summaryrefslogtreecommitdiff
path: root/doc/finite_states.rst
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-01-14 15:47:59 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-01-14 15:47:59 -0500
commit49ac78a6c04e215950bc9c0f97368605e63da15b (patch)
tree64b770c543a0c90bc7dcbc06ceaaa31e96e541ce /doc/finite_states.rst
parent994cbf1a3b611ff4c94ced3b1630e51fd249d7ed (diff)
downloadc++-49ac78a6c04e215950bc9c0f97368605e63da15b.tar.gz
c++-49ac78a6c04e215950bc9c0f97368605e63da15b.tar.bz2
c++-49ac78a6c04e215950bc9c0f97368605e63da15b.zip
Large refactoring around changes in the graph class.
- Graphs now use lists of references instead of vectors of indicies. - Vertices and edges have associated classes that can be given arbitrary properties via template specification. - All essential library headers have been combined into one, wolff.hpp.
Diffstat (limited to 'doc/finite_states.rst')
-rw-r--r--doc/finite_states.rst2
1 files changed, 1 insertions, 1 deletions
diff --git a/doc/finite_states.rst b/doc/finite_states.rst
index c36881e..66e34d2 100644
--- a/doc/finite_states.rst
+++ b/doc/finite_states.rst
@@ -5,7 +5,7 @@
Finite States
*************
-One of the slower steps in running the algorithm is taking the exponent involved in computing the bond activation probabilities for each prospective bond. When the spins in your system have a finite number of possible states, the algorithm can be sped up considerably by precomputing the bond activation probabilities for every possible pair of spins. Once the appropriate things have been defined for your model, the compile definition :c:macro:`WOLFF_USE_FINITE_STATES` can be set to automate this process. The provided model headers :file:`wolff/models/ising.hpp` and :file:`wolff/models/potts.hpp` demonstrate the expected usage.
+One of the slower steps in running the algorithm is taking the exponent involved in computing the bond activation probabilities for each prospective bond. When the spins in your system have a finite number of possible states, the algorithm can be sped up considerably by precomputing the bond activation probabilities for every possible pair of spins. Once the appropriate things have been defined for your model, the compile definition :c:macro:`WOLFF_USE_FINITE_STATES` can be set to automate this process. The provided model headers :file:`wolff_models/ising.hpp` and :file:`wolff_models/potts.hpp` demonstrate the expected usage.
Required Definitions
====================