summaryrefslogtreecommitdiff
path: root/lib/wolff_tools.c
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-02-02 18:33:22 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-02-02 18:33:22 -0500
commit2af9351db3aa97da9b0d3f23d53a593bc96c8a8e (patch)
tree684dfccba8d295c42ef6e2e070c8d6caca45f590 /lib/wolff_tools.c
parent181db84a8ffb26e436a43bb268fe5ef060206e66 (diff)
downloadc++-2af9351db3aa97da9b0d3f23d53a593bc96c8a8e.tar.gz
c++-2af9351db3aa97da9b0d3f23d53a593bc96c8a8e.tar.bz2
c++-2af9351db3aa97da9b0d3f23d53a593bc96c8a8e.zip
does potts now, no external libraries
Diffstat (limited to 'lib/wolff_tools.c')
-rw-r--r--lib/wolff_tools.c300
1 files changed, 59 insertions, 241 deletions
diff --git a/lib/wolff_tools.c b/lib/wolff_tools.c
index a417d4e..416a498 100644
--- a/lib/wolff_tools.c
+++ b/lib/wolff_tools.c
@@ -1,257 +1,94 @@
-#include "queue.h"
#include "wolff.h"
-int8_t spin_to_sign(bool spin) {
- /* takes a spin (represented by a bool) and converts it to an integer (plus
- * or minus one). our convention takes true to be negative spin and false to
- * be positive spin
- */
- if (spin) {
- return -1;
- } else {
- return 1;
- }
-}
-
-int8_t sign(double x) {
- // the sign function. zero returns positive sign.
- return x >= 0 ? 1 : -1;
-}
-
-graph_t *graph_add_ext(const graph_t *G) {
- /* takes a graph object G and returns tG, the same graph with an extra vertex
- * that is connected to every other vertex.
- */
- graph_t *tG = (graph_t *)calloc(1, sizeof(graph_t));
-
- tG->nv = G->nv + 1;
- tG->ne = G->ne + G->nv;
-
- tG->ev = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t));
- tG->vei = (uint32_t *)malloc((tG->nv + 1) * sizeof(uint32_t));
- tG->ve = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t));
- tG->vx = (double *)malloc(2 * tG->nv * sizeof(double));
- tG->bq = (bool *)malloc(tG->nv * sizeof(bool));
-
- memcpy(tG->ev, G->ev, 2 * G->ne * sizeof(uint32_t));
- memcpy(tG->vx, G->vx, 2 * G->nv * sizeof(double));
- memcpy(tG->bq, G->bq, G->nv * sizeof(bool));
-
- tG->vx[2 * G->nv] = -1;
- tG->vx[2 * G->nv + 1] = -0.5;
- tG->bq[G->nv] = false;
-
- for (uint32_t i = 0; i < G->nv; i++) {
- tG->ev[2 * G->ne + 2 * i] = i;
- tG->ev[2 * G->ne + 2 * i + 1] = G->nv;
- }
-
- for (uint32_t i = 0; i < G->nv; i++) {
- tG->vei[i] = G->vei[i] + i;
-
- for (uint32_t j = 0; j < G->vei[i + 1] - G->vei[i]; j++) {
- tG->ve[tG->vei[i] + j] = G->ve[G->vei[i] + j];
- }
-
- tG->ve[tG->vei[i] + G->vei[i + 1] - G->vei[i]] = G->ne + i;
- }
-
- tG->vei[G->nv] = G->vei[G->nv] + G->nv;
- tG->vei[G->nv + 1] = tG->vei[G->nv] + G->nv;
-
- for (uint32_t i = 0; i < G->nv; i++) {
- tG->ve[tG->vei[G->nv] + i] = G->ne + i;
- }
-
- return tG;
-}
-
-uint32_t get_neighbor(const graph_t *g, uint32_t v, uint32_t i) {
- // returns the index of the ith neighbor of vertex v on graph g.
- assert(i < g->vei[v + 1] - g->vei[v]); // don't request a neighbor over the total number of neighbors!
-
- uint32_t e, v1, v2;
-
- e = g->ve[g->vei[v] + i]; // select the ith bond connected to site
- v1 = g->ev[2 * e];
- v2 = g->ev[2 * e + 1];
-
- return v == v1 ? v2 : v1; // distinguish neighboring site from site itself
+q_t delta(q_t s0, q_t s1) {
+ return s0 == s1 ? 1 : 0;
}
-cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *s, bool stop_on_ghost,
- gsl_rng *r) {
- /* flips a wolff cluster on the graph g with initial state s. s is always
- * changed by the routine. the probability of adding a normal bond to the
- * cluster is passed by ps[0], and the probability of adding a bond with the
- * external field spin to the cluster is passed by ps[1]. if stop_on_ghost is
- * true, adding the external field spin to the cluster stops execution of the
- * routine. flip_cluster returns an object of type cluster_t, which encodes
- * information about the flipped cluster.
- */
- uint32_t v0;
- int32_t n_h_bonds, n_bonds;
- bool s0;
- cluster_t *c;
-
- v0 = gsl_rng_uniform_int(r, g->nv); // pick a random vertex
- s0 = s[v0]; // record its orientation
+v_t flip_cluster(ising_state_t *s, v_t v0, q_t step, gsl_rng *r) {
+ q_t s0 = s->spins[v0];
+ v_t nv = 0;
ll_t *stack = NULL; // create a new stack
stack_push(&stack, v0); // push the initial vertex to the stack
- // initiate the data structure for returning flip information
- c = (cluster_t *)calloc(1, sizeof(cluster_t));
+ node_t *T = NULL;
while (stack != NULL) {
- uint32_t v;
- uint32_t nn;
-
- v = stack_pop(&stack);
- nn = g->vei[v + 1] - g->vei[v];
+ v_t v = stack_pop(&stack);
- if (s[v] == s0 && !(c->hit_ghost && stop_on_ghost)) { // if the vertex hasn't already been flipped
- s[v] = !s[v]; // flip the vertex
- if (stop_on_ghost) {
- stack_push(&(c->spins), v);
- }
-
- for (uint32_t i = 0; i < nn; i++) {
- bool is_ext;
- uint32_t vn;
- int32_t *bond_counter;
- double prob;
+ if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped
+ q_t s_old = s->spins[v];
+ q_t s_new = (s->spins[v] + step) % s->q;
- vn = get_neighbor(g, v, i);
+ s->spins[v] = s_new; // flip the vertex
+ tree_insert(&T, v);
- is_ext = (v == g->nv - 1 || vn == g->nv - 1); // our edge contained the "ghost" spin if either of its vertices was the last in the graph
+ v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
- bond_counter = is_ext ? &(c->dHb) : &(c->dJb);
- prob = is_ext ? ps[1] : ps[0];
+ for (v_t i = 0; i < nn; i++) {
+ v_t vn = s->g->v_adj[s->g->v_i[v] + i];
+ q_t sn = s->spins[vn];
+ double prob;
- if (s[vn] ==
- s0) { // if the neighboring site matches the flipping cluster...
- (*bond_counter)++;
+ bool is_ext = (v == s->g->nv - 1 || vn == s->g->nv - 1);
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- if (is_ext && stop_on_ghost) {
- c->hit_ghost = true;
- }
- stack_push(&stack, vn); // push the neighboring vertex to the stack
+ if (is_ext) {
+ q_t M_ind_0;
+ q_t M_ind_1;
+ if (vn == s->g->nv - 1) {
+ M_ind_0 = (s_old + s->q - s->spins[s->g->nv - 1]) % s->q;
+ M_ind_1 = (s_new + s->q - s->spins[s->g->nv - 1]) % s->q;
+ } else {
+ M_ind_0 = (sn + s->q - s_old) % s->q;
+ M_ind_1 = (sn + s->q - s_new) % s->q;
}
+ prob = s->H_probs[M_ind_1 * s->q + M_ind_0];
+ s->M[M_ind_0]--;
+ s->M[M_ind_1]++;
+ s->E += - s->H[M_ind_1] + s->H[M_ind_0];
} else {
- (*bond_counter)--;
+ prob = s->T_prob * delta(s0, sn);
+ s->E += - ((double)delta(s->spins[v], sn)) + ((double)delta(s0, sn));
}
- }
-
- if (v != g->nv - 1) { // count the number of non-external sites that flip
- c->nv++;
- }
- }
- }
-
- return c;
-}
-
-uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r,
- double *ps) {
- uint32_t n_flips;
- bool no_r, no_ps;
- no_r = false;
- no_ps = false;
-
- if (r == NULL) {
- no_r = true;
- r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, jst_rand_seed());
- }
-
- if (ps == NULL) { // computing exponentials is relatively expensive, so calling functions are given the option to supply values calculated once in the entire runtime
- no_ps = true;
- ps = (double *)malloc(2 * sizeof(double));
- ps[0] = 1 - exp(-2 / T);
- ps[1] = 1 - exp(-2 * fabs(H) / T);
- }
-
- switch (sim) {
- case METROPOLIS: {
- uint32_t v0 = gsl_rng_uniform_int(r, s->g->nv); // pick a random vertex
- uint32_t nn = s->g->vei[v0 + 1] - s->g->vei[v0];
-
- double dE = 0;
- for (uint32_t i = 0; i < nn; i++) {
- bool is_ext;
- uint32_t vn;
- int32_t *bond_counter;
- double prob;
- vn = get_neighbor(s->g, v0, i);
-
- is_ext = (v0 == s->g->nv - 1 || vn == s->g->nv - 1); // our edge contained the "ghost" spin if either of its vertices was the last in the graph
-
- if (is_ext) {
- dE += 2 * H * spin_to_sign(s->spins[vn]) * spin_to_sign(s->spins[v0]);
- } else {
- dE += 2 * spin_to_sign(s->spins[vn]) * spin_to_sign(s->spins[v0]);
+ if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
+ stack_push(&stack, vn); // push the neighboring vertex to the stack
}
}
- double p = exp(-dE / T);
- if (gsl_rng_uniform(r) < p) {
- s->M += - sign(H) * 2 * spin_to_sign(s->spins[v0]) * spin_to_sign(s->spins[s->g->nv - 1]);
- s->H += dE;
- s->spins[v0] = !s->spins[v0];
+ if (v != s->g->nv - 1) { // count the number of non-external sites that flip
+ nv++;
}
+ }
+ }
- n_flips = 1;
- } break;
-
- case WOLFF: {
- cluster_t *c = flip_cluster(s->g, ps, s->spins, false, r);
- s->M += - sign(H) * 2 * c->dHb;
- s->H += 2 * (c->dJb + sign (H) * H * c->dHb);
- n_flips = c->nv;
+ tree_freeNode(T);
- free(c);
- } break;
- case WOLFF_GHOST: {
- cluster_t *c = flip_cluster(s->g, ps, s->spins, true, r);
+ return nv;
+}
- if (c->hit_ghost) {
- while (c->spins != NULL) {
- uint32_t v = stack_pop(&(c->spins));
- s->spins[v] = !s->spins[v];
- // if we hit the external spin, undo the cluster flip
- }
- } else {
- while (c->spins != NULL) {
- stack_pop(&(c->spins));
- // we have to clear the memory on the stack anyway...
- }
- s->M += - sign(H) * 2 * c->dHb;
- s->H += 2 * (c->dJb + sign (H) * H * c->dHb);
- }
+double add_to_avg(double mx, double x, count_t n) {
+ return mx * (n / (n + 1.0)) + x * 1.0 / (n + 1.0);
+}
- n_flips = c->nv;
+void update_meas(meas_t *m, double x) {
+ count_t n = m->n;
- free(c);
- } break;
- }
+ m->x = add_to_avg(m->x, x, n);
+ m->x2 = add_to_avg(m->x2, pow(x, 2), n);
- if (no_ps) {
- free(ps);
- }
+ m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n);
+ m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n);
- if (no_r) {
- gsl_rng_free(r);
+ if (n > 1) {
+ double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2));
+ m->dx = sqrt(s2 / n);
+ m->c = s2;
+ m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n);
}
- return n_flips;
-}
-
-double add_to_avg(double mx, double x, uint64_t n) {
- return mx * (n / (n + 1.)) + x * 1. / (n + 1.);
+ (m->n)++;
}
void update_autocorr(autocorr_t *OO, double O) {
@@ -260,7 +97,7 @@ void update_autocorr(autocorr_t *OO, double O) {
dll_t *Otmp = OO->Op;
dll_t *Osave;
- uint64_t t = 0;
+ count_t t = 0;
while (Otmp != NULL) {
OO->OO[t] = add_to_avg(OO->OO[t], O * (Otmp->x), OO->n - t - 1);
@@ -286,25 +123,6 @@ void update_autocorr(autocorr_t *OO, double O) {
OO->n++;
}
-double rho(autocorr_t *o, uint64_t i) {
+double rho(autocorr_t *o, count_t i) {
return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2));
}
-
-void update_meas(meas_t *m, double x) {
- uint64_t n = m->n;
-
- m->x = add_to_avg(m->x, x, n);
- m->x2 = add_to_avg(m->x2, pow(x, 2), n);
-
- m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n);
- m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n);
-
- if (n > 1) {
- double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2));
- m->dx = sqrt(s2 / n);
- m->c = s2;
- m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n);
- }
-
- (m->n)++;
-}