePD+9iXwCl6vg2Pua/tI8aDa3bdkBr/j
9e13ewHjHh70pZTfqBav918DAv25VHhQm0SgbxrePwp6JJMUjvGg3TcvvFbE
+8tzxbKqc8CDerh1NIrx/qPROTIddoIH5XAraOc3YZC/U8NI6AwP0l88yOFY
g0EQcV1R8joPqijtlZTG+x26P7JvizEPKjRMa/LF++GcWPt+0Zs8SIfl2eP+
HLz/3o9T4r/Ng/Ie9+o/y8RATlz1MMtdHqSrOn+46C0G7fddYcqdBxnY7fXX
wfsxYcvc2bpYHvS87WfQE7zfN7V061bH4/F2T5aY4+cBF/tGvYpEHhQW6fpH
8z7ez1rCzhcl86Abu67dp9rg47Xfdzk9mwel0zP27ryFwYXWe0ahVTzoLUkp
nIyfR8IdfluZ9PCg88Ec7Dx7MBDVcrt/sY8H2eoZH/PeifcTYXYXrQEelELZ
EfhHGp+vatknssM86Cl9uGXJVvy8wWyXsPiHB6mtjCptEcDPI7HUT6EreDyX
pHbKb1AgoIn+WL0oL0qV/x6l30EBQuTLE0XivGiI9ZzkSYwCkZYyOmkSvIhB
7fCbAyQKpHKdvPJ8Gy8qV8Se0jRRoNng6f2re3jR+la/HstSCtD9JaROH+FF
vVl291zjKOAuIMG97SovavwWYOt7hwJYPus1MORF574eEnprSgEJ3flko+u8
aNSG/KH6BgVq/ShHI2/yImXvAy7D+vj9Ft3ucFjxIoWvRy9TtSjg//1bNdUN
t5RS3J4d+Hky4YUNOZYXmeyxWyUOkOGHikfpaDwvaomRltDsIYNSpwUd0xte
5CHZwF3zjYx3SRSFUnhRHVHlamI7GYQfTTQW5/Ci7J81ajuqyBB/67RYYg0v
uiF15LhyBBkydjOSHAd4UZEebdBZLTJ8FFdbuTvEi3xdQo+7qpFhldtD1nyY
Fz2y370tUZUMutS54KujvKjp0jv7/v1kmGsYvnh8ihedHHw0u30rGZBRUy8z
DR9yDHc90kAlQWew73TMVj7EsnWKSS0Jf355VLvtpRQfKnjM3IzFkmCv08rF
59v5kAkHZnQ5kgSehg4lXjv5kGSgBOflIBJI7zJ7eEuBD9HMNogIOpPAtl6d
UR74kKGXplCsNgmY5mhF6m/wIU/lLvrE322wmBcVPGzCh5Zjt5xcH2qDP3cV
GFjM+NBK18zq5Z426PhlNKlrzoc+DEdlT7e3QUx3aXOPLR+a/R4W0lXYBvKN
d+0XvflQvNCd/jvubaAf1kVWeMuH9vGsy53Hn/e09ezULqbwIZ2yveafaNpA
hYO51DmND9VXJhnrLrWCpJ9SUnUWH/otUOwoP9YKY64hLqeL+JCsiJpLBLkV
PG9qypg386HGta/LG0GtkKaY7xn/iw91CB3QZ2JrhXsC00ulv/lQjvQlkwra
VlBaVnT68IcPSW0/GXhnqQXqGvOsGab4kCbnYaG00Ra8vucZWC3yoWftoqqt
xBZg8cjdf5CVHz0m68r7+rSARVvOCLaHH5H2Shi9niKC/Lu/N3/J8iMxgsa6
2i8izIXJ9dIo8KNrxxTD+nuJ4G2U8+nAAX4UJyFjtkEiQtRkdl20Cj9iaX9x
tyMZf14XyI65fYYfrT9p6M/RJ8Ju00zdtbv86Ba5VmatoBla447mzdjyoxQu
zyuSGc1wp4vEM3qfH0kpzaoeTWiG5HN/Pn904kfC25Wnzj9rBkmQNUz34EcB
n+ODuM2aQVD8nfnF5/wo6qlBcymhGei+5ntnZPMjX1/6v5duNcEbHvWh+Hf8
CDyLWQ5cbQJ09uOJl3n86KWq2AyjbhN4NM0weRXxo5MpJ4YDDzXBYsGB55eq
+JG2fIwSC1sTTIQUR2+Q+dEspWsnlt0I3afKCy7/wednlOZd32gDqOslGzj9
5UdvDxori3U3QOalkPWXk/zonVvW4ZNYA7gZ39b5PMuPsl5pSt3NbwBRJ56h
C6v86PQvgtG4SwMYJFrynOMUQN1b7hm/YmiAr1QROx0FAeQxdvjDOc56OL7K
IGi1TwAN5VArdq3VQSrtVGXgAQGUpiElNjZeB84cROa2QwLopPm1o7sodSCw
zT7hJBJA39fuBTwNrINLZ0ntGucFkPxFTYLuRi18fOsmBw4C6ACbYGpJTjXw
0pSUH3USQE8MCA+2B1bDRaNpzYMPBJDQWGn0pVvV8Jnf4obcQwEUratylka0
Gr49uRwi5iuAthb13TZ7VAU95orTC2ECiCu02ui+ViWIN1l7zL4UQC7xkm5Z
WyrhumQa62SEAOp7wRAcNVcBfZ1bto3ECCDhXil2vzcVMHCK/eLnJAHkVn1y
5PFCOfzcO1KUVyCAzK9nFEaHlcGOACm17CIBVN76XUbtVhncGTbC0koEkOSx
tiFP5TIYjf30M75CAIk3+gYUfi2FMc56wecNAqhM376/lK8UJiZfu1h+FEAH
72YXP3AqBvkz3xhufxZAv+6we0lBMdim874w+SqAWGkPB+1lKYYpk8CMK98F
UCrpvfOZqCKY/eD8XXNIAJ0V8PWTySuExcLzqttmBBBzDNFKqCwfOA4fbOeb
E0Bxu7gHGZzzQbJK1ISRKoBkAq4K9+3PB+2mH76jSwLofHfIw60ZeRD92Yn8
jlYQZZ+tFzXiyIV3BteuJ9ILIr2avVOxDu+goef45AtGQXRtsPxD7LccGBtm
5nNiFUTcmjKt9K+y4eh89DUVHkFUEXF4i0hfBui6eo7L8gkiXgfCdh7pDDBd
M/WUEBBEgYujv9GtdHjKKJtEK4Lfv6zjyWpHKsQHEpRmRQXRLWPtq5KrKVDA
Od88LC6IGB2FT8dJpEC3QM3vFklBRHfa0WVC4y1MRSc9LN8miMgzYfbpmknA
IOHPmSUtiHyeF/KeOvQGhJOsE2J3CKIbbPWR3wQTQXbHuX3BuwQRg7amrENd
HKBMpUavPYLokOLy4ILoa7gkL3L5vqwgMrst5k7aEwUWBWsjpvKCKE1+j/HN
jpfgfnDI5ZKiIOpMOzQeQQmF0Aoim9Z+QRTn++tH3LAfJB/Pij2kJPjv/XtZ
Q4j87oObpmg51oke3vQAyeACx9FNz+keG15T2fSWK0wsg7Dp/d1j0R/VNq1l
/H5v04lN3zOP0ks7uemaB3si7+pt+uMK127j85se8ZqtOHdx01wBVX0Hrmz6
RpTujuUbm94osy/2u7fpHqaCZ0l2m664NH2zxn7TjlO2XFTnTY/uvGt+2+t/
xhNhLqIRuukURyMP2oJNn1bU0nSf33TLdQVLawehf+Y1s6iMc9r0DYs3nB0P
Nk215ytQct+0dMDC8trjTXsX1AaFRmz6KPO5vOLyTftxBNKNVm76A0/DJdGa
TVuIKy15Nmw6cp+wujZ503OGA5++92wa3RTZwdm/6Wd3LrjA4Ka33W8ST/65
6fN+6bfvTmw69tlgacLUpkdDRdk+zvxPPK+D3h1c2DQlsZnGcmnTQqnrF16v
bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ==
"]]}, "Charting`Private`Tag#4"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025,
0.39}}, "Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.},
"Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1.,
"DefaultStyle" -> {
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.363898, 0.618501, 0.782349]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.528488, 0.470624, 0.701351]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.560181, 0.691569, 0.194885]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.368417, 0.506779, 0.709798]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>]]& )[<|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025,
0.39}}, "Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.},
"Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1.,
"DefaultStyle" -> {
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.363898, 0.618501, 0.782349]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.528488, 0.470624, 0.701351]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.560181, 0.691569, 0.194885]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.368417, 0.506779, 0.709798]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {
Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>],
ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
4.503599627370496*^15, -4.503599627370496*^15}}],
Selectable->False]},
Annotation[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.368417, 0.506779, 0.709798]],
Line[CompressedData["
1:eJxN2nk01N8bOHBmxr4MI9mlVFKIQkKeK5IlKgpF9iJSSJItUVSEkApZskTJ
TtaMdWQ3U58IWZI9JGT3e3/P+f3ymz9mzuvMc5733Pu+7+e595zZaXPD8DKO
jo7OCXv73yeZd/v0xmZ7Fd3/fU2/r95zsHrLIlrOlywDtuzlUddSRdiy/Fe3
d/4sbf/85kW7A46n5Z/DhB79YNjb+M9mO9e62E+R/9ne3+DBPNOWRz+q25YE
V/0zv0rINpPbH//5zmHR29HGFf+sultTlchb8s8BbGJPWHbn/HN+8FW1DJ7s
f/6BL5jRwr//Z821E4b3h97+M9MvJ77NpPR/Fnh1Q2NcJX5r/M9w6XuFYv+5
98kzZruV5/+c4Ffe+r0k6p9PkjlzM5yC/pk1T/6W+P6Af36hUeSu2un9z1oc
saTTMZf/+bg6JX4MHf9n3e5rD4smTUFUIXS7g9MdiM1MyJnxdgbJnxY+ZSGB
oH0zUB+nfhtudfTGkx8/hIr5SEL64buAW3pXOegUCvwqnX27owJh5557fpyf
w4G6alrqERoMA6IrVjY3n8KTioHoxgchML53Pc+jNxK0fR1cBO+Gw17++BhW
qWig37G0R7HiKSwQd0i1XXkG5f136R8WPYPAo+c/vX37HPjJGjOy+c/hg9ch
zbMlL8AjiamvO/slpLl7Pcgtewmy1uElBzJewd/O3+d9X8eBoWv7B/vW15Bw
yPzoze2J4G+dJ1PRnAKTUr8fb/5IhJyzUWlcTamwo+VxwF7jJGA/ZBJV2pAO
uOHYhVN8ydAw9/06G/kt7Gwd5KK79xpElP9GmlzIg/1iWdfsmNNA/pBD272u
PIjdecr/mVEanNrfzZJlkg9HGRwFsl+lgZdguT+dcQGMeqi8qpZJh64Vv+uZ
hkWQSFpb8jvxBiLLGXVX9UrhrrKvPdepTAgUDfE/nUiGvETHXsehLKB75mCU
1kcGO+XCN6Hb34MPm9beVaFqqDqrcFRT9z24L9G1pL+ohkDSoLFv7nu4QvXg
23hag92vVaYzntmgHWSTnXW/DqxTTisz/c0B9umjvSyOjXC5PeyE+aU8eGjH
l2OZ0Qim7lnxZm55QOiZv1c00ghPE6QOqgbnwTolR8La9hP0q7mWvs7Ng+nk
PTdLzJvAfuxTGRcuHzrOc7Pan26B27K3s2sT86HJYl7IRrADPpE8JssbC+Bl
MVFPTrUDip9tCyT2FoAD5wEvOosOaD7cGqY7UwBMH627EpI7YJ5HTdiTtxA0
Rdqje/Z1AkUg36PEqhA+9mRynD9ChV36ovoMfwoh39Ry8+S5z/DF1j/pDHMx
xBo2DUmHdUFEJ+8zvs0PsMA36VH+vgv0QlvTutlL4EwfG5tOaxdQyqhZ4YIl
wOigf9iOvRtCYgNmviqUwE3fjsDYx90gvNx7q8epBE5l/LebKfgbhIo3KFR9
KYHN9aErA3d7Iaf2/OTN5FLI/+x765PSANzqrxygCpVDxgM7myGdAajjfmtH
2FcOCYp6p1cvDsBOwcjtUvLl8PgFv6S07wB8oKtTsjhVDrbmBb0R1QMw0nb5
u4FPOWwbHtMw1R2EeftHgde+lYPHHyPSqNkQdIu0fxkPrwAV0v4cwt1h2PdS
XWfHUCW00V/81Bo+DLd2PCLhpyrB6vejHzFJw+Bhb9nYv1AJ9zvG+SRrhuHO
yWje+ywfoS0s01+f4SeEZ/Muesp+BCs2ScOYkJ9wTm70tYDvR7hP2Lcg8WIE
0gpbcmy4q2D7vAnxd8YIaCx+jXQRrIKMH8GSZaUjwOkmLOkpXgWtNaOXTvWM
AEu91AN3BSz+3psGF9FRePVCJXLXhSrIXN/7ojR1FNKXymNME6tA9ZdxfkDR
KMCRr/sIGVXQ1hvUotcwCitXlKszc6tgrnyE7vvoKPSbmvH/qMbivdKv4g6M
Acta6QjnMBa/uEdFL28M8oR5wt/wkGHvq67gP+QxaD8DusF8ZPDTCPkc1zEG
YUeFQu2EyHAwYtZ5amYMqsfW3vKJk+GhYkpZ9OYY/N58GPJrLxkGes8zHSOO
g+GdzmXyfjJESJYnPZEZB4v0B0FWh8gw1u78S0FtHFCEdYaUIhmQh5jyd/1x
OHvum8XiUTK8EKYFBV0ah99Gye8qj5Hhd80DmozzOOB0L0cEqJNB96qS2Fef
cfA8Q+U8cYIMr4mT1+6GjsP3n0/3MeiQYaXoValE/DiI2cgu9GaQwdD8DGPH
Oyxe6qmnkVY1vMXhjTzLxyGtl9vQOqUacJlFiWLN47DTs3BN7Fc1XDztMNX4
bRxUy4FkLVUDBQuCR10nxuHcgYyhWrsaYI9vfSCwgo2POMar8KIG7I77U6tZ
JuBBuCDXd0oNbAv/6USSnIDMg53H34vWwjWFFyVlShMQdE+xuFqrFup6dBls
tSfgRqtUK7tzLdzal5tQYD8BzUo1kZJFtfBftVfnufQJsKm/rJV2pA5kHKRF
14smQGKjMoreuA6COAcc0+onwHlsyCX+Zh0cMTtBWByegNqZscKGrDp4MU88
8lx8Ei6+oTTu4a+HixJp8d1Jk7Ccxhyb110P+a0m4/dyJ2HMqTlXf7YeWN1Z
FfeTJyG5zCwrnrEBysk32r36J+FAxo1XlocaQPiiMk5YdArOBsc8qQtqgO+h
7fYWcVMQ4FsqOLabAnfvmX41zZoC/spfVnZHKSDmMahlVDkFGh9jFLP0KWBj
+WePdv8U8J3repN6iwI/5fiG5cR/QXPrX0nLWgpM/WdhxfDuF2h8Oyu0btwI
y2LTplll01DintNIsfsEsby3G9ObpyEvQPdAnvsnUGalU0runYbRCqlZ//uf
wOcPN1/MxjSkPS4/+yXlE9A1KHy5e3wGtI9vf2E++AkYnXzPGjXNwE1/8l4F
0yZ4fJFxz/q1WXgnc5pX8EgzqMmyL467z8KFN+lO4RrN8JuBRPnPZxaGNuQv
L55uBtM8kau5obPAylPS89KhGfYwK7y3zZqFHaqCA8ovm4FcZKvQNDkLqQtf
T+GXmmGRq/rEc8ffwB77ZM4vqwVsKd5X5BzmwHX04pDyYivYqe41WLwxBwSW
+1VVm61wJa9Dofz2HFyOIdirsrSBQ9wehhPBc/DU8pi2iHAbXL/RnmKaPgeB
1SO5fupt4MUnPnh3eA5GA0yCmh63QaR9k1mb1R+I2wx1pfK1QzWTwFmnC/NA
4rd2pnF2wEiKjG639TwIf0ltYOPpAHakqXHScR66LTlfI74OMPW8oSDuPQ/t
Ep4ziTs6YGasXqAnfh64lq2NFGQ7QKTJbUh3YB6azFKjP57pgDuhLTf32y/A
iUarOtvwDpDj9o8Zd1/E6sThgDR8J5Qxf91H8VkEjsGwD32MnXCcTqY89f4i
WOdIh/KwdsK5mZ5+y+hFkLB6KOjJ1QkerUck/ytYhFNTChu7RTqh4tFMec3c
Ihzsu+pIVOwEbZzlYJzLX2CVuOBx6EonWP05JmVwbQlsnthzM5A7gYNE1/HZ
fQlcifYrEzXY9WVrbpr5LkHhglpwW30nbLuuVe4QtgRybc6RYc2d0DhmoBuY
uwROd6aez/3XCbLfLR1K5pfAhF48Se9XJ9B9upe6y3cZ2Kx0DujxUyE5oV74
75MVOPnZYn+9PRXizaW+no9ZgeVnVkY8jlR4IRj1tDBhBT6MityzvEaFsBgr
RrecFSjN95n+7UIFr7DVmamOFXggfG7/5h0qGPrJ1Q7xrILQJnG6PIQKBItX
V9terkKh+Pe4uvdU2BQi7JZ+vQoXFCXYv+RQYaXb8XvI21X4ATvjf+RRYfa8
kpFO+SqcuXtIdLWICn36NNW63lVIaeuo4vlIheJjLFxlO9YgUsdXZKqVCvYi
t4rT0tZgPMxeWm2KCg2KIqzu79dAzEHn0vwvKuw+U3/peNEaNFNKNjJmqDAQ
wMvQX7cGDEd1X3D8oYLpWJER//AavI8ylq9bpoJ2weLs413rIEUs9xtlpIGk
jucBl8R1oESKZbOI0eChjdhdtTfrYPDkwWbYThqMeDdS2XPWYeKPdydJnAav
s/m9Mj+uQ7Q+dYl3Lw0Et5U2DvWtg7XukhWrFA1Y+5cvnxfegHcLrX/eHaHB
pLt3kvLLDdiZeWPisz4NrheFMeQnb0CY06elk6dpMLuQ7Cj5dgOWcoYNS8/Q
YN6jUZ6/fAPyFeSmYoxosOHJ+2mhdwNuqBVWHbtAAy7fnN+5YptwOibplLId
DRQf/DgukbEJJwQWJ3970qCkfvFNQu4mKFm3aB30ooEKIyvH9tJNaBNKWnH0
pgEKlv1KaNoES//y632+NNB55Os0NLkJHo50UdkBNMhuYGtq46NDK/4FQrhQ
GlQ3pc09MqNDXYFTT1xe0aCQv8PV15IOzbad4XNIoEH6lZVZF1s6ZGoWcNQi
kQahuNMzJk5Y/KETOlrJNDBWXprc402HbriuxDOk0WAqU/dndSwdGrxioKOe
RYPtj2a+LnfTIb6FFvXsUhowfxUw+dVHhwJuaZ2/U0aD1d2a/w0M0qGDog+Z
NcppMEB+8ZkyToc2RSRPUyto8G5JvfPZMh3SUJGzGajCxucQ3SQnQI940uMa
y+pp4HTyaOVVU3r0SCKl9WoHNt/7BOrzzOnRt4IDt7Z30sCddbll2YoezbE+
e1CN2a+1pPfRVXrUVvNpkESjQaSR0lqmFz3akP0e+voLNr+WR1Qm4ulR1oby
l1vfaHBMnU/jUDI9Iq3piLH00KBm119drzR6RO9E/zUWc/PP4ous2fQofBfb
w9JeGnx3UvTaX0WPVOq+rf34TgOCp0Kp4yA9ymd3Mfw1RINHF3ir83/SI6IJ
naP9Dxpwqiw0rozTIyWmxzP9mPk2Crsez9EjzyWOEy3DNNh/X37pLR6HZDIv
iUSO0CDn8ja6P0w41EpVz9jELH9ynkmFHYcOBwq/dhqlgRprIV/zNhzie3bg
h9oYDc5GHD4yuQeH3gVTX1HHafCfKw8c3o9DFzkiUg5P0OCi0R8tbxkcOtSz
WyAKs932AmO2Izg0aqx6Tn+SBp7xhzwOaOOQ3JMh9pwpGiRkyBU5OeLQk5D4
eIkZGjR12zYmXsehKzktFtcxL7LG9NDccMg0PTWpALO+8wq9qjcO7TCMTjk6
S4M1uVoD9lAc6jpsnHH4Nw322S5Yowgc+mzw7up1zOeiJW65R+PQ7usy795g
zloMieuNxyEB7ZVs3jkamJWfG8t6j0OckofL+zEHTQWtDuThUMLUg7ucf2iQ
L1LKyVuMQ6khN+tUMLP6iyj4fsShPh2DjqeYFfNOa+fV4JDG8NnnZZhthu6Z
/WzAoZQzIv2DmMs0R+7pt+PQIw353wfmsfpwi//ZPRoOce+MKjfATHqjm1H0
FYfy/AYYXTBfZclpExnA5oP/qlg25mjlwcGzwzhk9qhwugkz2Yln4cEYDvn9
4FQbwczfdltoehaHTtxgt+JfoIHmZqbMrgUcul9YceggZhfZXnXjZRyyYI0J
0sQcb815/vE6DiXTJZiZYm6MRA4f6fHoQG13niPm+Vo37zkGPJoWMHjkjVls
ITVsLyserTtsDj7GfGrv1+SLnHgUlvu7/AXm2yYsRWEkPKJ7so8vDfPrhyqN
NdvxaEjxzZ8czG2lzj2Lgni0GOBythTzykTi9P4deKQ0FCRbjXmvMJXeUhyP
+qynIiiYDfUJvFESeGT67rVbC2Y/P8V9lAN4ZEV496Ud89scB5XVg3g0acBY
1on5v4FYg4PyeKTIUrSDihlHarW2VcIjsv4Hxv99L6Ox6f5cFY/0aew32jBf
dJd72IzwaGyq0LQJ84M027hNTez6j7Jr6zDn/vcs+7AOHpUqLOVUYu5laqy2
18cjPf4IkSLMzEdXPsedxaPEhZvs7zDLO0qNtZ/HoyXpZJ9EzFZxFqv4i3jU
WbnteiTm0JYITiULPOo61jwQiLlkvWbnNRs8Ghkif76JeVhmQT7pCh6t+v7W
scHMZSWh/dkRmx8fU3Qas+rTC2bMN/CoZ2T2gzLmqD+V91xu41HcoaT9HP+7
v9QIa3NvPMorvNK/gK0Hgzxbde27eGTSO6PVh5n5Bgu9WDAehXodlsn43/rT
7x1gC8Gjt0OD70Mw10rlkP+G4ZEdTXnAGbPfxDn/9hg84pjpMJfBbPZJwqo8
Fo90szbT2TErZazAmwQ8yt5ekTKOre8/l5M2/dLx6AStsjARs8PgpJ9MMR7R
2/85vIY9T1rkjxaCZXhUJ5zE3YFZPPGpGuNHPKoOjEx+jfm7+ZGNvnrMlaJd
GpiNugJ8n3zBo5LwpAQP7HmV/XD+0p1ubL6jtDkQZs6Yfccu9+HR00M90syY
G43a1lR/4lEh4cn9aKweqLUL+EzNY/Pt+S7oFVYvhLKnzLqW8Mj516FAc8xL
oVUqdWt4VJGjKCeIuUD38mocgYAUVDySn05j9aMh10tvGwEJaAl2uvyiAWNa
4MUj/AR0SrTZZA/mH4HGyuLCBFQe7xHe9b/6pb62vCJOQMK/PbhVMPNUnrzz
9jABdcSLWMxi9W82TvBCzBEC8nVOd4zF3Ob1SylAhYDMS6MlNDA/VIpauqBB
QATTs/kRWD3dKPh+m8WIgML9GFmEsXo79vaWh4MbAVEeKmf8weq3qcjG9wwP
Ajo9T0m8i5kSHnRy3AvLf1WajRVzuvtzfsdAAvqmT3dMEKv/dmqlZU7RBNQS
I8WybxDrh51rG9eLCeggp+2eZay/nNF8YJ9TRkDPw+/rXsNcVczRMfORgLzC
dAf7sH6UECea7EIhoGMxErYVWP8yv4w03LoISCeyvuBKFw2+LgUG31ohoLZ4
kp0L1v+0nNhnizYICEkciWii0qC4L9p0EceA7rVcOCCOObomTfI2GwO6Wtb/
vh3rr4ahlGZPYQbUqkn+ztuGzc8ONi4fNQb0fai7zriRBg1akS8CAhiQmneg
XCbWz0evlLd6BTEgHx0m9X6s3zMHD+NuPmZAnLG7fvFg1qUoOttGMqBLYCx4
pwTLd7JHXfM1A3IxFqg9VESDL9q7JxlqGFDhfoKYbTb2/OkWH3tEz4jeREkH
FGP7EQanfrd7DIxo2DuivArbr+wNYc64w8KIWFx9HlOw/YxD80WSIzcjihOY
G6XGYfsTvc0R3Z2MyCTIILbrOVY/T2lHsKszItkc2ZTEcBrgT38bCvdnRMVX
vKwF/bD+9vG8uPt9RsQw7Bmy6oPtF2Q6bU0fMmK/J/tMD7bf2sXZOCwWwYjE
G5+/i7lDg+OtRSN5iYyoQ04nbs2dBgF6TydoHxnRmaiSHQ+csHqnrT3Ht86I
skJJT4NMsPwfag+t0TGhM7yHQpSNsfwScHOAwISMJ723/zqH5WdSnM9gZ0J7
vKT69Q2x/A3ii0eFmdBrB8WDG6ew/Jqby2YqTMiwcfiOwHEsv3oxfdIdJjTe
dk1E6QB2/zVHm7p8mZBoxSnjV5LY/T3JH80dwITIF2Q76fbRwNHAa2/gYyYU
1DH8uGY3DWhmanpX4piQbwl+U1aUBqkeDdFSlUxIetP6RikXtl6y/pMopWNG
zOiCs/s8FR7z/dWnBjMjYqp+4Y1iKsQ0Nv6oCWFG63zKfwMLsfPJndg7BeHM
SJqeEBmTT4WSnmNp0c+Z0Sfety3F2VQYTby/ZvyGGa3RWWv+SKeC5j7Su54G
ZtTecvPdZAwVNpSkmX8ysCB34/LooltUcLtoW/M3kAXFm9apEmSowJU4MaD6
kAX95Dsj73GACtk/XDfvhbKgzHIPupF9VBi/5q/K/owFdSlMcFeJU8Hq7qti
sXQWFDR0dslYgAoGqV/f6jSyIBNcWa0wgQr7p/Wi4thZkZ6a6tW/Xzvhxz15
O3jGij6YspW+9OyEfds5w1xesiJpvdLp+7c64drb0Q/Jr1jRzKBJgbNbJyxS
Y9kI6azoj4D/0JFrncC6m76gsZgVaTTefJNtiZ3nGlrpDbtY0Y7Lbkq7tTrB
h9U+0U6IDZlq6wvv4u6E7VEvvz1KZkONlnbOswnYefgLT6dbGhuauK8t5BLX
ATi+MIpZJhvKbr0p/es5dh6ODSiUzmND/vVKt/ojOqDxtVNYJ5kNaZmEnk4N
6ACv/GPHBQbY0EaHDeP7yx3Q3zmYmSHKjvIX9ZgyJDsgg2v/HUocO8ot0JyQ
P9sOsiMXlghJ7IiWzDlGr90OpeWPbh9PZUeyjOd/Nqi1Q9OV8VuVWewoK14t
X0mqHaYqMtwKKtnRoVaXC2WM7XDwqsS1xH52FNCvFXygrA2Kq3db3hbnQCN9
mj6Ogm2g9vzc90IJDiTzQlBtB1cbUK7dvzR3gAOlw17DJoY26OIbNnOW50DN
d51l8L9bYdk5xdT2BAdC7tC93tAKqoK7DE/bcyCHmnxpJtdWqHXbcULiHQfy
Gl6Q7K1ogbWFmQjhHA70SPFG2FpeCyjeIfdyF3CgQyEHj5LetMDbu9bua2Uc
SLyvjFnkaQtEhqakdDZh8YxFHNl2LWCTLoHzmeBAJk+mTmWwtADdt4NVHZKc
6CQpef6objMoX6Jja5DmRE90tLvajzWD+0CHcbkcJ9JcFjtvItcMYyOu02lH
OZH1rg4vZf5m6PhTIOKtw4lOJJePnfrZBIkcSj57rnKic+elar18mkBNHR31
yuBEBzwP+Pu/+gQ7ttlGmGVxIn+662/lwj8B3eiDUdVcTvTt5Ty+zf8T1IQ2
P9v8wImuaj1Za7D9BFpdxnP3KZxopWnbvdx9n0D/hvO78BFO5Gsl/Jg9uxFk
jkfgXCc4kYMrw2PNhEbg5C24YDjNiRh7D2pZhzVCR9kSE+8iJ/KpG/usdb0R
zjHet4tlIKLPxzfM86UawfxVrEjabiKKNrm2cTuFAsdcKt2D9hERn4KnUu5T
CohqDDTbSxHRMfX1nuq7FBgY2+O1X56IGOZ/WDmbUcBOPu+/HA0svl0wq4GL
AteaKeFlNkR0Xk+w0dStAfQTJkbirhDR132NdhGXGkDGlUPN15GIOlUiKx9p
N8DsdqMpcCMig1GrIyUiDeBu8127/h4Ryc2XNJfU1YP38jx9RxIRXX0opiOO
q4dpy9ZBhjQi2j6n5JP8sw5sGtKqVTKJ6PJmYF1gYx1oRxnfe5NHRMHklSta
oXVQvixj3VdERLbCq41sznUgY8WkzlNGREbjxbkbp+pgm3QJ3d0aIvI8eNhE
lLUOgqMiBgobiOjb+qKW0GgtrCw7kCeaiGh0qNp8uKYWBhoE/I1pRFSw6+9V
8KgFI+k5y9CvRPS+kTX4mn4tNEQ1QU0PEbllx6k+21ULWVbem9LDRPRnid5D
p74GdlCM+m3HiCjqTlhF1tMaiJSWqno5RURocb/Aows1wBBNSGyfJSIV6vqM
nlANeK70+jEsEFGc4WS79OdqmLQqslBZJiL13ZS5k37VYEF5oua6TsTW673u
XsZqGNt+OJxGx4V8Na96R+qSYZfujrvTOC400R5f+liLDOa+bDdYGLhQqcrz
w/7HyfAs96/FbiYulLl4ctRNjQzMfB1qF9m4kEWK55/TimSY+eG/Uc/DhZaN
Ge3G9pBhH5/z9AAvF5rrL3Oh7CSDje6F76t8XChl/870FBEy/Jcr91FOmAtN
MqkEGPGSocJ3yPfVbi4k+M64OoJAhod8muvuClzow6WmDxt1VbBTj2lN3IQL
yeeWmykpVYH8Fw2q4AUuVP3tsjD1YBVoWfpncJtxIcYUvO0ViSpwvLl8btOC
C9X36bj4ba+CwrjJ99+ucKE/zrHs1+Y/gtZUu+VTDy4EZ3LVjuZ8BMcnL2o3
nnGhfJfbZnfEPkJhu2RI92cutJKQdNZytgIixKvTVv7DxjOg+D3uZwU43TYl
C3VzId3haKOObxWwa0fwwqU+LuTkcPizWH0FhF8fthz6yYWOJKhIWr6sAEeO
RPnJRS6E83av1EYVIKa37fsaPzeiRqQ9Dw4uh9CGDVmxS9zoQlS3kcByKSDX
ETkRS27UtnNB++tUKcwLtR0StOZG58X33AkZKAVz11fy2y5zI6bHrYb/UUpB
WlhVidmZG5laiJvNPyuFNtc7MOvDjb42PSrTlC0FLpF5fXI8N2LdEHWsNy+B
OkqPQWUCN+JWOREgdboEPN1qT5clcSOi9xA5WL0EBiiRZwtTuVHLmoC14N4S
yHOTO5+RxY2SXsZPvZ/+AIaN180jKrgRV4KarrfvB4i6Oe5o1cuNNG+9ucj8
tBgEtbxcjb5zo7MzzenbAorhNT+bp9YANxpcz3pJulkM+ZVSD6SGsfFmdG4O
nSuGDiaXxKVJblSugUKofMXAGb9Ii1jlRk+fb+fujC2Ch3X4Y9WCJHTkcqnl
uehC4HoerVEoTEJWMXFHzwUWwvOre3TfiJKQWiRFVN2tENI5T5o82UVC5YkR
eoOnC6He9LHrhf0kxOHQVKPAWgi4X1zpv4+SUKOgyQc67wLw4RUl7rpAQtKX
mXRc9fKhNY/lIpiR0LQLJfOPQj6IGiykml8iIXkHvv3GYvlQFdSi/NyahFr/
06gonc8D3JLXFXZHEvpgMvDzV1weBH/7WrnoRUL53JWOz37kQpdHLfM2XxIK
GEhl7WvOhX08OUZyd0mopH+BZa0gF5r0gsadAkko8FepXWVgLrBXyvMOhpDQ
NTlNjqM7cyEy8em15ngSGkgNffchPRt+qPh+GEsgIeFHjEburtkg3+WAY0wm
IU37r621KtnwhQu9QGkkJHj4AD2p/T3wB0zXFr0nIcWYnZQ9s1mQYKcnlPSR
hDJ+XqxKE3gHM3RHrlSSSYg+ICxLs/ctoFe78r7VkNBeSnSaZsJbGPyyrMVL
ISFDa6A3FnsLu09muD1uJ6FktaEcBeFMyJRkaHIfIKGiDGvnwl/pQBVWX3Ue
wuKrJwOLM9JhjegrZT9MQu33l3532qSDweJ82IUxEppUJgsc+pwG8zXDRmqz
JJRa05EQ8DYVRIvFHhyZI6G3CpeuHruUCiczzYtl50no751fjmWcqRAb/plf
fImExFfcUj86pwAyr+tjouNB0s+jJtcEXoPjaToiPY4H7QybFeslJ0PUcVW0
gudBY7cICT2Xk2FkX+HrKSYexCj+lI6cmQRcwrO0nyw8SN4zxsZCOwmOEqUY
+tl4ELXka5bIp0QIXUix7yTyoL1ZkSUUyQQoHut/0cTNg24kGf2QOvsK+nuE
mmp5eJCtAPfLMdd4OFQTJVXMx4M4v3RvI8fHgnlR+6UcAR70A38Sp5b2Eh5k
sIVnCPGgRFkr0YaUF9AVFvg7dgcPetB0hRDhGwO4gKpd0Tt5UL9E2xnN88/g
wK1VoyfiPGj1p3hJslA0nHM48iBoDw/i+JDdrtkaCX5mN4vvSvAgm5hj7IGX
n0KGQc6opyQPWr5k8021PBw61Sf53Q7woInUbjsr41BYkZfQdZLmQQqVG0x7
7jyE3ftsve0O8qDPY5k/KH2BYCCUmHVJjgeFC0l0azzzhtucPX3Gh3nQ//t/
SBI9H/GMwpab5g2RzpEt/xkNcz1+dMvCPU2vVVS2fKP6OIMMbPlFoZ+ihPqW
a96U2YtpbHlb2KEm0sktl13cFf7XYMuM8/QC1RZbXsp9ETZsteVJ54MEZtst
d4yazxjYbzm250N9740ty9Q6uy35b9k4srv5YMqW38jm+SWMblnS5q3BuvO2
f+7RKc0/P7llaoqXNNzk3fp9BWdVd81tebPErSjo+vZ/1pPVOuGzsGXKpYNX
nW7y/TPJ1qH81a0tWzgkc3Tc3vKiG0++vM+Wdz/8u7J+f8v++VWhETFbVmY6
k1tUuuUg9ke4sfItd3LXnBP8uGUHYfllv5otP5fjP67dvOV5swHat94tI2uB
vRz9Ww65YugJg1ve5VonnPpzy2eDMi47T285PmTwQ+LslsciBFmpc//feOJC
sxX/brklqZ7u6vKW+dI3DONWt2zz7kha6/qWs3Nd/m5ubvn/AOhbVcc=
"]]}, "Charting`Private`Tag#1"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.560181, 0.691569, 0.194885]],
Line[CompressedData["
1:eJxN13k01N//B3Bmxr7PtMgWSSSRkhJ5XWtSVJREhTaylBBZs5Qlsm8RUXbZ
lyxlzZKxzEwbWZIkypaQ3e/9Oed7zG/+mDmPM3fm/b535r5ezyt25bbBdRwD
A4MM9vTfa93mLZNr6121DP97TObVS8jV0y2sbXfJzJduN+e37bUEuhU+O+R6
s3VuODO+ywpHat9wqGDQd6ZdrRs2FVvp5jxZt2FLb/2Hsyx0/6xRu1oRULth
fuXgTeddajbsekDEJdro9YZVdmqq8Gyu2LAvh+hjtp0FGy4OuKmaRcrf8Hd8
yZQ2Pm/DmitaBg+GcjbMMmGzdT0lY8Pbkm5rjCk/pc8/BpexSzBhw32PY1iv
LcVtONmrumOgImrDx+q4C7Ns/DfMXqRwV1zad8PxGmVOKlT3DWtzJRBPxV7f
sLpay9NRpL5h3R7bwLLfxiBvy6E10eUGCdnJBVPudsCZryTpmPwAdBz99HBq
LtAieyrg1nAQvJ6NJGQcuA8ldu1RDKuPgV+Z2r8zyg+qmBT1N5HDgbZsXOkc
EgC2E6ghyzoSHr8ejG59GAzlvgpsGqNRoONpZS9wPwxOpkWcZDkRA4zbFyQU
X0eAp0nB7ZG4WKj+ep8xsCwGYhIbBmxW44G/TmNqX3EczN/YpT0gkADOKSz9
PflPQFGGcdJFJhH2WYRV7MlKAg+TGryOfBIY3Ol6ZdnxHOCTisI1uxTwtiiS
fU1+AV6df1c8vqRAwZmodN62NFg2YKB+0kwFzv3noyqbM+DHxOsIbuJzaJ4Z
uMVRl4PNd0ShJfIFCB/5F3n+QhEoKHVzz2hmgMJ+q06f7iI4OCJqg2Iy4KR0
D9vL88XQc9zCy2Y4A9wEqr0ZjErga/yerw/vZ0L3ktetbIMy6Jq8NDuSnQWR
1cy6yycq4cGRtlCnTzngJxLsfepZHeSPKP55VpYPDDFWhun9dSCNq4sRn8wH
Dw7tXcuC9aAhaJ2gvKsAnBYY2jPi6+Fcze5Z+ZgCuEFz3roW0QDTR9nXlA4V
go7/lfyXD97Cff+l2GWWIuCcVOpjs26FqfwSzQ8hxdB2eVbwigAF2nNH4s+r
lcGTcp4T8ioUWLn0/IvG+TKw4t7jxnCZAoHX4lgF7MqApcaiOzmVAnsdnO8+
jC8DTeGu6F4pKvSFr5tbTJZBTW8217lDNPh4SkXMPrYcio3N1o+d/QAXxiSj
2nteQYJB29De0G4QfsV/I/pIFRR/8Lz77vAgtPywfOPnUgNZD69dGTo+CCzX
7efhUQ0kK544tWwyCNBxRoM5qQYexfPv3us5CLec93wubqiBqxdL+sLrB+HH
28XweO5a2DQ8qmGs+w3iZnJ7cNm14PzXkPjTdAieH640FHSuA9u0I+vrtkMg
5GL+/Kl3HVw5JzbO7zUEeXGhh2SC60D/1WSTbsoQNPVm5ruk1IGke5Br/vAQ
FK5wnWkj10E3rnbwrt13IBVv0iqVqAdlonQB4f4whB93q943Vg+djCbvOsKG
YZ7/kdLfuXow/xP0PTZlGE6VdER34BrgAWVs6+6GYaiaMVBtE2qAztBsbz2m
H+DDW6E0fKYBzDl2G8QG/4Dkdtv3D+uw8QSpOcn4EfAmOE+Mv2yEznkJ5RNF
o5A0n/pGM6EJdiV1B/ytGwX/++wfTLKawEsj+EMiZRT6B148syxvArnwabvx
qVHYdtLg1DVaE4Tvrk55LDsGAhoi+d/ZmsHg4mlmSu4YsPhx6tCcm+FTvRv1
bMYvyD70fLniWAvIWu0VWS37BTbVPoWXz7aAP/egdXrTL8itPMK+YN4Ch0y1
CPPDv6Cxvq2aya0F4md5DsWJ/4Y/RmzFj3NbwEQy/WlPym8oDD/w14izFQZC
uiwvJ44Ded24QKSpFe77GH82fjkOj3ojeVSorSDq/E3b8M04pOUmRZ7sb4Ur
Zn8ldL6OA//a5Mljc63wQ37rsLz4BOj52WWk73wH458umzPlTkDuWK7vFp93
sCg6afyyahIeDR3Q05Vvg0cmzBKrttOw3ZuDL8uBDKr7OOfHnKbhnkQz2cWd
DH+YiC2fPKah/EnqF3hABuMi4ZuFIdPgZJohVBlDBgnWg3lXX07D6tQdzTMV
ZKgru3qw7fc0nCMx2YuukGGet14rzvoPnD4dZnXPqx2utrjfkLeagalk2aq3
tzvgmsou/fnbM0BO1mtvce6AG0WUg9UuM/Cnqte4ybMDrBIlmLQCZmCZfdu/
guAOuHW764VxxgzM/Ho0oJHZAW5bxb/dH56BJ0mjv6z7OyDSss200/wvTN8w
COzW6oR6lm1nbC7MwtYwN3Fp1i4YeSGr22MxC6n8RndvcXcBJ9LUOGY9C1rh
VyLyNnWB8b3bB8XdZ4E3sV5JSKwLpkabtvU+nQWZT+SmaqUuEG5zGNIdnIWm
ulU/FusucA1pd5S2nAPcA/WJieYukOfzjh1zmgeHoD86V5QoUMX6WarFYx7u
zX18VK9MAXUG2eq0B/NwbovthIgqBc5O9X41i56HJ7J+2z6oU8C549DuTyXz
4DneJyt1kgKvg6aqG2bmIUcOzt3D6owOzuxbov0/GPj93aPOhwLmf4/K6Nsu
gEyY/dk9jRTgIjJQPjgtABfeYEWzCbv+vgZHU88FSNzVXnuxhQKbbmlXW4Uu
AGOoRLI/mQKto/q6foUL8Dj2WnfjewrsGzCzqphdACbRHtUf3ynA8M4nbYfn
IrSTq++ScVTI+6mhk/1wETabxZflEKhgwsw8Lhe6CLvmyw4EMlOhVOPRgaPP
FsHRrnHyKDsVrGoiG87XL0Lh1sse0XxUoJS8GAxhWoLlzlMfJrdTITW5Sejf
4yVo/7MHmSlT4elFmc/nYpfgbKavHcNRKsQLREWUJi8B3lOQJUWVCqGx5swO
BUtgPBng+0WNCm6hy1PjlCWYv2JUrKJDBQMv+cYh0jJItHKUlp+lAuFy0s3O
J8twsP8hMcCWCuuChJ17ny9D0O4xq392VFjqsR4IzlmG7ROc2jduU2H63GHD
49XL0DpeFwcOVOjXe6/ytm8ZPqaN5w+6UKH8KBtv1fYV4ODXM+33pYKl8N3y
9PQVeGPzi6M5jgrNisLsTnkrQOxwY/4bT4Wdp5suqZetgECedKdIAhUGfTcz
fX27Atd59FocnlLBeLTMkH94BS4M6tzhTKWCTsn89KMdqyAW+FiKJYcKu4/f
22P/bBVkkKiSSDUVAq+I3lfNXIWT+IYliddUGHFvpXEWrAKHi+BTmTdUeJ7P
75ZdswopKYreirVUENhU2TrUvwpTEq39Ko1UYP+6eP2c0Bqo85232USmwm8n
95QjT9aAnCabO9NDhVtloUzFqWuwGpbV9OsLth5zqda7c9aA9Udl6rdeKsw6
tyrwV6/Bw22mqeR+Kqzd2/xurm8NHHeEUcO/UYHXs+BPoeg6kCUsQgZHqaD4
8Lu6ZNY6PAkV4EmYp0JF03xmcuE6yHLZZ9r8o4IyMzvXlsp10Ct026KyQAUU
sO8zoW0dTg8ru/csUuF4kKfN0O91OIfk7zCvUiG/maOtcysDujTXnrgbT4P6
tvSZIFMGZPFyTfUJNw1K+Sl3PM0YUN9lnIkyDw0ybixN219lQHMV2/36MIfg
Tk2dt2FA3fsjGIX4aGB0ZOG3hDsDuncy9XUYiQbj2bo/6hMYkHHKWLQuPw22
BE19XuxhQH664ix8YjRg/bzt/EQ/A0qc5mqPwby8U/PT4DcGROYvzdu2gwaD
dfEfWsYYEFPWRKuIOA1yF9SoMYsMiPvZNhsRCRogq+g2+W2M6IUc75u/UjSw
Oab05qYxIzp8Q8B5UY4G01LbmoouMiL/MwQLm300cGJfbF80Z0Thjy1O92H2
6qjoC7rJiKicl1Wr5WkQaXh4JduNEb2fCrtmd4AGFWaHlH89ZUQMaBm9UKTB
UbWtGvtTGVH+844cJix3NOz4p+uWzoiKmMxELTGTf5SbsOczotPgsk/yMA0G
bBTdpGsZUfLFi9OJSjQg3DtYaf2NEWUG654wVqFB0IXN9cU/GNHwCMOLXMzc
ynOtS2OMiHv7Euca5q1rpd2PZhjRw+7D21KO0kD6gcJCDh6HrBNPC/eo0uBM
+IFDvyVwiEv5xM7tajT4dIcEB6RxiLCTTL6K2cTwr7a7LA7pFx4MzsR8bUuJ
EcchHKLmbzKUUafBvaf7nffo4BCPFplnjwYNkrPky2yscch5yNN7VZMGbT1X
W5/dwiETTQPKfi0azLPH9r53wCFi24qmJWY9uyVGFXfMFdSkDswr8o36nCE4
NERW2BSuTQOpq3MWKByH/rm6RdRgPhstedcpGodcyu8dHMf8cj44se8pDi0v
es5oHqOBafXZ0Zd5OHTSOUx7HLP/uP/yYBEOaW16sE7SoUGxcCX35nIc4tb/
NHgEM7u38EHPGhx6GWwo7I+5SnPER68Lh/RCKn2Jx2kwcpc/xuc9DuVo5Pgd
wEzM1M0q+4xD5pWX8w0x32Qr6BQexCH++WKfCMz8nS6Ck9M4dK9j3068Lg00
17Nld8zhUFT0LRdhzPb7+tSMFnHIZyFmThFzaySyqmHEI9o+MUdLzLONDu4z
THh0Wb3BwQuz6Fxa6C52PBK2bkmKxuxynq0slIhH7bvsnGswPw9Ubm3Ygkd5
r9V30jB3Vtr1zgtg798cWR3GvEuIxmgmjkdG2fMKrCdoYKBH2BwliUfwNyyS
H7OXl6JUyx48Km84LSSF+dNggr6cAh4JTMWWamLGETssrh7Go+F81HgGs6zG
ulOcCh5dqTRZu4TZxEk+kIzwSP7F7PWbmB+mX01c18Sjf7NCS46YCz/F5B84
jkfb93yr8sTcx9Jab6mH3W+ZXpY/ZlalpQ+JZ/AIt2DXEIpZwVpmtOscHpXo
nGSLxWyeeHkZb4JHFn/+eDzFHNIezn34Mh6FyFoKP8dcsdogZnsFj9zlSn5l
YB6WnVNIuYFHW7f0Dedg5jWX1PlgjUef5kc48jGrRFwwZb2NR5ndn80KMVs1
BN9SccSjr6VFg0WYo/6+8bF3wSM5F+fQYsz2tHCLi+54ZM6u4fCf9Yuuqunc
xyNnTdPk/8bvCVcUU/DDI4pSDfG/72O9zcYoGoBHwfutu/Iwj+j1DXIE41Fg
zsUP/91Po0xB3b9QPLp7JlIsE3MKh2/K90g8+sLO8uq/+Xj9OuvdFYtHEpNl
0UmYTd9Jmlcn4NEb7SdVcZgPZy1BZjIebYnOkYrAvCWgY3vUczxqChoaCML8
93rKulcGHj3nUer3wUzRdPxqnYNH3Wrp4q6Y88W1a43y8YjvjnDx7f/m/+23
l2w5Hp3jZck0waxdV3NZoAqP9HdbcJ3CLP4sQpW5Bo9cIuKr1TEPXDy01t+E
R6/GLKckMVcrsw+8e4dHLTJDTtswxwv0vynrwNbr+poaO2bDbl/Pxx/xSCu/
u3gM+z/ue3XukmsPHpEaHIy6MXPHSh293o9H47Qbas3/7QfDzhWVH3hkq885
8Qyzatc2j/FZPOoNHI/XxSyYP27avYBHOkPLTgcwL4TUKr9dwaOilwVxgphL
dK8vJxII6D5TYuEYth+lmgvdTmwioAsJDns9MTOn+5kc4icgs9qnyuaYv/sZ
HREXIiAvmQdh6piT1VYWl8QJSKKSlZUJM+nNMdecAwTURpA77IPVh+lEgQux
hwgoUDbM/jLmTreJw77KBKSZEj3xXz0JPBy1cEGDgPS55kr/YPVnrWTAhc2Q
gFjlc5yMMI/m3HW2ciCgB8HWkStYvTMWXhvIciYgYs06ZxvmljD/Y2Nu2P17
bMuKxZzhFMdv7UdASZ97VPdivqZaWWUTTUAn35/5eQqrr4PUlbVb5QTU6sz3
0xqrx6c1H1oWVBEQf/Cn49KYa8u5KFM1BLR8LK91FKvfyYkiqfYtBGTKbLDt
v/p+8TrScOgmIF/HmNWTiAafF/wC7i4R0GXefwFzWL/QtuGcLlvDrv/69YMM
zOX90cbzOCYUJ3sw3ghzdEP6bhcOJrQk1MpYivUbg5AW8j0hJjRN4vh4VRlb
n+0cvB6qTAhfNS8Rh/WzZu3IeF9fJpTwUiDu+H4a/LxR3eHmz4TuKxv8/I71
T9aAYZzjIyYk/DPH3BOzboui3dVIJmQ3qtqRh/XbzmO9aprPmZBo+Ck/Ataf
P+rs/M3UwIT+Us9yBu3B9r9u+dEgRmbUPbCr4TfW75lsvjr4MDEj85YSB2vM
u4JZs1zZmNGRHzYwiuUDK7IJ0ZqPGeXpp+z5huWH8RPrI7pizIh17wf11u1Y
PT6pE86pxoymzb+x2gjSAH/qy1CYNzMa9SlsWMfySlvNOXGnB8yI/E5F6Rrm
SFnqVeNAZtRWUNHcwkuDHdytw6LhzCjxY97OECzvqHeUjRQ9Y0ZzUfVf2bho
4Hsi4tf7GmZU1in7u5sFq7c6OjNbV5kRcXMhZ8MKFdpeNe5fYWDB8hGXGyvm
SElwHCSwIGac6pTeMhV2sCjOZnGyIIWknVMfsXym3iw+ryTEgtwDVQ59wfKd
r+b6oqkyCxoRuutaMk0FnFo5Y4orC2LKfgvp36lwUfNnW7cnCypv9txbOYTl
6WP80Xy+LEgcxz1MxvKjtb7bLr9HLMiXnT174isV3puqnriRyIJsbSvv7+ij
Qppzc7TMGxYktSL17vQHKmi//CRZycCKRG8/IVRj+TalgOXPHwIrGpOseZ3R
gOX74sNV0mysiOrbJhlRj+XHyoSTT/lYkRG5iXQFy8dbWy7fub+DFfmJXpeb
raLC6LeRKi1NVmSQveVjdxEVHm39p0cLYEVFkkzNyclUiG1t/d4QzIrYR0I+
OiVh5xfXBNeSMFa03vYm/ziW5yt6j6ZHx7GiNO2s6qknVPj57MGKUSYrWgy0
kd0bQwVNKWJubzMrqnRimLANxvLz4b2sP5jYkFjkpOWyM5bPf60lfWRjQ9sv
LDpn36XC5kTKgWYuNpTBfk/ZyIkKMquOZpmb2VDtyv6h3DtUMK2vKr8pwYZK
zihGH8PONxXHda5ParIhktnQHFhQwcHkasM/PzYUtZo2J6eL5fNnvwZVAtmQ
3LzvnSjsvJT//c66TwgbAl+fU3PaVBiz9VbhjGFDTrc1ZUs1qGB+P6lcNIMN
MW2+d0kEO4/pp33OOd7Khg4mLpe+kKOC9OSJqEROdnQnNbzUhkSF7z4K1yCG
HTVeCkyo/EgBqS3cofZP2BH5IPOTV9j50jbn56vUJHbEdqu5rYRKgXlaAgch
gx1p3W1uzOigAPtOxpLWcnZ0MyN8whk7v+5r7mA06GZHIlu6pWtLKeDBbvns
miAH6lioMvsZQYEtUU++BKVyoNqFr40G2hTg/EiiOqRzIIb3zCbrGhTAbQ1t
Mc3mQIpaYQI5ahSYSvAt3VvEgVr+8m5ZUsHOv89tQql1HGjCOOaj3wEKuBUf
Vd82yIFsjptZHhWlwFfqt+wsEU70JZ7A6j3dBVm80q4tiZyo8eL5j7aaXbBv
5MICIYUTnbX5K3xStQsqq4Nc1NM4UZtHhPquw13QdmPs7puXnCi0OYybvKcL
xl9nOZS84US5CZyHPhG7QO6mpO2zr5yoYamhd/JrJ5TX7zRzEedCET5uWqzO
ndDosF1LMpcL0XafOVkc3gErc1PhQgVcSH5533pqUAcoutb18ZVwoRiLXKYQ
3w7IuW/htFLFhZYqQuf1nTogMuTFC2obF8roPd8Udr4DrmRI4jx+caFTh1x7
/gl1AMMXuVrKbm5UOyCoc/BFO6iqISW3LG6k4erwpyuRDNs3XQ03fcmNvhsm
1uhGkYHh58OfKoXcSH7LQ92aR2RoCCHHrL/iRgdxga5hrmTQ7jaaedCCfT7h
kEyPERn0btvlho1wI4kvcZcYeclwMSlBOH0nD9Jx/Cd50aMNjtq/cfKX4kF7
gp4p9zq0gYjGINlShge5MAtVn7nZBoOjEm7SCjyogsDXsdOoDa4pFH0q0OBB
Ww6LDlvItYEtuSWs6goPOnD1SZvM4DtwX5xlpKTwIIdcd82sI+9g0qzjG1M6
D1KaN0ohyr2DK83p9crZPOhtkchPe/F3oBNl5JNZxIN6Fmx+s3K+g017Kxju
N/CgOt3ilrS+Vnhp7r6+d5gHDT6cfe7u3gpT373Xmki8KA2v1SFd0AJiJ1hW
xM/zomI/GaV7402g8FGDJnCBF9lThv8+GGgCbTPvLD5TXvSHx/9qAKUJrB0X
z65f5kU/dy0cu1XaBKWJv/O+3OBFjtH1WmR3bPx4l1mEMy/yj7j1kJUNG/84
vnEthhd9+upd/lL0LXhs/fhkLo4XrZRELMgS30JoKp/9+BNeFDxUJFyOfwsl
ZY+EviTxoojRxIGPI42w0u9xtyydF2122vHnVl4jhMlaSNqW8aILHuzpqSqN
UNq1O7jnAy9quDlzYYtlA4SL16cvfeJFinH+2w0vNICNi3GdYA8vmsg2c8g6
0QA7tgfMXernRSwxp2WS9jVA2K1hs6EfvMj3AOvPguV6sOZ6pvB7nhetuTp8
sIytB9ETmwZW+PnQxx+2YZZ9dbCSnLsgLMiHdFN+7bah1sHnGXUSCPMhs5K5
uvvNdRCacEfHR4wPeZ7MufylsA6WxzqLmaT50LGfKu26/nXwKTAogFuZD4kZ
9tc1H6iDkOa1faKX+JCDynBK0d5aQHdG5IXN+NDSxXbjYcFamBXs3C9gwYdu
H/jXt4O9Fi7eSVLYdJ0PmZQfeFU/UgN7hVQOs9rxIYWzfzk9Umqg844rTHvw
oYDP3EpRm2uAV3hWr+4pHwo5pXt+E+ENRDmOWZv38aFdK31b+IarQEDb7Y7h
AB9K4mZvPfq+Cp7zc9zTHuRDmz7+Wr/eUAXFb2QeygzzIf+sqPNZKVVAYbF/
tvCbDymlBC1PXawC7qfz78OX+dDTegelGx8qIfAt/mi9ABHxHcx3JL+pAN64
aI1SISLakvY1aevLCoi7KaGbKUJEMxRFoklCBWRwHzv/eAcRBbyzl613roAm
40d3LkgTkWTinCdJrgJwE7wZf5SIaEfN4nJq0ivw2CzCs+MCETmlGH4Tu1MO
HUVsJmBKRMz1tCmVi+Ugoj+XdvESEeV2TIZoHSuHWv/2I3EWRBQV7GQkIlwO
uAW3G5zWROT3h1FqpKUMAr58fjPvRkSv8+YPBW8rg8hnEbbkp0Tk2Bt7uyWn
BL4re74aTSaioBQK99/IElDotsIxpxKRswp/FYN7CXzkRfEonYhCPF9je64E
+H0nG8vyiCi2/3Rt/WgxJF87IZhSQ0SqVV4nz4gUQ/ZupjanQSIy3Vww32td
CDQhtWW7ISKCOg3FlVOFsMLjKWM5TERn7hm9mFAoBP352dALo0R0V+GJkfdK
Acw2DBuqThPRWHi5MrdwAaCLb/tZGEhI4Gd5uPTxPLA+xcDDiCOh1A+Zz3w4
8yBKXQUt4UlIyuxUs0HXSxiRKn0+zkJCo3o2fucMX0LI3AtLKg8JaV14IeV4
Nhe6Q/3+JGwnoR2ifL/EDmUDzrd2R7QYCZFP5ddum86CPXeXDR+LkxDz5qZM
laws8DJ1LL8vSULPlVUjfmzOgp1SV92vyZGQ855B4U8/MkBf8NnLS/IkJCt1
7ZhyXAa4cPf2Gx0godWfWjd9jmVA26wBOn6IhGIUIuK80tLhdr06kyyQUEUN
uGbop0F8qZeipBoJJVr2vPOZewENmVWWohokxOCTdfh1wgvYFLq/jXiMhDgX
J5qmvj6HKpMdYf/0SYhJ/57WHoNUGNa7XDd9moQ23Sy0HhpNAS61hD9jBiQU
751D+u2RAuaSxLN9RiQ0eLjXWuzwM2CeZdxWf5mEKBmhggyXEmGhMD502JyE
umukU5UOJ8BvOzkC61USsp22nB1hegID0s2ue66TUDQ3A2mlMQ4oPy9O6VuS
0NMQ86ye27HQkPb3msNNEkoTqQrhYI6BMotHX2JsSKj0/Qz0+URBlojY6Uo7
EvIMcu+I7ouAhN5XTX23ScjEiCudjTMcQuL1lRkcSCjrvBjP0Fow3D/3o1Dc
Cfv9goSFD8kGgAPRY9cxZxLKtbjWd4rLB651EZ9a3yOhlrHe1o4QazAKyeYL
dcPW63+P48dRQJEH3SrMn1c+eNEt22jnsOBNt6g3YVTQj27S0cRL8JDuhfJW
Hf8guhtyxLdviqTbKLKHLPeCbp1T9mqG6XQrc7K8cs78f9fzV3j+JpfuX65h
906U0u1loSVh2UR35r4ir+SfdN/a/Gfx1RjdCkv77lJ/013XWGhDmKa726jQ
2HqBblbPgv2KbJs2bPUub6RDmu7dV3L0V+3o7j1eWXzuN920F257wXEzfX1K
zqjsmKF7vcKhzP/Wlg2f2Ket5TFHd8sluZs2jls3TLxqVZ10l+7LVqlcFBe6
5x1IxQoedO8M/Le0+oBu7+LakPBYuo+wnC4sq6TbnzMIN1pNN5Wv4axADd1W
QgqLXg10x8nzq+uQ6Z41HXz/pY9uZLFtF9dXuoNvGNyDb3TvuPNWKO0H3Wf8
s67bTdL9NPjbq2fTdI+GC7DTZv7ffBJD8hX/0d2e0sRwc5HurRlrBonLdF/J
PZTesUp3fqH9v/V1uv8PDbcwUQ==
"]]}, "Charting`Private`Tag#2"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.528488, 0.470624, 0.701351]],
Line[CompressedData["
1:eJxN2nk8VF/4OHDLWGfsQpYSooRSKRWeIxGS9iJLUZayZQ+VJUUlFZItkrIL
2cmaZQxzh5SlKEmW7LKN9Xs/v9fvm68/xuv9cubce8495znPc1+2WDqdtmJi
YGAoxz/++121QWh8dY1WyfD/f8azqrfurF63hI6D2aWAdXt71DZXEta9t8Ml
w48D++eUKJotk0DzP4eKPfjFIkv+Z5Mty50kg6p/tvEzvDfDtu7BCs0rxUGV
/yxy6JHgBc+Kf/bas8kz4vyHf1aTOaLGs6H4nwOIko85ZLL/+X3QNY1UgXf/
/Is5b0KHOeufjyxrnw7sS/9ntjE74bVXyf+88aWT1vChuPXxP2dKlhWL+efu
x8/Zry6++Of4O2XU78Xh/3y0ijsn1e7+P3Pm7nWXlg/45yitAje1Vp9/1uGK
4T8RafXPhzUb4obQ4X/W77IPLhgxgoPuRe+qZf0gJi0+e8LHAXjIvlFCX4NB
1/XucSZNT9imursiWfUJfJgJIyTv8YXAQz7jFkJhIHKotUcm/C5ET9N7BY5E
wKcloxKPkCAQ5O3VGjoUCY8/9EaQ7z2C8Ke7r28iRoHubdsbor5PYHacl/lY
aTQwbl7Yuu/DM7ghlGNtdiIWyn74MgYXPIdI+QiK2aF4EKnSmtj1/gVsb77T
xBWVAB6v2Hq63kWDjElskrHrK9hl8aR4R+pLWECOwJqTCKedaUU21NcgSXvN
VDKZBH4WuUofmpKgVOlvp5XnG8g+Ff6Wl/IGKC5/dbsX3wBp94XwkvpkqJxl
GyPR30L99HdHYlU6cGggm4cdKSBxcD7sgnEuiJZWkbcfyIC9u20x/85cMMv/
JhwanwEG8l0cmRfeQ9rAjwupTJngLVrmx3A+DyL9PxSpNGRC5+Idx7TTBVB+
me8Oq9Y7CCtj1V86VgI2HGX5K/dz4O6mR34nEqpg5QujIMaTBwzPbc+87amC
xF8sJ8+q5MEtoo7sklg1uOyOrn59MQ/cFhiak6OqQb7Tpfjlmzyw/uQhvPqs
BriMpYN37ssH3fuW7zIDa+Hk66+j5ScLgDR+oJvjOhlMngacqr5WBBTzGTFL
0RZQBdpfXYMyiDlN6VMM7YScE42+IXbVMCs84lGW1Ql1WW5P025Ww8keIlGP
2gkYJDtW3qsGVtvje66SusB7UMj/S0I1uN5uuRvzsAvCnTZ6p7dVg0Fquwxb
0FdYvWP66O+BGlhb6bPu9e2G5vqKlJ8MH+H959vujaq9sM36OMXasxZS7121
7NPrhd3n9o8H3a2F+H3HTixd7AUuxeHyhCe18DBKZLvi7V4Q97GyzEuphSum
ed1Pq3thOZ398/WOWhDsH9Iy0v8JixzLjmIqdeDx9wz/oEkfRN6NSgwbroND
/PLZBN9+uLvGFJC4vwEwxouN1Cf9sIHFY+isZgNcnnrwK/JVPwg+lVBgONYA
gS3Dwttr+qHJw/yShjnePjTN7zjLb2D1/Uy4GIi3J24/HfnoNzAIydP4aXh7
wrZZuagBSPVX/vTOnAzY3NZDx3KH4KheRHauTSPIvuwM+ls1BA+2avqvOjbC
Ha1Hn2NbhoDXlclY26MRdj6ddBidGIJeK0b56sBGeLq97NVjpWEQefijzDmx
EU6bnmRtyRiG2QzvvpKuRmiv9m49m/wHxiQSQte0KfA9hGZjHjsKaRflpTdx
N4Gvv1GHUeYoWDLdCgsSbAJJj586Z8pHwa8ubO6PaBNYXvq7VffHKCS5P8xI
kGuC38rC/crSY+Bo1qVQjZpgtN38MkvGGGw5mPFy0LkJ6JLjRpml42DCpZbX
RWuCmA2e5OSmcWCr+GoW/KUJDnIyqCZ2j8N8r7WN8rcmuPWXTzhydRw4hLST
XAaagKFe5Yvv4QmwCmfme7/cBKx2t0+doUzA4OUGA7ltzfDwIuvWFftJ2NPp
GLfq3Qwau0hzw26TEE75UZrm2wxTLPwN7bcmIWWjjfrJwGYwypW4lhMyCRMu
+R5PHjfDVnaVrCuZk1Bn6jvVntAMVQVXVCgjkzD/+VHRo4/NMMdbrf3i+hRo
nmOyjWajQvpAvVCgyxQY+Ua+yydSwexD8+AN7ynIGvMKb+KhQq1N5wP9h1Mg
vK1YY1SYCs8qJqgraVNw47mGLl2OCgr2m85fHZ6CETGZYK2jVLjS4GOtbDsN
4e/EDyQFUOGqmqzhnNM01Br8PSV9nwrWuS0qZZ7T8NZA3zLhARVsY7eyaAdN
Q76Es+Ojp1RwdKIlGSVPA4/L2Pk98VTwFpb+6ds/DcHJg64fi6kQZkMxwS7/
BYmlU42jf6gQ0e2mFW77F3pe/uAbH6PC81Obdxjd+AuK80nuI5NUiDrktvjT
9y+UHa4M+zpHhXieTdGz8X9h5xYjjYdMGKQXObeL9/yFFHYfxV0bMahm23jK
zngG1uw1Y+O0MBhIUtLvspgBsenpz8Y6GJDQEa2j12dAb4kthl8PA6ObTirS
PjMg8ngnxcMQg4mhuo3f4mZA3Du7m8MYAwmKS59+7wyoSRyNMHHA4LB18Lfi
oRk4f6ZrqtUJA1um+M+yUzNgp84wrOWCQf7Bxnompllov3okRdQTg2MZmzNK
pWehSzvDK9wPA6+QZld5m1ng87HflBeGQfy2Pvsop1kwbGV2/hWBQW3tvBXr
zVngkGe8xvMCA94VKaO+4FkoP9h67GIsBikOXmox6Xh774rxsiQMvhjKsnCO
z8JTtY27s/MwUObzixx2m4P7Yhd8jFswKGXv2NZwaw543kd7/2rF759BqexN
4By82MxTca0Ng7MT335cipiDC2ot/HbtGHhQ929vz5uDzA1rS6gbgw8PJspq
pufgrLwW58FBDLT9dQxfLc6BzkSgY/AQBtjNl723meaB+aSyWNswBj9sjrEc
4J+HmybxhmajGDDppBhmK8/Dnn3q0tpTGOgyXfoZe2MexDBqmuUiBq30Alev
m/MQm6iW7r6EwcUpEusFv3mQOJ0+G7iMgV1vqTz/03m4qjLuELWKQWiFkFtw
9jxI8eQMhDHRQLjQgdW6aB4eohLNYGYavMqqjdKqnAfLAschLwINcuNcylex
edAREtp4mpUGn70xVvfxeSga9GNv56CBmcvW6NNz8+D8ZUtNFicNBq7d2rFr
dR529OQ1+BNpMG8kf3KEawEehLwr3MRFA9H996MtFBcgrLVEWoGXBklKPTtA
ZQHq7NLVBnAryO6tEFdfgAYR28Q4Phqob+jr6zBYACH7jYar/DS4/FddwdB+
Ac6MxO9+voEGXPwMLZ/dFqCWd98rDSEalO6qcTW5vQCV8Wx5v3ALOuqU2YYu
QOGb9gZJERpUh7BfmohcgKulIY3FuB0zKEweCQtQ4DLuZLCRBuQhQ/27OQvQ
95GUbi1KA3c2vnGOkgVofuGkPoZbSrbt2dPqBWC6S3FzEqPBrSsXul5+WgCZ
vFjMWpwGu75fsi2eWYCI80+2bdlEg57lLSRYWQC338lfAnE/FOvPrmOhg83V
Xpl+3P1GtvOfhOgg3puY+nwzDZ55yscab6aDsHFU9yBujchRjV45OiQWP85V
kaRBVNuN+2OqdIg2UFWvxa09vVveTZMOowp6fwlbaDDNO0td1KODix6vnibu
hJ1Fzv6n6fAgVEXDC7eBodcGdhM6SDww/5SJm25/qCT0Ch0CrZRYunEnP1ox
3WBPh1Pj2u2sUjQ4g6eucW502PpIS1sRN0Oj/xup23RwhY+nTuDOGtTSTbtH
B9008yV73BdZWUd3htKBjSFL8z5utq3kJ4WRdNgkoCUTiztf6+Ee9QQ6lOnm
vc7AbWFp0PExhQ434x5/KMLN7c/to59Dh7WXl5wrcZcltGxqLaZDplN+VQ1u
24qwmgvVdNhWJ5hejXtDz1nr7410WP7JqvgBd82SEKfVJzpsieLWe4/bSbQr
a+QrPn6drJUk3OIHYk+5/KJDUoeF/jPcjRfMZhdG6PClMlXJG7eHx+Zo3xk6
zC4tpZnjln7+U411hQ4feNrKNHC35CX1hrAsggIh6Yoo7tufrAIFuBdh2er7
qyl8/uSn5LbFCC3ChNasSy3uDp4/TZKbF0FF8VxXGO5ApUynFLlFKNp5rc0U
t/JxRwGlXYtg0x59WQr3d7tdRfmqi/BA7rjfL/z5qqblr1brLYISanAzwv27
weO17ulFGLQ/rkvCHTagqkO7uAg9nF8yyvD1Mipd/rjbbhGMTI5JcuGOPuyr
fMVtEYJYfu/MxtebjoXml+Fbi3CT1N5sgDsxvk58/vEiKH6cz/CWoEGcqULH
uchF2M24kYkLd5Ro+LP8ePz6lE2kWHx9h0ZeZnXJXgT3Qt4D6fj6f3C2oaql
aBGyJMIv7sAdyK/ks7NqEfrCZRVT8f3iHbo0MdqyCPT9YX0R+P5yN7BMP9a1
COOrox8JuG9wNl5N/7kIq0zmZ27g+9H6fmSXzfQiRCXYex0UpsHpO8of+wSW
IOqHYHOMIA2Oq0Xd1hRfgruviexDAjTQXVzd/0pmCTRn0kd24dbwaM40U1mC
X8q3kgvw+LHD0Say8/wShFqxfXrITQOC+ctrWPQSmFXJqVxho8GaGEFG8fUS
WDXu9ruOx7fFruvfH6UvQayB2FUHFhpMnlM9o1e2BG2f3aat8PjYc7xNrbZ7
CV4+0SRJrWFQqM7BW7p5GRZzRw/XzWKQu+REEdm2DNX1anH3ZjDILGkP9Ny1
DANbhm9p/sXgtcob+l7NZXhzNJyWMYnHY0X4lW25DJfidkfpj2BgI+Fe+Pbt
MtzbJPoy+wcG9fskON2yloFrxwfLw98xkDlZZ3a4YBnEo2X3tOLnS2/ABpYf
tcvAtq9noq8LP4+HCs6I9C+DwleOknb8fNLNm5t8KLUC2I8Tgav1eNbeHH/E
WH4F3hU8tjtVhwFhQCdKbvcKpHa/0n/1EYMqkRdQq7kC4VV7R5SrMFC9sz90
5fIKbL/BEiZTgsF2vZs7biSsQC2H/3GddAyCLSV9NVJWQKQ7TdAoFc8XfMif
SNkroPtXpcIqGR/vOxHvtIoVCBmsfO/2GgNRwRJyX88KEFaWFi7HYMD5g251
TnwVOMnymc4PMBhx83l1MHoVlPhkM2yvYuBYEMryPnEVfI76m1VYYDA5m3h9
e/oq7Hu+bZn7EgYzHuS9ImWrwDZ3YPYVnm+s3tzQONu9Cp6tT54H4fkI7+3s
qRzJNdhVvMvbbD8G++79OiyXugaxNq3aoiwYFNfNpcTnrMFwrulHMiMGh1g5
uYRK1iC9kvLNeZUKKGhXB4GyBq3Pplrz5qmg9+C2Xd/IGkjc+hwwN0yFd/VE
CibMgBoqqZZuVCpUU95OPzBhQPVLSgFqeD6XL9LifPsSA2IUkVS8HUKFZOvF
yRtXGJDnZmasOJgKIUwnJi7YMaBPSd4Dkv5UOH9wYWSrDwNioLlI5ztTYTRN
/3d1DAMydiw06D9FBaEHEx30LgZ08cV47nluKrB3bLww1sOAWE8N3JzkoMKS
zJH23p8MSOtJXXsgCxV6q6I+NwwzIP/qTP2Xy82QsaDZ+pzOgIo8v5eG/GkG
ZBtBUd7IiDKGXeYs65rB7uiB8mtGjMjuwJfQdo9mmNy2sS7XlBGVFkxln3Bu
BjdOejP9MiOy/py2Vm3XDHeoxd0PrjEi+rUrYmGXmyHsjOpymjcjamrO7/yh
1wzFl/Yf+hPHiGp2/VVQEmsGwk2Vkus/GZGsHDuDb3ETxKcqF9hdZ0LDDzM4
wnooQOm6Qk5wZEKiaTeO2rRTYI4z8lubCxMKeon9UKFR4LjDIqOaDxMy+9im
VVlFgWXlj4akECakf5p55m4SBUzKzg5lZjGhFN+Azb02FBDBPMXGJ5kQqaSQ
6jDaCEfW0pSkZpnQy/ao00/6G+HGrm7N83QmtL9jTiKruxHIYci2gpEZTfF3
6n5vbgTPCxwFofzMSMcvq1A8C6+3emMMd+5lRi4cY8PIoRHC/5b73/BkRiWX
32qFjZPhxqenFqY+zGiPrsy00SAZDHOvaOr6MqPXEjfOyPWSgd2Jg1EyiBml
P22419NKhjt/zvrRIplRS3a0SnUBGWx/jtxRKmRGm+7R3Ql+ZNCpqjAXLWVG
FakPpl94kUE64ZkGawUz+ht1hQ1cyfDddP9qTx0zsrMb+dBkTYYznQG3H39h
Rl0qnZ2LhmTYVXTOzKuLGV1vue6ko0cG7sht6lY9zEg03ywtS4sM5DPYstpv
ZnSiO/pymyoZNGgbb43OMCPpKvqfGBkyiL0bNelcYEZDEXIhfZvJsBBSeah2
mRkxOdLLDMXIkKdvtRRLIKDgY+ePRvOT8XpV9VsQOwFdiyvu8eImgyM7scyV
RECzJ8o97nKSYVt9jvcxQQLKGvBc2cBMBta3dy/uF8Hbq8QwJ641wK+75w9K
ixOQH+OxQ8bLDVBluV2UR5KAzHfaxwO9AeI1l+mL0gRU/+2jxLm5BvCRpHUN
yBEQ28RqQszfBjBaSyz5tIOAjvMWMvBNNcC+727RFTsJ6IqYJ0/JeAMIlB/1
St9DQPzHv4SGjzbAZKyoceR+AhK3CtiT+Aev773HVAMOEVDYqktS31ADZBhX
iTgCAa1c4HU3GmyAYNXwBWMtAhrO81JiHmgAa2HrTu2jBFRxqePIr/4G0JpT
LVY+RkDO+tVi9F8NIPmFGCVxAr/fgVKCNu7VvO+eHGcI6O33Oo2Gvgb4FpZ7
YfY8Adl/J8354i52Dtz/8yL+fe8ULSfckScvCFPNCUh5wFPxOW7XnfLzxZYE
lDoglTyF+yT3SvsbawLyFZF6HIj3rzRGK3x6nYAmTk2+O47fD7H5deQtRwIS
izpRZ/C7AYbS3T1sXQjo+6cUT3/8/o0kVr+nehDQstZbDRI+3oYn948OexMQ
aY1//PMwPn9MPDnbfQmIk6za8nWkAZLdXohcv0tASw32GyXw+RQa3OyfHkRA
Y1YwHDPZAPeMU4f/PCIgDtWKY2fw53FVo6TULgKfn/5bCU748/ucoymdGUVA
F+9En2nFn6+WNOXRaBwBTT0nSF9jIIMU+zdTh7cEFMg2yLqPnQxh3lfqstLw
64Gsjy2JDIxjI4rjWQT0OkOJ2sRLht7W5VXHQny8P354bhYlw8kj92yySwmo
OsVziYSv18pCrpaJCgJiZ9It2Iqv5/jYTYk3Ggho/wqdvU2JDKZWSMulk4D8
gzwJs9pk6Fi4G+S+SECqkb2skt74/rMjTRasElCuEmvsRn8yFPZEGM0xsSDa
8+H5bcFkiKh5u92TyII8quWeBkaS4XRIQ9NNcRZUu4sYz5dPBmwzkfeWBgsK
UuJIy5kiQ71OWFRAAAu6/0eOY9y5EQaty6je91nQG5qWs7dXI7AH9TO5PmRB
bBErQaz+jaDfsM/hShgLWtbozBB/2gjY0W+aR16zoO6b7LQD7xrhi67MCEsN
CwpMWPJj+9MI/fqF6g8YWdFZMfroF3MKsNj9cPFnYUUlVfqLi1YUkH3EnurF
wYqiD8W1izpQwLbpIv91PlZk5RBaou9DgdFjawP6W1jR3zCRgGsvKDBjoPuU
pMmKFGg6e6IwCjCf+Nr3xI8VNV7fV+6r2gSUinPSboGsKOcwKxtFownClFqv
GAWzIuOoj+bc2k0gxU3ul3zKisRXmpTvnWqCw9SCgdwEVvSV+l17x/UmCDj2
7E9bBSt6PShdZhTTBEy6utPCK6zoJ5CG1Obw/os+7l5mYEP2Lz/PkJfw/uXA
tZfAhgKVemROMDaDFNu+mVQSG/og+3pej9QMh+ul5w6Is6EXEbfT6FuaIeDI
Gt3kEBuyXtvtpGXQDEyahYyvvNgQK49qXnhcM5geGaR03mZDCu6nZlsTm6Hw
qEgEXwAbSu38VsyR0gzXDb1l7z5kQ9xxNW1Wuc3QZqJxzDqWDfUEvqxrwc/L
Nx71EQrlbIjroRmj+1gz6GS2y5UwsKOHx6gjfKpUeJXNNjVFYEf3DzB8C1Kj
wuJ71VJ5DnaUe+Ry/TzC84eSGIM4Pna0l/vSqzo9Kgg3mDv7SrGj0L0PGzaa
UGHo50Cp9hF2FKClz5ZyiwoPheePfwrC+596FuFQRoVIMvlXzSN2pEUak/tT
QYVErxivvCf438MreixqqFD8Tf1txAt2pP9lofRwIxUGEwKXz6ewo+AqxwBK
OxWObOPP+FbPjlQ+fnWcmaTCqqoi+28WDiSedOdEzRY8P/uz+vILBwfqCGz7
kSKDwYbYlj31XBzoQ4xfT7AcBgorrpdSNnCgAoXz29UVMTCpLi28tpUDaaSe
VXdSxfMrPV2r8SMcqEmesmnpOAYuF6/UzN/lQA93GJtWuuP5WcKfXrVgDjSu
es5N9yYG7345r/mHcKBgfWv3Zm8Mhu391EjPOVC0kdehOl8MLvu+LJRM5kA9
hy4IeOP5ouGbjnQ9Mgcay5GonY7FYHTIvDG0mQMZkz9c2xGPwUPFgcG2Fry/
QbONl15hUFc4I2PexYG0y8/FF73BQK2RL8HlDweih/C4KWZhID9+LDyWxInM
rOqHFcsxIO9uy+3l5UTCd+S5RSoxsPa82LJ1Ayd67PHceAXPjxMZrnHlSHAi
SROwL6nFQETgflCtEidy6j+bPd+EAatqlc/YSU5EynEXDMXz8ze3jsbsPseJ
AmvP2+/4hsHhaqzY05gT+Qq+JtTi+fxt/Z5ZRktOFOZ7YXkAz/9nTBedhFw5
EWv7610zvzH45b/3KjznRORtAr8VpjDYJsQdeiOaEyHJkaab0xjYpw8WJb7k
RMONRnur8Hpj7lMMkZDMiZQ4q0I15/DnKcOYRy7kRDGvUx5yL2FwovhrN72U
E53atCNh3zIGEQb5rDsqOVFCf6jGxRUMJNxtLj5u4ESNF6ylIvB6Z1c9lfF0
JyeaL6qK+4TXQ+4XU3bc7eZEesfrZTsINCgd9zuX38uJvO5pHunA6yct4b1p
QsOcyHrunToFr7fO28ac/EbnRD4Mtjo+RBrELrt6k1Y50eTGXcGmJBr0Pj3+
Rp2JiGbvnbE6wEWDayUMCwmcRMSpYD/7G6/fbnHaJFwVI6IM3yf3OflpUB2P
Gp9vJiLH3IkPZNyse0T/1ksTUbfDwPMAvB58YkLV2a5ARL3PmfcM4/Xj68w9
42NqRHRQ3EI5AK8vBxGXyGZNIvqqNxougdefCl8GNE9qE1FHaFJCPu7Clejn
748T0c2JnIIveL3aaMig7mmO9/fFbeoXXu9y/+qyTrUkolHVV+9N8fr4tGfe
0y5rIpJcHZFqxd2dYN1/yImIVjqzBbLwenrLXsTt4EpEttZBzwXx+tuavFE1
3pOIkJ5GoyfuycnmRwx+RERC47rKeP2uci+5QDmQiJIt9kQG4fbe6PfDMpiI
ns1PvOjCXZFlzBERQkQ/WWoN5SRpwHx4z566p0R0UuF42Q3cuu0ks7kIIppL
kf1egDvk+sB9uWgimj47XDSHWyg8+uuDRCJK6/QPs9tCA9IXgVaXt0REThTd
H4ebSTi0wSQNH7/BIelG3AtG7BVHsojI1+/8hWncEzEB+Yq5RDS8uadNWIoG
A93L6UIFRCStqxF9AHf3Js/EtWIiYj8zmHIB96fLUy+GPhDRTIcWgwtu8mu7
0NYqIsIyy18H467o/x1YWktEAoMfnvy/90Wyl32SyETU1p3SkI473farc0gz
EZVs/aVfiDsx/aytewsRscW1bqzAHTWKmZt/JqIQs897/3tfFKqkd+5oJxHF
NevH/efAGx+P7eomIpZnYSf/e7/k/V798MZeIlqOYjtdjPvGTJEqUz8RsYoS
ErNwW+/bvXNkkIj6n/WqJ+A2vZm59fMIEXk1/N32+L/3Y6Wy4uUTRPSmKczS
E7f+8iv+5L9EJLPIO2KGG2mIcTyZJyKXxcoahHuf3/M1zyUiCq+aGN6MW6GG
Z+7yGhFNPh6/vITPpxTh4ageMwnJTLNva8O9UYfwazcbCTU2PYAU3LzBd7rE
iCR8vZSmeOJmpSzQCDwk5D388/IR3MtE1/oxfhLKu6Vjx/Xf+8DjYx/ahUgI
tio0fMKf94/Wn2mpm0hI9nuA22nc7QKmr55JkdBkm2v9f++Tms+1R3rLkpBh
xu/rH/H1VdxFuWugREKnXA5kbsX9TkzbW2U3CXHNPNZrxdfrW7PKG5v2kVDb
Ld2DXrjDfuaZTarj9/e4RqgCX+/B0kpnuzRJ6KrtIJMJ7jtWqfo12iRUPq2m
NYPvD7vhuP0Rx0lILW53tRjuI1P3+FTNSIifeaFQQ5QGB/cwsG+xIKH+RDO9
Cnz/7XL3XuWwwneH2UHlg7gl6I4j3+xJ6IpRD6Mcvl/nGIzqfG/h9+9ITP+8
gQajhz+V2fqR0IiX58g+3H2BBu9PBZLQYpnq3ed4PKCxayZIh5BQuxyx8Cge
L1J55b0aYknoiViDvB8vfr0B4wXCKxI67MYrX8BDg5KyB56H35DQUon8t//i
EcV62L08k4S6vGdPH8Tj1eiHVJe8chLaEn4pOpuDBm5hnVOT1SRU9qZMroad
Bis27M5K9SRU2Dlr04LHQ24BW6c0jIRYlH+u/MDj5c5rcvYJP0io6fXmO02M
+PxrXBjp/kVC17TYY8oY8PUkGHRddIiEwtIMbVLweHyycsD2+SQJpaY83OCC
x2uXDclWjxi5kD2PWXnbAgaF1TKXPKW5ULuiuAh5HAONF2e/58txIYa4XlXX
MQwa7APNpndwoTDPi+yioxh0CvebOOzlQo8kPd9fHMaA7pBkdEWbC30ibFBI
/YWfl6JSp0/YcCHFojeurh0YfHTZrC2XwYUO+5z7Qi7DYHl24ql4NheKv6Gu
wlGKwT6vqm6+PC408z2qQbsYg3RfC7flUi50pG/BPy8fg7CQpKRWChe6mCmt
aYGfv5bJcky3/nAhUfTKnwU/vxm+7qxs2c6NrpE7XBxuYXDQjIFYr8iN5N2P
Ku3B8wO33pbzZcrcyHZRhzjricHQgPP42wPcqFXcQs7BFYOWv3kSPnp4+/5H
X5SuY5DApXpr6zVuxPZ7yWn+PD4fmuiAdyo3mg5osI/C85fNgleemmRyo0qL
rXnj8vj1B+8NquVwI+P7LvKa2zCoCWl6vlaEt5cLSv0qhYFO5/npwAZuVG7+
h/JDGIPjTg4ZTwa4kfp75t/KjBiYvoyReCvDg+pqr46Pt1BB/Ua52/1tPEj0
0cewRioVNmn1Ntko8KDfAV16ryhU6B3a6i2/lwcJl/aOaNZS4ere3PZsLR50
cPxn77kiKtg3NTwpteRBF4OEIyrjqOBDn2FsecWDdp6jfHt2lQrjl6g/Wd7i
7S9/XYu7TAXL+rfVh9J4UIXuwvkkUyrohp/3T8nlQTvu+r1IPEsFQcViBt8a
HuTXzKx89QgVMi/7rCn28yBr7SMqDNJUmPjlt1onwIvSztBO3O9uhm3CDuO9
G3jRG57gIzMdzWCpb/x9SZgXFeXw7TRra4b2HOUKZXFelLjI2rOZ0gwfbvfd
finDi2RfFF2yLWqGYOEjK24qvEikcYiL8KwZthxjW5a+wIt+fof351Az7P2i
9UnUmBeZK8W98DyE59OX/FL5THiRkexaR8Q+PB93pZ9dM+dFB8uOW1QrNEN+
7EjWV2tedDLyoXGfCN5+lHbpmQcv8iZ+nNKcbILrj6M+rj7nRWOzZ+JsYpsg
n7b9UddnXqR2O169qo8CT6Wr3y628yLGK5qXpbopYOdpVCXWxYvknXsN7nyh
gNTmoFmzHl5kGxDlJk2mwBPH/kt9v3nR+UdXn0plUeA6V8LekTleVKjD4DPp
TgHJY4Lfl0X4kNlHJtZ3TBQIqV/dJWnGhzRmd28rYGsE5DygLHGJDy1aJ7fP
rJFhRgzbLWrBh1T3zEgoLeD1qPPLvYJWfCjfH1k/HiKDoriaKrsDHzK36bZe
JeP1pLMXTN7iQ/qfybbJeP3JKzFzvCqOD6lUxs5PMJEh3HX4+uVuPlT8rnze
ua8eRHW8nc9850OffAYObO2qh9cixJs6vXxo5tQ2vVZaPbwvV7in0M+Hft+O
qxQor4cWthsJCyN8KKxB/bXmi3rgjptre7rEh87eS2HV0K+H4Fpm9WpRfnTg
XcfNxPQ6uLVhE4+UMT96thL/w+9sLVBzOS6CCT/aVjykbKZbC5sMZ9+YmvGj
T/J5lrvUaqHyfvPBFxb86OBSo0WZdC0wLXhbk67zo0v9V0avTH+EoK8d5XPe
/EjfM8maIfQjhCU8s2+K40cq+75F3KyogbTtLBS3Xn4Ua5tueomlGj6Jay45
9PGjzJztY4wLVbDMc1vBpp8fDS0qOr/8UwWGczOhxkO4z+ZaVNKqYKam/4zG
JD+KPBuulh1dBci0toeNQQDZCo2NIYUq6Ay9OxWzWQBxHhyaMI2qANYZxo3V
5gLozJrS+5KRUljIiQrtvyyA3m1yb8inlMKIw04C+xUBlCP0ojU6rRRaBk0n
DG0EkL3JLW9Jm1KI+VZU1+0kgPSUXZyFfpaA0kcHlwU/AcTsmT5p0FIM58O6
mnYmCaDQeEKvaVQh6J64oXnmrQBacDmbludaCIdIbEUeKQKIv1iiqs+wECTv
731dniGAsiq2a9YTCuGP15Obx/IF0OPvO1uCHAvgjoX2Vps6AUTl1j3PdCAf
Unbl3okfFEA6hZ1s7Qm54Lhhil40LIDUZcrG/N1yYe/iLvfWEQFkXVFx6Ytu
LlR9zLEjTAqgWFNBT5vJHOg8n2N0fUEADTYtSPUezAH229m793EIomqjTHjg
mgWYxUTWCaIgKo09OWHNnQUROju3X+MSRFmJnAEcqZkgyZu9OY5PEDFCtIRV
RwaoJr0jMYkKIvrx/gM5Mulg25g1QJUXRG/2hB82sE4GpXdjFoMKgmiyq/1R
26+3MBOm2MOwUxBNbffKdzB/C36mWW179gii7GndE5N6b0BHc8zwuIogCsN8
606UJgFJVpFivV8QdYY/nMqUTYKoicyq6EOCqEhVPYw2lQjmn0cP5anj12sZ
OZp4IhFkShTwqCSIPM+6SvmlvIKcgMysNS1BVBNaExsWGA8eNqPbNuoIok0k
SWYz1pegZqDwZreuIJJgZR/87RoL5A2ZMVYGeP+mz2IEmKIgdHFkg6+hIDK9
PnS2VCgSzv7Y8SzqpCA6J/gnhnclHERr7UjvTwuiYBe92GdvnkFvakZQ01lB
RCWJ0r1/PIbkxyNMv88LIjs/Jn0v9SCwd9lxZ9UIv76Ki9yKkw/svmBHFzYR
RP/7/3oLhzLclM3WXSE5MqF/ad2BLDvsrlqsm5eWbvHCat3bLdMNVxzWTX55
MGfaad3WXRS+Ied1vzk58vmT+7olQcEk9fa6hcTf2Zx5vG6m9ly/tMx1f9Mr
eX9uZN2fkrwVwXXD+njyTqlJTa97rdil4L6j0D8f26WjfWt23Q1mO6/ZuQr/
M/8V27KX7us2t03kavFc95yLwPu9t9YtEzy/uBK4br/3lSFPI9d9kO1kTkHJ
uu+THjANla27la/mrGjFum3F99Lv1Kz7hbLIYd2mdc+Y9LZ97V43stgoy/Vj
3Y+sT9+En+uWcq4Vf/N73afup1o5jK877tHPooTJdQ89FeX8NP1/xhMb8m7f
/LqbX9UxXKOvWzh59XTs0rotM/a/pa6s+13Ojfm1tXX/D9n23L8=
"]]}, "Charting`Private`Tag#3"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.363898, 0.618501, 0.782349]],
Line[CompressedData["
1:eJxN2Xc4le//AHB7j2PPRNG0KlrU+yYkFU0piqjMIitkpowSoqysZI/svdfB
OeeRNtmSJNmOze/5XNfvytc/rtd1nus59/u+7/f7fT/PkTK1vXCbjoaGRoue
hua//3UCghPrG+9raf7/byKnXkahftNbtO5eN360aTfnJkotw6aVvtlnebO2
/3Na1HsLOj7KPweLBf5g3NH6z4ZSq50cZ+r+2dxb98kc86Z/1aiZlfnX/rOw
yjP+Kw9q/tn1gMSDl/pV/6wqraHKLVD2z4/YJZ+zSuf+c4G/5fF0vnf//IO+
cFKLPuefNVY1Lzweyvxn5r/WQhuJqf8sEmd74rdK7Gb8r+hSd4jF/HPP81cs
t5Yj/znesxLrKwv/55N1XHnp1n7/zJav5LR9z6N/jjpR7Kj64eE/a3HG8OpF
3P5ndbWW2FGk/s86XTYBxX8MwM4x5/IQkx/EZMTnTj68CwXToR5xk6Gg7eB7
lk7tAUhHFld7n3gFVXNhDKkHvMBWyzL3ZUIUCKt86JUO94W/GkeyGsNew8cV
g3LnIH/wqBXd8UElHp5XDbxsffIMjOzIwff0E0Hbw8JO1CsEzhOPaH1yeQO0
WxdlDla9AA6V4S07A5Ogst+LNqD4FeiEvXiQ65kMwnUnJhULImHyiJztV/MU
cE5k7u16Fw0d9a9mFU+mguLNkLK96XHwaHVOrWY8DS7cf19qjiXBqOwby12j
meB9M1++ivwW7nUXy4RHZ0Hu+fAUAikZNG8319toZQPH/ivh5cRUePU8zjMz
PAeIM3332OsyQbBCwTSJNg+2HF0Iu3I1H16djB8flS8Apf0W7T6d+dCo7+cU
YlsAZ/Z0sWZfKYC+ANcUlFsAbqKV3jT6heB8T3FhdG8hdC573su4UAzemdUb
R8WKIKySSWfldDm8ObVNovZbMWQUPngiQy6H/R0xCn4cJVCXNVqnp1MBB+ce
plejEph8TTqUrF0JeVM+x56nlcAZ92CZs5rV4D4s7cdjWwq+Es+89RLqwPk7
sVJ3tAxoXllcTOmtg3D6it4K/nJwZ9fasSJWD2lm6WJtqBwcF2koqVH1UC7u
4fApshzufHQWWn/RACYHiokdahWg7Wf6LvtxE3ANyYiT/CqBY+JID6tVK9ye
FF2x6K2GgFtCucbprfB3jDPuM00NMHTP+RSPtEJAu7kmq3QNrLXk7rxp1gb2
6pyJHZY1MPFGxqHMiARRXoqaf2ZqoOMyD5u5HgVco00fDa7UAunGnJipaAe0
JzQduUKtg+gS7tP7VDuA6LB61JGpHiy49rrR3OiALUOshIeC9cBcc7Mz/k0H
rMUl7T15sB40trx/2b3rA5CPqiT2O9ZDTXcG5+VDH+HDwVdpahP1UGBgvHHy
0mdoS21OEP3UAD55bvJCzp/BB1OU+TrQAOdYIq6PRH4GSr2isc9EA0yWUiof
d38Gwy5l9zTWRpAVOupSb/oFfH9IsB+ERkj9wj999P5XaFNKNHJJa4SYC6Qh
ueBOeHumNuLq3SaYF/rjXJnTCblnqMNuLk1wrped/RTWCed+mXO88G0CJouz
B25xdME+68vysdFN4ODR4RvztAuMuGtSFJqb4Ez6V2lm/+8wlSoxc1W0GTbW
hu4MePVAiBxv847qZrjWSL9yN6EHrG2cxelamqEkQDpkpaYHQvfVyH7uaAYb
vjulgus9UBRsmGE03Aydu34zn3XvhYuFKrdp2IlQcHEyvdylD3aWvuON08f9
2cOp7fAA1CSnJDn/IkL6k1umQ6cGYG+wVvzyFBHiD57WW7k2AJdZX51wWibC
0yjh3XIeA8DIkVmmy9kCZkaFPaH1A/Bzx+nH4ftbgH949ISBziD4VdrT3nvY
As6zF3l/GQ6BikLPsWymVrBJPrqxYTME19tq7ES4W8H0stS4sOcQLHB2+nkK
tYJu6USzTuIQ1HuNeijuaoWdDwNd3w0PwcbWLw+VTrVCJ13tgNPdHxAYwxfb
GNgKKrx7chm8hiGa8w/jfsY2aKe91oaFDIOpfUeYP0cbmEwH/ohIHIbkbyNy
X/na4HHHb6HdDcNwJvJc6o1t+PXBGd5nGX9CpgvNiS2AX8+++0LEs5+wn9dI
TP8Bfj3DrvmdUSNgmplv2z3UBoJzV7in00egM9LW8PrvNkj/4b+7onwEZG78
Xu2cbAOs4df1M90jYOl7waF6Fb/eJ41oJ/ELuicpWSqCJMhY2xFVnvwLLJ7Q
b+HRJkE7VUbldP4ofDLd1amaRoIdcZ3+s3WjcOnm9FBMNgk8Tzz7/LpjFG7a
J/+czSeBQujU3fHJUdDyvtkXUUWC0N2Vic/lf0P6M/W/iR9IcMHoHFNH1m84
e8pmqmWZBF/r3T5cSh0D+2R+LsdTZJC3kJNYKx6DnwxMVw7qksGPa8AqpXkM
Wifs/8xeIMMhQ00G6vAY+Iwy0dw0IkPUHPehyO1/QFN8lzC9LRmu7UyJ7Ur8
A/nlDQsW4WToC3pvfuP1OPRwupwkdZLBy8fgm0H2OPBRGO9d6iWDpPOg1sXq
cVg8u9Owa5AMpsazMtr948D/OC7s0xgZfu4TGt63/S+UvUgoDVwlw/jXGyaM
WX9BKjL9y7oEBZYkJwyyKyYAVS7cEDOhQIzAg9ZU8gQIClW/prtFgaNsNIff
9EwAc3/m0LA5BdxneYQi1ifgOvOdiBhbCtAQlb94qU/Ccc4rrSRPCjBZe5y/
SJoEO4x7CGIp8PQak8yazRT4vNELD/hEgeOKHNTfjlPQLS37MPYrBaYZeVu+
uk+BI//KsewuChjkb7HMC5oC1wqeq7X9FJBhUc4xy56C9/bMjEV/KFBXbKZM
+jMFqSNBezvpMKAS6jUjraaB3aSfyiuPQeYIUfCx/TTU+wbrJSticL2K8svO
bRrq6vvf7juAQZN5Z6DO02mY7fqjjg5j8KJmElvLmIbt1RR7OXUMZG0k9G/9
nobz7usXtS9jYNby8M4+ixmYZvB9/MQFg1uqO3SptjOwu0zL9bkbBnfyO5Qr
H8wAMztzxgt3DCxeyzBq+s/AN+feymBvDO7Zvn9rkDoD21W21hoGYOAmtH3Q
a3gGXr0/WqYWiYF7ENaqMT4D/Kl2iZzRGHjQuuSxzs3AqaprlC8xGHj/oXiF
08+CLt3x6WvxGPjVOkukbZuFyBRf98MpGISZkwzbTWZB8mXWGirA4GWP44lw
i1nQmBI2+FCIwavzW/ca2M0Cr+qJtevFGESpOC4Pes3CZc0ru23KMIjnloie
j5+FCxl9vEY1+PyV3v8q3jsLzAl7XJ+2YZAtK14zODwLNdw8mf0kDHLeEFNS
x2dh7yexvfsoGOQ9E3NSXJ0Fix11Em3tGJQYN/NpiM2Bysa3T5RPGNQzi5y3
vjoH47eKs7f3YjDyVl6n6+YcXBr7+fFyHwYcSOPESas56NJ3SPXtx8DAxVZ5
+8M5KFJ+pf9xEIPJ0WaR7tg5cBXmGlQZwYD/STfvqZQ56OPRdTn9C4OjUtPs
pTlzcNgkvEZ/FJ+fq+LrYTVzsEupy8BkDIMtJPshnYE5mCz3b4UJDNTvBHSX
jc7BBftDPbKT+HrRxX/eMT0H7TTsiQJTGBQdbSPS0c2DMPvjw9+nMTidtTWr
Yvs8xD7jzVWYx8DupHLyLtl5YCzS0FrGHfFDJy5CaR7yKxSC66gYDIk5h9hr
zkOe1AVFtIiBaxDFYY/5PDiYqtawr+DzvWvIJsp2HmaCyroLcTc1LdxmcpmH
aM2ljCurGBDWthkMBcxDv3WKQdgaBgejD58/92IeJtaXDu9ex8BIWVenJnoe
wqx+tlXiTrvrqhqTOQ8/rVXWPm1gQGENUWYpnIe7kx4JV2naYSYlWd65ch7e
7mCe+Y77eN97yQuUeQj5/CStg7YdvujuYGSbmIe/qsPnAujbYXlMZf0BdR44
H4nZ/8Et6X9+4ef6PHwOfaGuw9AONrXuv+u5qXBrImhqGXeYYdiQgjAVOFEJ
doaxHcoW0rrjJKnAZnLnagxuesVPmOs+KvRvefZwF1M77KKMEn8doULDuTAe
S9y6Fuu1l9WpQHHTvJyC25GBv7xRhwqHbS20enHHJO4u2HeRClc7qoYJzO1Q
pwpZCYb4/bjoFBHukc5LyZy3qLDNcn6nNW4OJ6u4hzZUuDF2nvIC9z4e74jf
jlSYsewQL8JdwfJtV4s7FXoNhI524Fanka9MfkyF8ybnw0Zxkxcen30URAUL
D5BZw31psrvf+CUVzDYSZzhZ2qFnZL/9sVgq8PgfWBbFfbsvkEEsmQqyTIUq
0rgnvgxELGZRoaimq2Q3bmfs0O6vhVTQVDex3ot7oym4srCSCpb31wz++zyg
6ufZF41UGHO747UdN6FIdeAemQpbu3X7RHBHZ4Xbn/lEBXlDCycO3NvejjHs
6aaCPsFMYwUfX2aMWiTzD/z7Df/qjOA+EBa1++cYFbpHCgMw3FWBk5UNM1Qw
SL+5lodb00dLN3GZCnG9CemhuNtd4gY86BbgC4fgUxvc+nZz9oZsC/CU3uqN
Bu5+89OMR3gX4NMXmBDGbWGcFCkougCOvUfsfuPrM6W/tHtOagHoyxd3lOCm
00rTzd33n4/v08D97Nj6QNCRBcixWvdlxM2vfNnBSm0BelnmWBvx/SEjTR8l
c34BPCf6cvbjfid2bQ/91QWga14nDeP76yBfftWAyQIcTs4QCcetTWc8+Npu
AY4cGTo1jO/PD0vFDq4uC2BtErTHH/e1aQ6mK94LwHh/+egO3NYDFXt4Qxfg
55uTvw3o2mHuG0/1ZOQCGMwp+Y3j+9/9vYUelrAAF8PozrvjDq4RdAzIXYBz
l0/eC8XzRajkLtOd0gVIOlVTy487Macp6kTtApTLCBx7hedbfqx99Xr7Argj
3fKneD5+dmtncppYADbLpfSTeD5ft5eJvkDF56vAXycHz/cRS/e9iusLwBQV
x8eNe8Fgz7k/nIvwlIZHtGUJA9FDftE35RZBbJ/vL5YFDExmj8nq2izC1TzK
0ke8PnHy0nR8dlwEz9Rg51G8flUoNjgYeixCZEWa6RJe3/jvaVVaBC9Chsn5
J5x/MWgd1dXxzVuEpDzW7nW8Pjox80ywli9CrpVE+SReP7ft+PQitH4RrAp2
bnTj9dXd7EpX3MdFYL+yvzZ1GAPFPmOLsrlFSD+rMcswgEHvqhQHrC1CsYzc
fAdev5+KDec2My7B5ytU/Si8vg8bWCx8FFyC1YrfyiLdeL/5ZOf39/AS9J6d
Uf/xBQOaNp/kbR5LoHCnNzbyv37y64R2xpMl4KIDIRG831xjYhpXCF4CZm7Z
/lcteD0+8fTAsYQlkGPKvODThNfrmrCGK/VL0OAXlrwV71cdhW8HghiXIbw/
g+KSh8Gb+GbxhefLIHpDQjv8BQaxRrLfLkcsg0OyeNKTEHw8ouEviuKXgZOu
TdvhOQbBESZM9rnLoCHe54QC8f4cvDI53rEMZGXRbUl4/77gua9xiG8Fjin5
nvO5hwHDjTjL9ugVCNwlWpKkhcGGGIO0XNIKqG14XF45gcFyl1Xfs8wVMBE6
zaKnhsHU5cMXT1WuwIDlYsIvFXz+zn5SbepZge3Jsdd78fNJyTFWQsXWVSCz
71bqEsHAfItTSUrKKihyHXKlG6UA8eAWNsecVeDjzBSbGaaA9Lnm6+rFq7Df
/ZNy7yAFBh4JMPY3rYJDxOfWlG78/DRafFF4eBX0D/jK0byngHYhderptjXA
2uUZOososPuUy167hDU4o2ydRO9BgQBTSa/jaWvQQTT8et2VAiMPWz9y5K7B
Ru6Dg4VOFEh6J+yWUbMGTgsv7fTuUUCUv7x1qHcNWtQ4fM4aU4Ctf+n2ZfF1
uJNTk3YdUeCP48PEo9Hr8POuZkL5OhnuFQczFrxZB4atQRxCy2SYmn9jtTtz
HZ4w8xndmyfDnHOrknDlOlQZfwxlGyfDuotA23zPOgz7NH1bxM+7BI/c6TzJ
DYiOvjmbnk+Gg09+qO9M34A8VVvZgzfIUNZMTYvP24DzdaKTRAMyqDCxcQqW
b0BEgOnSuYtkQP6K3xhIG+AonNt+TpsMpwI9rIf+bMCL9dW+9X1keEdkJ7UL
0SAjaeXH3AxkqCelzAQa0iDdV4qJ35JIUCTccd/DmAapN8WVT8eSIPXO8pSd
GQ26dWFemzGSBEF0epNXrGnQZVVSvvAzEugfXfwj85AG6UcLMEzZk2A8Q+dn
fQwN2h4eigzVSCAYOPltqYsG2ZIDhuc724Dlm8iVv7006G+V8Zn9H9tgRVrj
68AgDQrJS7xgTm6Dgbqozy2/adCNDj2xyuo2yFpU+/BqiQaluC7XsiS1AbJ4
SdonQovs5UrllC3bwPrkkWpLA1pUMZMk/2q6FaZ2iTTnG9GipntV7+R/t4Ij
2xJlyYQW7e8U3l8z0AqeWFlPoCUt8jgpx1n7vhXCLh5ezXCjRVm26RFaOa1Q
ZnxIZSyWFmH5hn4md1qBwUW53GqQFknmhoZd7GiBwKsC9QU/aVGUoNrLUGIL
cKnMty7/pkUX+0/E1le1gNB6UefTGVpks9fZfiO9BfY8VlrMpKdD2PEmwqh3
C5wPPXDojwwdGqyl5zSUb4H49H3F1lZ0SM5hYc9uLyKQusxaE+7RocTq+9tn
HIhAZYvo/mRPh27wc9ZkWxDh7N1lWtWHdKitM8yaep4Iq/sadTmC6BDDUFRI
53YiGFZeGs3OoUMfEwT6q5uaQbj9gdjEFB2SNVqX277cBBobGfLb5unQ+TOS
VUPjTWCn2KOmv0SHDLLiIkL6m6A1DFnU0NKjMyzlnnlNTfDgCmtxMC89Uj5f
wscW3ARfB2J0FZTokRxLn+W0eBOEz1b72D2gR7NW2TPMexrB7mPoTaOH9IhD
iDdhi1gj6OabqWl70aMxreo4cY5GYLFlpZX0p0ffjvQFf/nbAJ5jl7zfR9Aj
TnuTH3vzGsBi8I+nfAk9at158+sexQbQqqu5IVpBj+YPFTkWbW2A7QkvjjPV
0KPDPy8VbuNugD6jQ+u9zfTowee6zKy/9XCx85HH8y/0KKPtu9rtjHo4/l7E
fXyOHpls5SrdIlYPYu/GDTsX6ZGPSH9LA0s9LAbVqjSt0qP+9alPmtQ6KNS5
vfKagQE9fLXx+UdHHewi5rmd5mdAoQFxHnaP64Cv+qRr5gEGdHC1rCmktRZG
M52cLewZUFS2blcwfTUYbFnvS3dmQO6c7nwZ76ugJcTv5G83BqSxcJ324Osq
SHWMFLbyZUBFiKIVo1gFt46XV1i/ZEB7nNJMpC9VwsCH1fV7JQzIlX/6sblb
OZzTeGKeW8GA3qiVpZWolENtCWfHZA0Dingamrx3tQziX0u8sWthQOm26+5W
bmVgdBudsO9kQHpHZajXrEvh26Kvv9MyA1J7YHB9l2AxaFlzTBWvM6C6RizA
sLkISnpfGlDpGNGlhG91S/ZF8LIhZfcDdkak/7XcSrqtEC4EtZBdxBmR9gH3
ox43CqBhXU+pXJIRwVkWA8P1fNh3vzN2SZoR+b/PrKp7nQ8E/d933eQYkagK
86W77XnQvpWd4H6cEQU+Yfs5I/IOjoeFu1SpM6JO2emP0TI5kMMgPriqxYjW
bycPf9iZDUG/ZQs89BhRihmt5HP2TFg1LBatuciIYtDLfvWxdLBuP+a7foUR
iZXTezaXp4FOoe4lLxNGxLasfblcMgUqZL5V1d7C47ml5V+R9xZ2RxnL0Fji
nx9mzMuRSoIottHn6C4jui0eKVpslQgsHnZU7/uM6CFtx6zmSiy4TC7eqHdi
RCeF10RYH0XBr5s+LbRujGjGgqPWcDkM9D+zKqp7MqL8XrU6seYnQNQKi3r0
iBH9+33gTiXm5rdpFv9hOoenm9ZpOXjXLGzT7Se71TSSNv1FW/oPY8Omh3VK
jgXSMv0zo3W/vQ/jpnc8Y0l3Zd20BfkarxXPpsdPb4zoSG167ox2KIfapun1
vg+FeG+aVHN5u+PjTYfJfzAzCNj0Nq7WYcnQTatjxSP5CZt+dPrF2KeaTetU
cuwta9g0794A61jippPYvMZvtW+6oc1mYr5300+PjMp/H9z0hQwz25qfmxYV
6c9N+s2Esrv0xXOzn8BQwLUpv79MiGCwUOZmHgaZi18UraeZ0P5MnWjf5Eiw
tzh/X2+eCdn6ZWjF/HwNRzsp+QeWmFAorT2b3osEoNPWnhFaY0KnlHwiHlm/
AVJp4/5VGmZUbRahkDKaBGE7wWGAgRkNk63kb2knwzbmg3PpHMzox/jbn2lN
qTDmnK/0nMCMyC1bbu0fTYOCEVmn+/zMSLJh0FhvLR3UidupR8SZ0c1ctG8n
fRawHUw4KCHJjPIThNsCqVnwMUX0AZ00M6oRGreeH8gG0yc8i6S9zCiaqYMk
Ff8OHmlsLBmqMKNrxrnPLv3MA50it6MImFF48mClpEY+8EpT3aRPMKOP7ySW
whLzIYn+78q4DjPyEbQMW76A52/D9zWPa8zINLycWehNIdCpldAmujIjj/R3
Vdfni8FI4xep04MZxc9k8sqiEig5KfyS5xEz+r5G+FEWWAJWum47fJ8yI20e
Wz0kUgqfDI+fvvOaGdXPh0mq7i2DZGfiS9lqZjwfXYuytlXAuuvC9dv1zOg4
3zLt0vUKMPDYtTO+mRl5vZaiPIuqAI7HT8u52/H7hWtcjmCvBKcXun0zfcyo
J+jPoYbflaCV/XVnOQ0LmojeVz0TWA2JuczT0wwsyHm/QmNkZTUsFxyu2MPK
glTu2lyrHa+Gd+UxZ2J5WNC1sZ6uxLM1INRy477XNhYU6BNhOMOK1+vBkQpN
DRZkpt4maHSoDp4KLZz96M+C1Kt/fnRzq4eI1tYfDc9Y0IttA5MSQfXwxjXG
tTCEBc2SSgST4+qhrPtYystIFhSQrCB3sa4efiU8XtVPY0FyCnapegwNoLGL
N6ubyIKIM9zrfP4NsH5YjuUnIyva+bBh55prI7CNrcd9YWVF4Gc7aB3QCAKv
Ow4QOVnRbZFvD5ojGkF2zcE4TYAVXTtyWuRoYSMY1leUWMqwIqukR5wKfxqh
7JT27QkNVvSKeLbK4UoT2F8za1jwZUXfzwnvT9jWDISEsQHVAFa0PwDTa1No
hnc/7m/4BLEi7wnZjQHVZvht463K8YoVGcREVnTpN4OJV1yJZCoravBUEpgP
bAbd5G+Zp1pZ0Y3M3oG58WbYM3E6/DUHG/JKMSCypBGhdf+n/AECG1rl77Hf
W0CEOw+udcgIsOH1dPoHVBPhDY0lZ94WNnTgdaz78U9EEObz82+SZ0P03ocu
vFonAtPhuod/z7GhaR2t9poLLfDDR+kWvGJDavNaSa+nW2CXIFewXTQbGtgY
u7Kw3AI2mb9K38SxIYqk1sxJhlagfoxhZ0hlQ137/YRaBVuBTZq2sLWEDW03
cxjTVGkFRSJGe6ET/35+J13NR63gzmaecEuMHXGcZjAvZWmD+njU9morO2IJ
bnpLIbQB0wHRWeJ2drRedSqgU7gNQgwxrd2y7AjtjnzweVcbJGUfmPiryo7o
Lc7tu6HdBm26NMce3GBHwzbkhoYnbSAYHv098A07Ul6QsBVebgOOL3wf7FPY
0SWLUeEEGhLQCQW3GGawo15ZhUoJZhJMxjwqksvHP6dKM7Lyk6A1yTr4Qx07
IkSM33sqRwK3gmPqIgPsaP6dpbWWMQn6PwxmpEtwoB9eZ+raq0nwlc8o8cU2
DuR6sXvOu5EElMtfI9x2cKCmrI0R2TYSlHWRfM/IcyAfJlsR+88kCBssvD51
jAPpnL6gUzBGAo3pJzyHr3Mgmat/LnEJkiGdsMe15TUHgmufSPoWZFAcubrI
kMiBHBKeCRXfJUN5ZeAD9WQOZHdbrpLDgQykO7+dqrM5UCjJSjzdgwzjVen2
hdUcKIGG0BUSRgYFy502Cf0cKI55PWNnJRlK6qWNH2znRF8VnhJimClwPPJS
X9FOTiTV3Fsry0GBFpvH12f2ciKT8CKjcgIFOoWGDe8qcSKfzwa2dSIUWLr7
1sBMkxMNPcy29NtLAVXRbRf0zDnRPonfUvNnKdBov1VzZxYnWlLtDHkQTIHV
+clQ8VxOdCMulZsrjAIHXet6eAo5kfKv+MyEVxTI9LrpuFrBidon3FSLYikQ
FvT27QcSJ+qx/yr0NpMCpqk76dzHOJGTb2BvdDMFaL4r1Hbs5kIP6NePry5Q
4Oh1GnaiHBdS9jPsXl6mgONAh37lPi6kYvihd26NAqMj9ydSjnCh7HrdLd30
+PP6bOGWh6e4UPiO8lo7bgwSOA+7y1hyoSo/I70GGQyOq6EjbulcaIolk8iu
h8FWfrNQw2wuFPGtOOPeeQxofj35pZrHhd77D17FLmLQEER+tVHKhVyheaen
AQZanfozj1u4kMbK5eScmxictb2bFTLCheavi9hoOmAgrx5Kd3+MC33J8/l8
2wkDLoHCqxcmuBDrTWepRw/w8VUsMgtQuZCzufe9dw8xuMT0+FYMIzeCjOHl
L74YGMXFbEmR5kb5o310puEYHLOrdvTbxY0Wo3ZeVHuFgcSJAbK5LDf68702
VjwSg4FRGbc9StxIQLJMsiUGg1tK+V9zT3CjHXcVOMffYGBDbgmpMOVGolXJ
D51z8fHGj428vsONthJv/hXIx8d7n/O4hxU3cuypscovwGBK8OI42HOjLYdi
g3qKMXA07dNu9uHGz8MqT+mrMHi4NEfbkciNUtj9zv33/mTCGBtkTOFGgyUX
KHxtGJgSU+pVMriRGFW48DkJA+1wfZ+0fG405X6O6IBhwC9XRuPVwI28fda2
s37CwD88dKCIyI3iFI4Jm33GYHnJom6MxI2oQuneZV/w+Igi3vqfuNGEjmnB
5U4Msk0ebsgNc6O3Lp6lV3vx9Wu52G82yo3a2NWtQ/owCJOTrY0e50b3enNe
1/Vj4LLc48k4z42u2QY4CwxhsE1nq9cEHQHpSi0pBI5gMPnDe72Zj4Cuyz3y
i57AYJfQ3YkBAQJayLnn4j+Jx6NztW9FiIC6+qnzdlMYfM3bV7NPnIDOV6lE
HpzBoMpjyCNOmoD8DQsCg+YxoOa13y3bQUC/7DIm9akYKAxXXP+0i4BU16t+
iS9gkKQTfoxVjoAkhXRevF7EIEBIY81RmYCELH/2ma3g+01H8W/IIQJ6PFEx
xraKwYqHeG/mEQL61PE8OAf3veG5qoFjBMT19G/izzUM0oUGs1eAgBbhC+Hh
OgaDOlisoDoBWfLbiXFs4PsrP8X9jBbu89fopWjaIXj4hY25NgEdMpgeTMbd
IuRp9EiHgLyrSdeladvhqKe+apkuATmklSsI0rWD1Gnm1e1XCMgi6ODZZvp2
UPpy4qPoVQIi+VIoWxnaQcvYO53HkIC+a3F5OeO2cli6tHGDgGqHr3gIM7aD
+5ryXqoJAWkWqpLMcIf429P+NcXn56D/6SzcRa//5Hy/Q0BX1mbH5ZnagSiz
6/EHC3w9DvzktMbdmXvrWqsVAX1k+n7rLe6xI28Ua20IqD9KeeYb7rXGXqaS
ewRkoHe1hIW5HQi6or3ZdgSU9iU5Xxn3tk79wrf2BJS9xXn4Bm4l0/DAGEcC
SjDZrfcYt9b4e+MXzgQ0slVkJgW3gTPHwQAXAhqXiccacVvRnOLwcsPn1497
qBe3+9MnQ07uBLTypkFhDncIf0OZjScBXZZiL2ViaYek+PVgM2/8+1eOugjg
LtqlcvvaIwIKckxykMRNLHigcv4xAd3cEpqxE3enahGPth8BrX45J/rf+/sx
4tSv4wH4emEKxD24V8/J1Sg/JaCoR845O3BzdVu+lA0iIIFmmw4J3FK3U622
BxNQfrGBAh9upckhJBpKQLItniR63FquW4V4wgiop0Yqaeq/+OiN/jK/JKBz
xY9Kuv6L73lU4/orAhoTHGSu/S8+oS/R85EE5JXsFpGIO/gNj914NAH9dXhm
6ok7ca+u1o/XBJQzddbGAHdh8VPx73EEZNqzXCiPmwgtMx0JBGSj13aEFndn
G31byxt8/5RPrL3H12u1192pOIWAeEfZ1U1xc1mUn85OI6ABjTsNMrilZual
3mbg+6mtx+cnvj+0mGzbQ3MISO7Sh5qruA1Cs5L9c/H8q01W5cJtJTrq5plP
QDxbYbkG338h8jd32hTj8djfVBbAnVQWt2ZaSkAofV9hBb5/i9S/f7pajs/v
5av3jXB36l/0PlmNr88rudyX+H4fGwjRP15LQIfPCyjsxb1mRZFVricg4lfS
ZDWeH9u8NLu2NeP14zW9UieeP0qsj3JFWgiofq6o1Bi3VnjNE0Ibfr+zoe4/
8PyzTju0f51CQMna3KR+PD+L3u9+1vWZgLabdztl4fkcur0+ZfkrAR3vjD7A
gtv6gUGdWBcBPRlhfmaC14NtW/3nr/fi8QlwMTMsYxByb9h46CcBNS/SKwni
9cSq4aEb/SgBMaLQWj283mgJ8r2SHiOgH5atw4/xerRarUa6M0FAc8yE1cFZ
/HrOBKU/VAI69lbbyByvZ1o3D+pxLOH7vTuk0AOvd1LFmKXcCgGxCk69DcHr
YafRarztBh7/a3+91HEMNLOvss4x8yDigGV7/CgGkqf5+1aFeVCrzhWtKrze
rsZnLW4R40H8a7PiQXg9/jajzgdbePD+9iXwCl6vg2Pua/tI8aDa3bdkBr/j
9e13ewHjHh70pZTfqBav918DAv25VHhQm0SgbxrePwp6JJMUjvGg3TcvvFbE
+8tzxbKqc8CDerh1NIrx/qPROTIddoIH5XAraOc3YZC/U8NI6AwP0l88yOFY
g0EQcV1R8joPqijtlZTG+x26P7JvizEPKjRMa/LF++GcWPt+0Zs8SIfl2eP+
HLz/3o9T4r/Ng/Ie9+o/y8RATlz1MMtdHqSrOn+46C0G7fddYcqdBxnY7fXX
wfsxYcvc2bpYHvS87WfQE7zfN7V061bH4/F2T5aY4+cBF/tGvYpEHhQW6fpH
8z7ez1rCzhcl86Abu67dp9rg47Xfdzk9mwel0zP27ryFwYXWe0ahVTzoLUkp
nIyfR8IdfluZ9PCg88Ec7Dx7MBDVcrt/sY8H2eoZH/PeifcTYXYXrQEelELZ
EfhHGp+vatknssM86Cl9uGXJVvy8wWyXsPiHB6mtjCptEcDPI7HUT6EreDyX
pHbKb1AgoIn+WL0oL0qV/x6l30EBQuTLE0XivGiI9ZzkSYwCkZYyOmkSvIhB
7fCbAyQKpHKdvPJ8Gy8qV8Se0jRRoNng6f2re3jR+la/HstSCtD9JaROH+FF
vVl291zjKOAuIMG97SovavwWYOt7hwJYPus1MORF574eEnprSgEJ3flko+u8
aNSG/KH6BgVq/ShHI2/yImXvAy7D+vj9Ft3ucFjxIoWvRy9TtSjg//1bNdUN
t5RS3J4d+Hky4YUNOZYXmeyxWyUOkOGHikfpaDwvaomRltDsIYNSpwUd0xte
5CHZwF3zjYx3SRSFUnhRHVHlamI7GYQfTTQW5/Ci7J81ajuqyBB/67RYYg0v
uiF15LhyBBkydjOSHAd4UZEebdBZLTJ8FFdbuTvEi3xdQo+7qpFhldtD1nyY
Fz2y370tUZUMutS54KujvKjp0jv7/v1kmGsYvnh8ihedHHw0u30rGZBRUy8z
DR9yDHc90kAlQWew73TMVj7EsnWKSS0Jf355VLvtpRQfKnjM3IzFkmCv08rF
59v5kAkHZnQ5kgSehg4lXjv5kGSgBOflIBJI7zJ7eEuBD9HMNogIOpPAtl6d
UR74kKGXplCsNgmY5mhF6m/wIU/lLvrE322wmBcVPGzCh5Zjt5xcH2qDP3cV
GFjM+NBK18zq5Z426PhlNKlrzoc+DEdlT7e3QUx3aXOPLR+a/R4W0lXYBvKN
d+0XvflQvNCd/jvubaAf1kVWeMuH9vGsy53Hn/e09ezULqbwIZ2yveafaNpA
hYO51DmND9VXJhnrLrWCpJ9SUnUWH/otUOwoP9YKY64hLqeL+JCsiJpLBLkV
PG9qypg386HGta/LG0GtkKaY7xn/iw91CB3QZ2JrhXsC00ulv/lQjvQlkwra
VlBaVnT68IcPSW0/GXhnqQXqGvOsGab4kCbnYaG00Ra8vucZWC3yoWftoqqt
xBZg8cjdf5CVHz0m68r7+rSARVvOCLaHH5H2Shi9niKC/Lu/N3/J8iMxgsa6
2i8izIXJ9dIo8KNrxxTD+nuJ4G2U8+nAAX4UJyFjtkEiQtRkdl20Cj9iaX9x
tyMZf14XyI65fYYfrT9p6M/RJ8Ju00zdtbv86Ba5VmatoBla447mzdjyoxQu
zyuSGc1wp4vEM3qfH0kpzaoeTWiG5HN/Pn904kfC25Wnzj9rBkmQNUz34EcB
n+ODuM2aQVD8nfnF5/wo6qlBcymhGei+5ntnZPMjX1/6v5duNcEbHvWh+Hf8
CDyLWQ5cbQJ09uOJl3n86KWq2AyjbhN4NM0weRXxo5MpJ4YDDzXBYsGB55eq
+JG2fIwSC1sTTIQUR2+Q+dEspWsnlt0I3afKCy7/wednlOZd32gDqOslGzj9
5UdvDxori3U3QOalkPWXk/zonVvW4ZNYA7gZ39b5PMuPsl5pSt3NbwBRJ56h
C6v86PQvgtG4SwMYJFrynOMUQN1b7hm/YmiAr1QROx0FAeQxdvjDOc56OL7K
IGi1TwAN5VArdq3VQSrtVGXgAQGUpiElNjZeB84cROa2QwLopPm1o7sodSCw
zT7hJBJA39fuBTwNrINLZ0ntGucFkPxFTYLuRi18fOsmBw4C6ACbYGpJTjXw
0pSUH3USQE8MCA+2B1bDRaNpzYMPBJDQWGn0pVvV8Jnf4obcQwEUratylka0
Gr49uRwi5iuAthb13TZ7VAU95orTC2ECiCu02ui+ViWIN1l7zL4UQC7xkm5Z
WyrhumQa62SEAOp7wRAcNVcBfZ1bto3ECCDhXil2vzcVMHCK/eLnJAHkVn1y
5PFCOfzcO1KUVyCAzK9nFEaHlcGOACm17CIBVN76XUbtVhncGTbC0koEkOSx
tiFP5TIYjf30M75CAIk3+gYUfi2FMc56wecNAqhM376/lK8UJiZfu1h+FEAH
72YXP3AqBvkz3xhufxZAv+6we0lBMdim874w+SqAWGkPB+1lKYYpk8CMK98F
UCrpvfOZqCKY/eD8XXNIAJ0V8PWTySuExcLzqttmBBBzDNFKqCwfOA4fbOeb
E0Bxu7gHGZzzQbJK1ISRKoBkAq4K9+3PB+2mH76jSwLofHfIw60ZeRD92Yn8
jlYQZZ+tFzXiyIV3BteuJ9ILIr2avVOxDu+goef45AtGQXRtsPxD7LccGBtm
5nNiFUTcmjKt9K+y4eh89DUVHkFUEXF4i0hfBui6eo7L8gkiXgfCdh7pDDBd
M/WUEBBEgYujv9GtdHjKKJtEK4Lfv6zjyWpHKsQHEpRmRQXRLWPtq5KrKVDA
Od88LC6IGB2FT8dJpEC3QM3vFklBRHfa0WVC4y1MRSc9LN8miMgzYfbpmknA
IOHPmSUtiHyeF/KeOvQGhJOsE2J3CKIbbPWR3wQTQXbHuX3BuwQRg7amrENd
HKBMpUavPYLokOLy4ILoa7gkL3L5vqwgMrst5k7aEwUWBWsjpvKCKE1+j/HN
jpfgfnDI5ZKiIOpMOzQeQQmF0Aoim9Z+QRTn++tH3LAfJB/Pij2kJPjv/XtZ
Q4j87oObpmg51oke3vQAyeACx9FNz+keG15T2fSWK0wsg7Dp/d1j0R/VNq1l
/H5v04lN3zOP0ks7uemaB3si7+pt+uMK127j85se8ZqtOHdx01wBVX0Hrmz6
RpTujuUbm94osy/2u7fpHqaCZ0l2m664NH2zxn7TjlO2XFTnTY/uvGt+2+t/
xhNhLqIRuukURyMP2oJNn1bU0nSf33TLdQVLawehf+Y1s6iMc9r0DYs3nB0P
Nk215ytQct+0dMDC8trjTXsX1AaFRmz6KPO5vOLyTftxBNKNVm76A0/DJdGa
TVuIKy15Nmw6cp+wujZ503OGA5++92wa3RTZwdm/6Wd3LrjA4Ka33W8ST/65
6fN+6bfvTmw69tlgacLUpkdDRdk+zvxPPK+D3h1c2DQlsZnGcmnTQqnrF16v
bNo061AKtrbpd3l2Cxsbm/4/R/VtRQ==
"]]}, "Charting`Private`Tag#4"]}}, {}}, <|
"HighlightElements" -> <|
"Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
"LayoutOptions" -> <|
"PanelPlotLayout" -> <||>,
"PlotRange" -> {{-0.2499998724489796, 5.99999987244898}, {-0.025,
0.39}}, "Frame" -> {{True, True}, {True, True}},
"AxesOrigin" -> {0, 0}, "ImageSize" -> {165, 165.},
"Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Times",
GrayLevel[0], FontSize -> 11}, "AspectRatio" -> 1., "DefaultStyle" -> {
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.363898, 0.618501, 0.782349]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.528488, 0.470624, 0.701351]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.560181, 0.691569, 0.194885]],
Directive[
Opacity[1.],
AbsoluteThickness[2],
RGBColor[0.368417, 0.506779, 0.709798]]},
"HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ),
"ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
"Primitives" -> {}, "GCFlag" -> False|>,
"Meta" -> <|
"DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
AspectRatio->1.,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
TagBox[
RowBox[{"\[Rho]", "(",
TagBox[
TagBox["\[Lambda]", HoldForm], HoldForm], ")"}], HoldForm],
TraditionalForm], None}, {
FormBox[
TagBox[
TagBox[
TagBox["\[Lambda]", HoldForm], HoldForm], HoldForm], TraditionalForm],
None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{{0}, {0}},
GridLinesStyle->GrayLevel[0],
ImagePadding->All,
ImageSize->165,
LabelStyle->{FontFamily -> "Times",
GrayLevel[0], FontSize -> 11},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-0.2499998724489796, 5.99999987244898}, {-0.025, 0.39}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.9272739527356052`*^9, 3.927273997648509*^9}},
CellLabel->
"Out[225]=",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/msg_marg_params.pdf\
\>\"", ",", "mplot1"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/msg_marg_spectra.\
pdf\>\"", ",", "mplot2"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/msg_marg_legend.pdf\
\>\"", ",", "mlegend"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.9272696181002073`*^9, 3.927269657220293*^9}, {
3.927270269287866*^9, 3.927270282296212*^9}},
CellLabel->
"In[226]:=",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"]
}, Open ]]
},
WindowSize->{952.5, 1023.75},
WindowMargins->{{0, Automatic}, {-537.75, -1.5}},
FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"fe7785c4-a5eb-46c5-8188-772697b31ba4"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 153, 3, 50, "Section",ExpressionUUID->"926df485-ea0b-4c71-a1d6-03ba4988e06d"],
Cell[736, 27, 221, 4, 22, "Input",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"],
Cell[960, 33, 605, 12, 22, "Input",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"],
Cell[1568, 47, 750, 18, 53, "Input",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"]
}, Open ]],
Cell[CellGroupData[{
Cell[2355, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"],
Cell[2529, 75, 899, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"],
Cell[CellGroupData[{
Cell[3453, 108, 2084, 50, 58, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"],
Cell[5540, 160, 29585, 583, 177, "Output",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"]
}, Open ]],
Cell[CellGroupData[{
Cell[35162, 748, 355, 7, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"],
Cell[35520, 757, 492, 7, 25, "Output",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"]
}, Open ]],
Cell[36027, 767, 435, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"],
Cell[36465, 781, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"],
Cell[36780, 791, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"],
Cell[CellGroupData[{
Cell[37481, 814, 196, 3, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"],
Cell[37680, 819, 217, 3, 25, "Output",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"]
}, Open ]],
Cell[37912, 825, 2505, 60, 77, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"],
Cell[40420, 887, 5604, 139, 228, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"],
Cell[46027, 1028, 7652, 192, 311, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"],
Cell[CellGroupData[{
Cell[53704, 1224, 694, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"],
Cell[54401, 1237, 32305, 586, 74, "Output",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"]
}, Open ]],
Cell[CellGroupData[{
Cell[86743, 1828, 676, 13, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"],
Cell[87422, 1843, 31492, 576, 74, "Output",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"]
}, Open ]],
Cell[CellGroupData[{
Cell[118951, 2424, 725, 13, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"],
Cell[119679, 2439, 31656, 579, 74, "Output",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"]
}, Open ]],
Cell[151350, 3021, 795, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"]
}, Open ]],
Cell[CellGroupData[{
Cell[152182, 3045, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"],
Cell[152342, 3050, 6531, 182, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"],
Cell[158876, 3234, 1566, 47, 53, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"],
Cell[160445, 3283, 701, 18, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"],
Cell[CellGroupData[{
Cell[161171, 3305, 237, 4, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"],
Cell[161411, 3311, 1395, 30, 111, "Output",ExpressionUUID->"ab6f4526-c3bb-4b3a-81ed-e5649ee31393"]
}, Open ]],
Cell[CellGroupData[{
Cell[162843, 3346, 468, 12, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"],
Cell[163314, 3360, 1401, 31, 111, "Output",ExpressionUUID->"f0727734-e4df-49a4-948d-8f277e06e8c3"]
}, Open ]],
Cell[CellGroupData[{
Cell[164752, 3396, 710, 20, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"],
Cell[165465, 3418, 623, 9, 25, "Output",ExpressionUUID->"1ba86785-13f6-440b-acc6-140d6fc7710d"]
}, Open ]],
Cell[166103, 3430, 3806, 98, 110, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"],
Cell[CellGroupData[{
Cell[169934, 3532, 929, 26, 24, "Input",ExpressionUUID->"441c736d-f94a-4b61-ae4a-050ffb34f1d4"],
Cell[170866, 3560, 4888, 136, 135, "Output",ExpressionUUID->"0fe05580-3c79-4e5d-9205-fc1ac479e5a6"]
}, Open ]],
Cell[CellGroupData[{
Cell[175791, 3701, 994, 24, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"],
Cell[176788, 3727, 6520, 175, 141, "Output",ExpressionUUID->"4d658288-3cec-4eb5-98c5-3d00b7ee767f"]
}, Open ]],
Cell[CellGroupData[{
Cell[183345, 3907, 906, 25, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"],
Cell[184254, 3934, 3889, 115, 89, "Output",ExpressionUUID->"77a1ebce-86f9-4b90-a78a-3119e0ea33a9"]
}, Open ]],
Cell[188158, 4052, 984, 20, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"],
Cell[189145, 4074, 2604, 54, 41, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"],
Cell[CellGroupData[{
Cell[191774, 4132, 419, 10, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"],
Cell[192196, 4144, 5741, 144, 309, "Output",ExpressionUUID->"c03390ca-902f-4044-8505-354784ced201"]
}, Open ]],
Cell[CellGroupData[{
Cell[197974, 4293, 431, 10, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"],
Cell[198408, 4305, 11240, 318, 390, "Output",ExpressionUUID->"c4a79746-5ea4-4897-b93e-15c55d36d8ed"]
}, Open ]],
Cell[CellGroupData[{
Cell[209685, 4628, 472, 12, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"],
Cell[210160, 4642, 1369, 36, 27, "Output",ExpressionUUID->"36d18a4d-87f3-428e-a686-2a39a067e0b6"]
}, Open ]],
Cell[CellGroupData[{
Cell[211566, 4683, 947, 20, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"],
Cell[212516, 4705, 822, 16, 22, "Message",ExpressionUUID->"cdf4559f-03c0-42c4-9176-18b5009a37cf"]
}, Open ]],
Cell[213353, 4724, 1106, 22, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"],
Cell[214462, 4748, 3835, 83, 58, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"],
Cell[CellGroupData[{
Cell[218322, 4835, 1251, 26, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"],
Cell[219576, 4863, 1698, 38, 38, "Output",ExpressionUUID->"47691ab5-e9b8-4c29-9c2e-87886cec4f26"]
}, Open ]],
Cell[221289, 4904, 964, 25, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"],
Cell[222256, 4931, 358, 9, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"],
Cell[CellGroupData[{
Cell[222639, 4944, 178, 3, 22, "Input",ExpressionUUID->"18644ace-46f3-463e-bb29-b07ed4d9811c"],
Cell[222820, 4949, 25956, 544, 622, "Output",ExpressionUUID->"22aca13c-5dae-4ac2-8dc1-059e767b7a58"]
}, Open ]],
Cell[248791, 5496, 886, 18, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"],
Cell[CellGroupData[{
Cell[249702, 5518, 3660, 86, 125, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"],
Cell[253365, 5606, 3554, 68, 90, "Output",ExpressionUUID->"d807d019-8ba4-4c91-8850-4ccda5fd9c8e"]
}, Open ]],
Cell[CellGroupData[{
Cell[256956, 5679, 2809, 62, 72, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"],
Cell[259768, 5743, 702, 14, 36, "Message",ExpressionUUID->"4692e6b0-96ac-4677-8a36-e5e38fc7acee"],
Cell[260473, 5759, 702, 14, 36, "Message",ExpressionUUID->"fd1344b0-e7b7-423b-8b2f-4e71acb0f17c"],
Cell[261178, 5775, 702, 14, 36, "Message",ExpressionUUID->"795d0375-6c9a-420c-8812-2ab30333bc33"],
Cell[261883, 5791, 573, 12, 22, "Message",ExpressionUUID->"15ea9d46-2e6b-4e49-92b8-ca963c9b6130"]
}, Open ]],
Cell[CellGroupData[{
Cell[262493, 5808, 1903, 52, 70, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"],
Cell[264399, 5862, 3400, 89, 136, "Output",ExpressionUUID->"8e088654-6144-4e7e-ae52-b08db69f12e9"]
}, Open ]],
Cell[267814, 5954, 1579, 40, 72, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"],
Cell[CellGroupData[{
Cell[269418, 5998, 306, 7, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"],
Cell[269727, 6007, 75728, 1307, 183, "Output",ExpressionUUID->"88fd1897-8c0a-468d-9d2b-390b68a5128e"]
}, Open ]],
Cell[CellGroupData[{
Cell[345492, 7319, 23733, 404, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"],
Cell[369228, 7725, 23710, 404, 177, "Output",ExpressionUUID->"258a3fb8-1858-449e-81cf-7305a0050158"]
}, Open ]],
Cell[CellGroupData[{
Cell[392975, 8134, 3688, 86, 104, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"],
Cell[396666, 8222, 631, 13, 36, "Message",ExpressionUUID->"1dbf7ac6-ed08-415b-9217-21822168aafb"],
Cell[397300, 8237, 633, 13, 36, "Message",ExpressionUUID->"730f5176-d4ff-4335-8127-b006765df617"],
Cell[397936, 8252, 631, 13, 36, "Message",ExpressionUUID->"65f2ef6d-d552-46ba-88a6-14db70c55524"],
Cell[398570, 8267, 500, 11, 22, "Message",ExpressionUUID->"ed1cd31f-d5b3-48f5-9989-05bd6a911b44"]
}, Open ]],
Cell[CellGroupData[{
Cell[399107, 8283, 574, 16, 24, "Input",ExpressionUUID->"f60a2b45-e619-4e66-a5fe-f654a250e3c1"],
Cell[399684, 8301, 258, 6, 35, "Output",ExpressionUUID->"8c46bbcd-bf33-48d3-96cc-0fe08f4e2793"]
}, Open ]],
Cell[CellGroupData[{
Cell[399979, 8312, 672, 18, 24, "Input",ExpressionUUID->"966871e9-cb76-4279-9fae-2e272197164a"],
Cell[400654, 8332, 409, 8, 35, "Output",ExpressionUUID->"efa626f7-90bb-4260-b69d-c55baf79ab36"]
}, Open ]],
Cell[CellGroupData[{
Cell[401100, 8345, 574, 16, 24, "Input",ExpressionUUID->"d19d89e4-a282-47a0-a129-6bfc594811ce"],
Cell[401677, 8363, 309, 7, 35, "Output",ExpressionUUID->"cdd73faa-648d-4c28-98b3-a11015b0f2a1"]
}, Open ]],
Cell[CellGroupData[{
Cell[402023, 8375, 758, 19, 22, "Input",ExpressionUUID->"0a707b26-1c87-4e49-9fde-e91e569d127e"],
Cell[402784, 8396, 13360, 311, 72, "Output",ExpressionUUID->"494215f1-a332-49c8-88a1-c5b4ad751877"]
}, Open ]],
Cell[CellGroupData[{
Cell[416181, 8712, 3438, 82, 53, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"],
Cell[419622, 8796, 243041, 4060, 145, "Output",ExpressionUUID->"0d7a7567-3ca1-43a1-b591-9936a69f4cc2"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[662712, 12862, 166, 3, 50, "Section",ExpressionUUID->"e8e3024e-103e-44c3-bff6-eeb43f1280c8"],
Cell[662881, 12867, 1924, 54, 35, "Input",ExpressionUUID->"01b4718d-1b06-4ca9-9828-eb7538126c81"],
Cell[CellGroupData[{
Cell[664830, 12925, 683, 19, 22, "Input",ExpressionUUID->"18b98bab-0eb8-4c66-8662-8b5e34efa820"],
Cell[665516, 12946, 43803, 825, 393, "Output",ExpressionUUID->"c1529933-4912-4020-9a36-126199861756"]
}, Open ]],
Cell[709334, 13774, 3358, 76, 53, "Input",ExpressionUUID->"54eb6310-6546-48ff-bb13-776eec083f58"],
Cell[CellGroupData[{
Cell[712717, 13854, 1620, 42, 41, "Input",ExpressionUUID->"dfdd1eea-966a-4bd0-8f13-2b14628904cd"],
Cell[714340, 13898, 36033, 662, 183, "Output",ExpressionUUID->"c58afa76-8ece-4937-b24c-29d3c1ba58fd"]
}, Open ]],
Cell[CellGroupData[{
Cell[750410, 14565, 618, 17, 22, "Input",ExpressionUUID->"f71f24e9-9817-4053-9bea-a250d010efff"],
Cell[751031, 14584, 87714, 1572, 288, "Output",ExpressionUUID->"b61fdba8-e6cc-4e49-8ada-29b397873cb1"]
}, Open ]],
Cell[CellGroupData[{
Cell[838782, 16161, 707, 19, 22, "Input",ExpressionUUID->"de157c7b-b709-4e1e-8df1-e3e28f52b43f"],
Cell[839492, 16182, 44199, 801, 179, "Output",ExpressionUUID->"ee7cf310-ffc9-4000-8be1-72457e8e1cb8"]
}, Open ]],
Cell[CellGroupData[{
Cell[883728, 16988, 703, 20, 35, "Input",ExpressionUUID->"c481b209-2bcd-4c5b-9300-64e792165889"],
Cell[884434, 17010, 191, 3, 25, "Output",ExpressionUUID->"e229148f-e3cd-49b3-a2a8-d25d53f79d45"]
}, Open ]],
Cell[884640, 17016, 480, 14, 39, "Input",ExpressionUUID->"f117b50a-92dc-4e32-abab-3922821a7857"],
Cell[CellGroupData[{
Cell[885145, 17034, 4572, 110, 132, "Input",ExpressionUUID->"ac3f0bd9-271b-4050-a7c4-8134f5842c06"],
Cell[889720, 17146, 168535, 2857, 145, "Output",ExpressionUUID->"1b504264-fa72-481b-b85f-43a544e0eee7"]
}, Open ]],
Cell[1058270, 20006, 770, 19, 53, "Input",ExpressionUUID->"c4b7a709-0c12-406e-817b-d5ab6248e215"]
}, Open ]]
}
]
*)
|