1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
\documentclass[fleqn,a4paper]{article}
\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
\usepackage[T1]{fontenc} % vector fonts plz
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
\usepackage{newtxtext,newtxmath} % Times for PR
\usepackage{appendix}
\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
urlcolor=MidnightBlue,
citecolor=MidnightBlue,
filecolor=MidnightBlue,
linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\usepackage[
style=phys,
eprint=true,
maxnames = 100
]{biblatex}
\usepackage{anyfontsize,authblk}
\usepackage{tikz}
\addbibresource{marginal.bib}
\begin{document}
\title{
None yet
}
\author{Jaron Kent-Dobias}
\affil{Istituto Nazionale di Fisica Nucleare, Sezione di Roma I}
%\maketitle
%\begin{abstract}
%\end{abstract}
An arbitrary function $g$ of the minimum eigenvalue of a matrix $A$ can be expressed as
\begin{equation}
g(\lambda_\textrm{min}(A))
=\lim_{\beta\to\infty}\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{-\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{-\beta\mathbf x'^TA\mathbf x'}}g\left(\frac{\mathbf x^TA\mathbf x}N\right)
\end{equation}
\begin{equation}
\lim_{\beta\to\infty}\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{-\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{-\beta\mathbf x'^TA\mathbf x'}}
=d\mathbf x\,\frac12\left[\delta(\mathbf x_\mathrm{min}(A)-\mathbf x)+\delta(\mathbf x_\mathrm{min}(A)+\mathbf x)\right]
\end{equation}
The first equality makes use of the normalized eigenvector $x_\mathrm{min}(A)$
associated with the minimum eigenvalue. By definition,
$x_\mathrm{min}(A)^TAx_\mathrm{min}(A)=x_\mathrm{min}(A)^Tx_\mathrm{min}(A)\lambda_\mathrm{min}(A)=N\lambda_\mathrm{min}(A)$
assuming the normalization is $\|x_\mathrm{min}(A)\|^2=N$. The second equality
extends a technique first introduced in \cite{Ikeda_2023_Bose-Einstein-like}
and used in \cite{me}. A Boltzmann distribution is introduced over a spherical
model whose Hamiltonian is quadratic with interaction matrix given by $A$. In
the limit of zero temperature, the measure will concentrate on the ground
states of the model, which correspond with the eigenvectors $\pm x_\mathrm{min}$
associated with the minimal eigenvalue $\lambda_\mathrm{min}$.
Consider a matrix $A=B+\omega I$ for $B$ a GOE matrix with entries whose variance is $\sigma^2/N$. As an example, we compute
\begin{equation}
e^{NG_\sigma(\omega)}=\overline{\lim_{\beta\to\infty}\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{-\beta\mathbf x^T(B+\omega I)\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{-\beta\mathbf x'^T(B+\omega I)\mathbf x'}}\,\delta\big(\mathbf x^T(B+\omega I)\mathbf x\big)}
\end{equation}
where the overline is the average over $B$. Using replicas to treat the
denominator and transforming the $\delta$-function to its Fourier
representation, we have
\begin{equation}
e^{NG_\sigma(\omega)}=\overline{\lim_{\beta\to\infty}\lim_{n\to0}\int d\lambda\prod_{a=1}^n\left[d\mathbf x_a\,\delta(N-\mathbf x_a^T\mathbf x_a)\right]
\exp\left\{-\beta\sum_{a=1}^n\mathbf x_a^T(B+\omega I)\mathbf x_a+\lambda\mathbf x_1^T(B+\omega I)\mathbf x_1\right\}}
\end{equation}
Taking the average over $B$, we have
\begin{equation}
e^{NG_\sigma(\omega)}
=\lim_{\beta\to\infty}\lim_{n\to0}\int d\lambda\prod_{a=1}^n\left[d\mathbf x_a\,\delta(N-\mathbf x_a^T\mathbf x_a)\right]
\exp\left\{-Nn\beta\omega+N\lambda\omega+\frac{\sigma^2}{N}\left[\beta^2\sum_{ab}^n(\mathbf x_a^T\mathbf x_b)^2
-2\beta\lambda\sum_a^n(\mathbf x_a^T\mathbf x_1)^2
+\lambda^2N^2
\right]\right\}
\end{equation}
We make the Hubbard--Stratonovich transformation to the matrix field $Q_{ab}=\frac1N\mathbf x_a^T\mathbf x_b$. This gives
\begin{equation}
e^{NG_\sigma(\omega)}
=\lim_{\beta\to\infty}\lim_{n\to0}\int d\lambda\,dQ\,
\exp N\left\{
-n\beta\omega+\lambda\omega+\sigma^2\left[\beta^2\sum_{ab}^nQ_{ab}^2
+-\beta\lambda\sum_a^nQ_{1a}^2
+\lambda^2
\right]+\frac12\log\det Q\right\}
\end{equation}
where $Q_{aa}=1$ because of the spherical constraint. We can evaluate this
integral using the saddle point method. We make a replica symmetric ansatz for
$Q$, because this is a 2-spin model, but with the first row singled out because
of its unique coupling with $\lambda$. This gives
\begin{equation}
Q=\begin{bmatrix}
1&\tilde q_0&\tilde q_0&\cdots&\tilde q_0\\
\tilde q_0&1&q_0&\cdots&q_0\\
\tilde q_0&q_0&1&\ddots&q_0\\
\vdots&\vdots&\ddots&\ddots&\vdots\\
\tilde q_0&q_0&q_0&\cdots&q_0
\end{bmatrix}
\end{equation}
with $\sum_{ab}Q_{ab}^2=n+2(n-1)\tilde q_0^2+(n-1)(n-2)q_0^2$, $\sum_aQ_{1a}^2=1+(n-1)\tilde q_0^2$,
and
\begin{equation}
\log\det Q=(n-2)\log(1-q_0)+\log(1+(n-2)q_0-(n-1)\tilde q_0^2)
\end{equation}
Inserting these expressions and taking the limit of $n$ to zero, we find
\begin{equation}
\mathcal S(q_0,\tilde q_0,\lambda)=\lambda\omega+\sigma^2\left[
2\beta^2(q_0^2-\tilde q_0^2)-2\beta\lambda(1-\tilde q_0^2)+\lambda^2
\right]-\log(1-q_0)+\frac12\log(1-2q_0+\tilde q_0^2)
\end{equation}
The integral is then given by its value at the stationary point of this
expression with respect to its three arguments.
The extremal conditions are
\begin{align}
0&=\frac{\partial\mathcal S}{\partial q_0}
=\frac1{1-q_0}-\frac1{1-2q_0+\tilde q_0^2}+4\beta^2\sigma^2q_0 \\
0&=\frac{\partial\mathcal S}{\partial \tilde q_0}
=\frac{\tilde q_0}{1-2q_0+\tilde q_0^2}-4\sigma^2(\beta^2-\beta\lambda)\tilde q_0 \\
0&=\frac{\partial\mathcal S}{\partial\lambda}
=\omega+2\sigma^2\big(\lambda-\beta(1-\tilde q_0^2)\big)
\end{align}
We expect the overlaps to concentrate on one as $\beta$ goes to infinity. We therefore take
\begin{align}
q_0=1-y\beta^{-1}-z\beta^{-2}+O(\beta^{-3})
&&
\tilde q_0=1-\tilde y\beta^{-1}-\tilde z\beta^{-2}+O(\beta^{-3})
\end{align}
The first equations expanded in $\beta$ give
\begin{align}
&0=4\sigma^2\beta^2+\bigg(\frac1{y}-\frac12\frac1{y-\tilde y}-4y\sigma^2\bigg)\beta+O(\beta^0) \\
&0=-4\sigma^2\beta^2+\bigg(\frac12\frac1{y-\tilde y}+4\sigma^2(\lambda+\tilde y)\bigg)\beta+O(\beta^0)
\end{align}
One cannot satisfy this equation order-by-order in $\beta$. However, a solution
suggests itself: the expansion is singular when $\tilde y=y$. Making this
identification, we find instead
\begin{align}
&0=\left(4\sigma^2-\frac1{y^2+2(z-\tilde z)}\right)\beta^2+\left(\frac1y+\frac{2y\tilde z}{(y^2+2(z-\tilde z))^2}-4\sigma^2y\right)\beta+O(\beta^0) \\
&0=\left(-4\sigma^2+\frac1{y^2+2(z-\tilde z)}\right)\beta^2+\left(-\frac y{y^2+2(z-\tilde z)}-\frac{2y\tilde z}{(y^2+2(z-\tilde z))^2}+4\sigma^2(y+\lambda)\right)\beta+O(\beta^0)
\end{align}
Finally, expanding the equation for $\lambda$ to lowest order, we have
\begin{equation}
0=\omega+2\sigma^2(\lambda-2y)+O(\beta^{-1})
\end{equation}
Simultaneously solving these five equations stemming from the coefficients of $\beta$ for $y$, $z$, $\tilde z$, and $\lambda$, we have
\begin{align}
\lambda=-\frac1\sigma\sqrt{\frac{\omega^2}{(2\sigma)^2}-1}
&&
y=\frac1{2\sigma}\left(\frac{\omega}{2\sigma}-\sqrt{\frac{\omega^2}{(2\sigma)^2}-1}\right)
\\
z=\frac1{2\sigma^2}\left(1-\frac{\omega^2}{(2\sigma)^2}\right)
&&
\tilde z=\frac1{4\sigma^2}\left(1-\frac{\omega}{2\sigma}\left(\frac\omega{2\sigma}+\sqrt{\frac{\omega^2}{(2\sigma)^2}-1}\right)\right)
\end{align}
Inserting this solution into $\mathcal S$ and taking the limit of $\beta$ to zero, we find
\begin{equation}
G_\sigma(\omega)=-\frac{\omega}{2\sigma}\sqrt{\frac{\omega^2}{(2\sigma)^2}-1}
+\log\left[
\frac{\omega}{2\sigma}+\sqrt{\frac{\omega^2}{(2\sigma)^2}-1}
\right]
\end{equation}
This function is plotted in Fig. For $\omega<2\sigma$ $G_\sigma(\omega)$ has an
imaginary part, which makes any additional integral over $\omega$ highly
oscillatory. This indicates that the existence of a marginal minimum for this
parameter value corresponds with a large deviation that grows faster than $N$,
rather like $N^2$, since in this regime the bulk of the average spectrum is
over zero and therefore extensively many eigenvalues have to have large
deviations in order for the smallest eigenvalue to be zero. For
$\omega\geq2\sigma$ this function gives the large deviation function for the
probability of seeing a zero eigenvalue given the shift $\omega$.
$\omega=2\sigma$ is the maximum of the function with a real value, and
corresponds to the intersection of the average spectrum with zero.
\begin{equation}
H(\mathbf s)+\sum_{i=1}^r\omega_ig_i(\mathbf s)
\end{equation}
\begin{align}
\nabla H(\mathbf s,\pmb\omega)=\partial H(\mathbf s)+\sum_{i=1}^r\omega_i\partial g_i(\mathbf s)
&&
\operatorname{Hess}H(\mathbf s,\pmb\omega)=\partial\partial H(\mathbf s)+\sum_{i=1}^r\omega_i\partial\partial g_i(\mathbf s)
\end{align}
\begin{equation}
d\mu_H(\mathbf s,\pmb\omega)=d\mathbf s\,d\pmb\omega\,\delta\big(\nabla H(\mathbf s,\pmb\omega)\big)\,\delta\big(\mathbf g(\mathbf s)\big)\,\big|\det\operatorname{Hess}H(\mathbf s,\pmb\omega)\big|
\end{equation}
\begin{equation}
d\mu_H(\mathbf s,\pmb\omega\mid E)=d\mu_H(\mathbf s,\pmb\omega)\,\delta\big(NE-H(\mathbf s)\big)
\end{equation}
\begin{equation}
\begin{aligned}
&\mathcal N_\text{marginal}(E)
=\int d\mu_H(\mathbf s,\pmb\omega\mid E)\,\delta\big(N\lambda_\mathrm{min}(\operatorname{Hess}H(\mathbf s,\pmb\omega))\big) \\
&=\lim_{\beta\to\infty}\int d\mu_H(\mathbf s,\pmb\omega\mid E)
\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)\delta(\mathbf x^T\partial\mathbf g(\mathbf s))e^{\beta\mathbf x^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x}}
{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')\delta(\mathbf x'^T\partial\mathbf g(\mathbf s))e^{\beta\mathbf x'^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x'}}
\delta\big(\mathbf x^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x\big)
\end{aligned}
\end{equation}
where the $\delta$-functions
\begin{equation}
\delta(\mathbf x^T\partial\mathbf g(\mathbf s))
=\prod_{s=1}^r\delta(\mathbf x^T\partial g_i(\mathbf s))
\end{equation}
ensure that the integrals are constrained to the tangent space of the configuration manifold at the point $\mathbf s$.
\begin{equation}
\begin{aligned}
&\Sigma_\text{marginal}(E)
=\frac1N\overline{\log\mathcal N_\text{marginal}(E)} \\
&=\lim_{\beta\to\infty}\lim_{n\to0}\frac\partial{\partial n}\int\prod_{a=1}^n\left[d\mu_H(\mathbf s_a,\pmb\omega_a\mid E)\lim_{m_a\to0}
\left(\prod_{b=1}^{m_a} d\mathbf x_a^b\,\delta(N-(\mathbf x_a^b)^T\mathbf x_a^b)\delta((\mathbf x_a^b)^T\partial\mathbf g(\mathbf s_a))e^{\beta(\mathbf x_a^b)^T\operatorname{Hess}H(\mathbf s_a,\pmb\omega_a)\mathbf x_a^b}\right)\,\delta\big((\mathbf x_a^1)^T\operatorname{Hess}H(\mathbf s_a,\pmb\omega_a)\mathbf x_a^1\big)\right]
\end{aligned}
\end{equation}
\section{Spherical model}
\begin{align}
C_{ab}=\frac1N\mathbf s_a\cdot\mathbf s_b
&&
R_{ab}=-i\frac1N\mathbf s_a\cdot\hat{\mathbf s}_b
&&
D_{ab}=\frac1N\hat{\mathbf s}_a\cdot\hat{\mathbf s}_b
\\
A_{ab}^{cd}=\frac1N\mathbf x_a^c\cdot\mathbf x_b^d
&&
X^c_{ab}=\frac1N\mathbf s_a\cdot\mathbf x_b^c
&&
\hat X^c_{ab}=\frac1N\hat{\mathbf s}_a\cdot\mathbf x_b^c
\end{align}
\begin{equation}
\begin{aligned}
&\sum_{ab}^n\left[\beta\omega A_{aa}^{bb}+\hat x\omega A_{aa}^{11}+\beta^2f''(1)\sum_{cd}^m(A_{ab}^{cd})^2+\hat x^2f''(1)(A_{ab}^{11})^2+\beta\hat xf''(1)\sum_c^m A_{ab}^{1c}\right]\\
&+\hat\beta^2f(C_{ab})+(2\hat\beta(R_{ab}-F_{ab})-D_{ab})f'(C_{ab})+(R_{ab}^2-F_{ab}^2)f''(C_{ab})
+\log\det\begin{bmatrix}C&iR\\iR&D\end{bmatrix}-\log\det F
\end{aligned}
\end{equation}
$X^a$ is $n\times m_a$, and $A^{ab}$ is $m_a\times m_b$.
\begin{equation}
\begin{bmatrix}
C&iR&X^1&\cdots&X^n \\
iR&D&i\hat X^1&\cdots&i\hat X^m\\
(X^1)^T&i(\hat X^1)^T&A^{11}&\cdots&A^{1n}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
(X^n)^T&i(\hat X^n)^T&A^{n1}&\cdots&A^{nn}
\end{bmatrix}
\end{equation}
$X_{ab}^c$ will be nonzero if the lowest eigenvector of the hessian at the
point $\mathbf s_c$ are correlated with the direction of the point $\mathbf
s_a$. Since the eigenvector problem is always expected to be replica symmetric,
we expect no $b$-dependence of this matrix. $A^{aa}$ is the usual
replica-symmetric overlap matrix of the spherical two-spin problem. $A^{ab}$
describes overlaps between eigenvectors at different stationary points and should be a constant $m_a\times m_b$ matrix.
We will discuss at the end of this paper when these order parameters can be expected to be nonzero, but in this and most isotropic problems all of the $X$s, $\hat X$s, and $A^{ab}$ for $a\neq b$ are zero.
\begin{equation}
\Sigma_\textrm{marginal}(E)
=\operatorname{max}_\omega\big[\Sigma(E,\omega)+G_{\sqrt{f''(1)}}(\omega)\big]
\end{equation}
where the maximum over $\omega$ needs to lie at a real value.
\section{Superfield formalism}
\begin{equation}
\pmb\phi_a(1)=\pmb\sigma_a+\bar\theta(1)\pmb\eta_a+\bar{\pmb\eta}_a\theta(1)+\hat{\pmb\sigma}_a\bar\theta(1)\theta(1)
\end{equation}
\begin{equation}
\pmb\xi_b(1)=\pmb\sigma_1+\mathbf x_b\bar\vartheta(1)\theta(1)+\mathbf x_b\bar\theta(1)\vartheta(1)
\end{equation}
\begin{equation}
\int d\theta\,d\bar\theta\,\left[
(1+\hat\beta\bar\theta\theta)H(\pmb\phi)
+\int d\vartheta\,d\bar\vartheta\,H(\pmb\xi)
\right]
=\hat{\pmb\sigma}^T\partial H(\pmb\sigma)
+\pmb\eta^T\partial\partial H(\pmb\sigma)\pmb\eta
+\beta\mathbf x^T\partial\partial H(\pmb\sigma)\mathbf x
+\hat\beta H(\pmb\sigma)
\end{equation}
\begin{equation}
\int d1\,d2\,(1+\hat\beta\bar\theta(1)\theta(1))(1+\hat\beta\bar\theta(2)\theta(2))
f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)
+\int d1\,(1+\hat\beta\bar\theta(1)\theta(1))f\left(\frac{\pmb\phi_a(1)\cdot\pmb\xi_b(2)}N\right)
\end{equation}
\section{Twin spherical model}
$\Omega=S^{N-1}\times S^{N-1}$
\begin{equation}
H(\pmb\sigma)=H_1(\pmb\sigma^{(1)})+H_2(\pmb\sigma^{(2)})+\epsilon\pmb\sigma^{(1)}\cdot\pmb\sigma^{(2)}
\end{equation}
\begin{equation}
\overline{H_s(\pmb\sigma_1)H_s(\pmb\sigma_2)}
=Nf_s\left(\frac{\pmb\sigma_1\cdot\pmb\sigma_2}N\right)
\end{equation}
\begin{equation}
\mathcal S(C,R,D,W,\hat\beta,\omega)
=\frac12\frac1n
\sum_{ab}\left(
\hat\beta^2f(C_{ab})+(2\hat\beta R_{ab}-D_{ab})f'(C_{ab})+(R_{ab}^2-W_{ab}^2)f''(C_{ab})
\right)
\end{equation}
\begin{equation}
\mathcal S(C^{11},R^{11},D^{11},W^{11},\hat\beta)+\mathcal S(C^{22},R^{22},D^{22},W^{22},\hat\beta)
-\epsilon(r_{12}+r_{21})-\omega_1(r^{11}_d-w^{11}_d)-\omega_2(r^{22}_d-w^{22}_d)+\hat\beta E
+\frac12\log\det\begin{bmatrix}C^{11}&iR^{11}\\iR^{11}&D^{11}\end{bmatrix}
+\frac12\log\det\left(
\begin{bmatrix}C^{22}-q_{12}^2C^{11}&iR^{22}\\iR^{22}&D^{22}\end{bmatrix}
\right)
-\log\det(W^{11}W^{22}+W^{12}W^{21})
\end{equation}
\begin{equation}
\begin{aligned}
&\sum_a^n\left[\hat q_a(Q^{11}_{aa}+Q^{22}_{aa}-1)-\beta(\omega_1Q^{11}_{aa}+\omega_2Q^{22}_{aa}+2\epsilon Q^{12}_{aa})\right]
+\lambda(\omega_1Q^{11}_{11}+\omega_2Q^{22}_{11}+2\epsilon Q^{12}_{11}) \\
&+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{ab}^n(Q^{ii}_{ab})^2-2\beta\lambda\sum_a^n(Q^{ii}_{1a})^2+\lambda^2(Q^{ii}_{11})^2\right]
+\frac12\log\det\begin{bmatrix}
Q^{11}&Q^{12}\\
Q^{12}&Q^{22}
\end{bmatrix}
\end{aligned}
\end{equation}
\begin{equation}
\log\det\begin{bmatrix}
Q^{11}&Q^{12}\\
Q^{12}&Q^{22}
\end{bmatrix}
+\log\det(Q^{11}Q^{22}-Q^{12}Q^{12})
\end{equation}
\section{Multi-species spherical model}
We consider models whose configuration space consists of the product of $r$
spheres, each with its own dimension $N_s$, or
$\Omega=S^{N_1-1}\times\cdots\times S^{N_r-1}$. Coordinates on this space we
will typically denote
$\pmb\sigma=(\pmb\sigma^{(1)},\ldots,\pmb\sigma^{(r)})\in\Omega$, with
$\pmb\sigma^{(s)}\in S^{N_s-1}$ denoting the subcomponent restricted to a
specific subsphere. The model can be thought of as consisting of centered
random functions $H:\Omega\to\mathbb R$ with covariance
\begin{equation}
\overline{
H(\pmb\sigma_1)H(\pmb\sigma_2)
}
=f\left(
\frac{\pmb\sigma^{(1)}_1\cdot\pmb\sigma^{(1)}_2}{N_1},
\ldots,
\frac{\pmb\sigma^{(r)}_1\cdot\pmb\sigma^{(r)}_2}{N_r}
\right)
\end{equation}
where $f:[-1,1]^r\to\mathbb R$ is an $r$-component function of the overlaps that defines the model.
\printbibliography
\end{document}
|