1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
\documentclass[fleqn,a4paper]{article}
\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
\usepackage[T1]{fontenc} % vector fonts plz
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
\usepackage{newtxtext,newtxmath} % Times for PR
\usepackage{appendix}
\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
urlcolor=MidnightBlue,
citecolor=MidnightBlue,
filecolor=MidnightBlue,
linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\usepackage[
style=phys,
eprint=true,
maxnames = 100
]{biblatex}
\usepackage{anyfontsize,authblk}
\usepackage{tikz}
\addbibresource{marginal.bib}
\begin{document}
\title{
None yet
}
\author{Jaron Kent-Dobias}
\affil{Istituto Nazionale di Fisica Nucleare, Sezione di Roma I}
%\maketitle
%\begin{abstract}
%\end{abstract}
An arbitrary function $g$ of the minimum eigenvalue of a matrix $A$ can be expressed as
\begin{equation}
g(\lambda_\textrm{min}(A))
=\lim_{\beta\to\infty}\int\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{\beta\mathbf x'^TA\mathbf x'}}g\left(\frac{\mathbf x^TA\mathbf x}N\right)
\end{equation}
\begin{equation}
\lim_{\beta\to\infty}\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)e^{\beta\mathbf x^TA\mathbf x}}{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')e^{\beta\mathbf x'^TA\mathbf x'}}
=d\mathbf x\,\frac12\left[\delta(\mathbf x_\mathrm{min}(A)-\mathbf x)+\delta(\mathbf x_\mathrm{min}(A)+\mathbf x)\right]
\end{equation}
The first equality makes use of the normalized eigenvector $x_\mathrm{min}(A)$
associated with the minimum eigenvalue. By definition,
$x_\mathrm{min}(A)^TAx_\mathrm{min}(A)=x_\mathrm{min}(A)^Tx_\mathrm{min}(A)\lambda_\mathrm{min}(A)=N\lambda_\mathrm{min}(A)$
assuming the normalization is $\|x_\mathrm{min}(A)\|^2=N$. The second equality
extends a technique first introduced in \cite{Ikeda_2023_Bose-Einstein-like}
and used in \cite{me}. A Boltzmann distribution is introduced over a spherical
model whose Hamiltonian is quadratic with interaction matrix given by $A$. In
the limit of zero temperature, the measure will concentrate on the ground
states of the model, which correspond with the eigenvectors $\pm x_\mathrm{min}$
associated with the minimal eigenvalue $\lambda_\mathrm{min}$.
\begin{equation}
H(\mathbf s)+\sum_{i=1}^r\omega_ig_i(\mathbf s)
\end{equation}
\begin{align}
\nabla H(\mathbf s,\pmb\omega)=\partial H(\mathbf s)+\sum_{i=1}^r\omega_i\partial g_i(\mathbf s)
&&
\operatorname{Hess}H(\mathbf s,\pmb\omega)=\partial\partial H(\mathbf s)+\sum_{i=1}^r\omega_i\partial\partial g_i(\mathbf s)
\end{align}
\begin{equation}
d\mu_H(\mathbf s,\pmb\omega)=d\mathbf s\,d\pmb\omega\,\delta\big(\nabla H(\mathbf s,\pmb\omega)\big)\,\delta\big(\mathbf g(\mathbf s)\big)\,\big|\det\operatorname{Hess}H(\mathbf s,\pmb\omega)\big|
\end{equation}
\begin{equation}
d\mu_H(\mathbf s,\pmb\omega\mid E)=d\mu_H(\mathbf s,\pmb\omega)\,\delta\big(NE-H(\mathbf s)\big)
\end{equation}
\begin{equation}
\begin{aligned}
&\mathcal N_\text{marginal}(E)
=\int d\mu_H(\mathbf s,\pmb\omega\mid E)\,\delta\big(N\lambda_\mathrm{min}(\operatorname{Hess}H(\mathbf s,\pmb\omega))\big) \\
&=\lim_{\beta\to\infty}\int d\mu_H(\mathbf s,\pmb\omega\mid E)
\frac{d\mathbf x\,\delta(N-\mathbf x^T\mathbf x)\delta(\mathbf x^T\partial\mathbf g(\mathbf s))e^{\beta\mathbf x^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x}}
{\int d\mathbf x'\,\delta(N-\mathbf x'^T\mathbf x')\delta(\mathbf x'^T\partial\mathbf g(\mathbf s))e^{\beta\mathbf x'^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x'}}
\delta\big(\mathbf x^T\operatorname{Hess}H(\mathbf s,\pmb\omega)\mathbf x\big)
\end{aligned}
\end{equation}
where the $\delta$-functions
\begin{equation}
\delta(\mathbf x^T\partial\mathbf g(\mathbf s))
=\prod_{s=1}^r\delta(\mathbf x^T\partial g_i(\mathbf s))
\end{equation}
ensure that the integrals are constrained to the tangent space of the configuration manifold at the point $\mathbf s$.
\begin{equation}
\begin{aligned}
&\Sigma_\text{marginal}(E)
=\frac1N\overline{\log\mathcal N_\text{marginal}(E)} \\
&=\lim_{\beta\to\infty}\lim_{n\to0}\frac\partial{\partial n}\int\prod_{a=1}^n\left[d\mu_H(\mathbf s_a,\pmb\omega_a\mid E)\lim_{m_a\to0}
\left(\prod_{b=1}^{m_a} d\mathbf x_a^b\,\delta(N-(\mathbf x_a^b)^T\mathbf x_a^b)\delta((\mathbf x_a^b)^T\partial\mathbf g(\mathbf s_a))e^{\beta(\mathbf x_a^b)^T\operatorname{Hess}H(\mathbf s_a,\pmb\omega_a)\mathbf x_a^b}\right)\,\delta\big((\mathbf x_a^1)^T\operatorname{Hess}H(\mathbf s_a,\pmb\omega_a)\mathbf x_a^1\big)\right]
\end{aligned}
\end{equation}
\section{Spherical model}
\begin{align}
C_{ab}=\frac1N\mathbf s_a\cdot\mathbf s_b
&&
R_{ab}=-i\frac1N\mathbf s_a\cdot\hat{\mathbf s}_b
&&
D_{ab}=\frac1N\hat{\mathbf s}_a\cdot\hat{\mathbf s}_b
\\
A_{ab}^{cd}=\frac1N\mathbf x_a^c\cdot\mathbf x_b^d
&&
X^c_{ab}=\frac1N\mathbf s_a\cdot\mathbf x_b^c
&&
\hat X^c_{ab}=\frac1N\hat{\mathbf s}_a\cdot\mathbf x_b^c
\end{align}
\begin{equation}
\begin{aligned}
&\sum_{ab}^n\left[\beta\omega A_{aa}^{bb}+\hat x\omega A_{aa}^{11}+\beta^2f''(1)\sum_{cd}^m(A_{ab}^{cd})^2+\hat x^2f''(1)(A_{ab}^{11})^2+\beta\hat xf''(1)\sum_c^m A_{ab}^{1c}\right]\\
&+\hat\beta^2f(C_{ab})+(2\hat\beta(R_{ab}-F_{ab})-D_{ab})f'(C_{ab})+(R_{ab}^2-F_{ab}^2)f''(C_{ab})
+\log\det\begin{bmatrix}C&iR\\iR&D\end{bmatrix}-\log\det F
\end{aligned}
\end{equation}
$X^a$ is $n\times m_a$, and $A^{ab}$ is $m_a\times m_b$.
\begin{equation}
\begin{bmatrix}
C&iR&X^1&\cdots&X^n \\
iR&D&i\hat X^1&\cdots&i\hat X^m\\
(X^1)^T&i(\hat X^1)^T&A^{11}&\cdots&A^{1n}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
(X^n)^T&i(\hat X^n)^T&A^{n1}&\cdots&A^{nn}
\end{bmatrix}
\end{equation}
$X_{ab}^c$ will be nonzero if the lowest eigenvector of the hessian at the
point $\mathbf s_c$ are correlated with the direction of the point $\mathbf
s_a$. Since the eigenvector problem is always expected to be replica symmetric,
we expect no $b$-dependence of this matrix. $A^{aa}$ is the usual
replica-symmetric overlap matrix of the spherical two-spin problem. $A^{ab}$
describes overlaps between eigenvectors at different stationary points and should be a constant $m_a\times m_b$ matrix.
We will discuss at the end of this paper when these order parameters can be expected to be nonzero, but in this and most isotropic problems all of the $X$s, $\hat X$s, and $A^{ab}$ for $a\neq b$ are zero.
\begin{equation}
\begin{aligned}
&\sum_a^n m_a\beta\omega+m_1\hat x\omega+\sum_{a}^n\left[m_a\beta^2f''(1)(1+(m_a-1)a_0^2)+\hat x^2f''(1)m_a+\beta\hat xf''(1)(1+(m_a-1)a_0)\right]\\
&+\mathcal S(\hat\beta,C,R,D) -2\hat\beta F_{ab}f'(C_{ab})-F_{ab}^2f''(C_{ab})
-\log\det F
+mn\log(1-a_0)+mn\frac{a_0}{1-a_0}
\end{aligned}
\end{equation}
\section{Superfield formalism}
\begin{equation}
\pmb\phi_a(1)=\pmb\sigma_a+\bar\theta(1)\pmb\eta_a+\bar{\pmb\eta}_a\theta(1)+\hat{\pmb\sigma}_a\bar\theta(1)\theta(1)
\end{equation}
\begin{equation}
\pmb\xi_b(1)=\pmb\sigma_1+\mathbf x_b\bar\vartheta(1)\theta(1)+\mathbf x_b\bar\theta(1)\vartheta(1)
\end{equation}
\begin{equation}
\int d\theta\,d\bar\theta\,\left[
(1+\hat\beta\bar\theta\theta)H(\pmb\phi)
+\int d\vartheta\,d\bar\vartheta\,H(\pmb\xi)
\right]
=\hat{\pmb\sigma}^T\partial H(\pmb\sigma)
+\pmb\eta^T\partial\partial H(\pmb\sigma)\pmb\eta
+\beta\mathbf x^T\partial\partial H(\pmb\sigma)\mathbf x
+\hat\beta H(\pmb\sigma)
\end{equation}
\begin{equation}
\int d1\,d2\,(1+\hat\beta\bar\theta(1)\theta(1))(1+\hat\beta\bar\theta(2)\theta(2))
f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)
+\int d1\,(1+\hat\beta\bar\theta(1)\theta(1))f\left(\frac{\pmb\phi_a(1)\cdot\pmb\xi_b(2)}N\right)
\end{equation}
\section{Twin spherical model}
$\Omega=S^{N-1}\times S^{N-1}$
\begin{equation}
H(\pmb\sigma)=H_1(\pmb\sigma^{(1)})+H_2(\pmb\sigma^{(2)})+\epsilon\pmb\sigma^{(1)}\cdot\pmb\sigma^{(2)}
\end{equation}
\begin{equation}
\overline{H_s(\pmb\sigma_1)H_s(\pmb\sigma_2)}
=Nf_s\left(\frac{\pmb\sigma_1\cdot\pmb\sigma_2}N\right)
\end{equation}
\section{Multi-species spherical model}
We consider models whose configuration space consists of the product of $r$
spheres, each with its own dimension $N_s$, or
$\Omega=S^{N_1-1}\times\cdots\times S^{N_r-1}$. Coordinates on this space we
will typically denote
$\pmb\sigma=(\pmb\sigma^{(1)},\ldots,\pmb\sigma^{(r)})\in\Omega$, with
$\pmb\sigma^{(s)}\in S^{N_s-1}$ denoting the subcomponent restricted to a
specific subsphere. The model can be thought of as consisting of centered
random functions $H:\Omega\to\mathbb R$ with covariance
\begin{equation}
\overline{
H(\pmb\sigma_1)H(\pmb\sigma_2)
}
=f\left(
\frac{\pmb\sigma^{(1)}_1\cdot\pmb\sigma^{(1)}_2}{N_1},
\ldots,
\frac{\pmb\sigma^{(r)}_1\cdot\pmb\sigma^{(r)}_2}{N_r}
\right)
\end{equation}
where $f:[-1,1]^r\to\mathbb R$ is an $r$-component function of the overlaps that defines the model.
\printbibliography
\end{document}
|