summaryrefslogtreecommitdiff
path: root/examples/continuous_gaussian.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/continuous_gaussian.cpp')
-rw-r--r--examples/continuous_gaussian.cpp112
1 files changed, 112 insertions, 0 deletions
diff --git a/examples/continuous_gaussian.cpp b/examples/continuous_gaussian.cpp
new file mode 100644
index 0000000..ef08247
--- /dev/null
+++ b/examples/continuous_gaussian.cpp
@@ -0,0 +1,112 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/height.hpp>
+#include <wolff/models/dihedral_inf.hpp>
+
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 0.8;
+ double H = 0.0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& s1, const height_t<double>& s2) -> double {
+ return - pow(s1.x - s2.x, 2);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const height_t<double>&)> B = [&] (const height_t<double>& s) -> double {
+ return - H * pow(s.x, 2);
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<dihedral_inf_t<double>, height_t<double>> S(G, T, Z, B);
+
+ bool odd_run = false;
+
+ std::function <dihedral_inf_t<double>(std::mt19937&, const system<dihedral_inf_t<double>, height_t<double>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<double>, height_t<double>>& S, v_t i0) -> dihedral_inf_t<double> {
+ dihedral_inf_t<double> rot;
+ rot.is_reflection = true;
+
+ if (odd_run) {
+ std::uniform_int_distribution<v_t> dist(0, S.nv - 2);
+ v_t j = i0;
+
+ //while (S.s[j].x == S.s[i0].x) {
+ v_t tmp = dist(r);
+
+ if (tmp < i0) {
+ j = tmp;
+ } else {
+ j = tmp + 1;
+ }
+ //}
+
+ rot.x = 2 * S.s[j].x;
+ } else {
+ std::normal_distribution<double> dist(0.0,1.0);
+ rot.x = 2 * S.s[i0].x + dist(r);
+ }
+
+ odd_run = !odd_run;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // run wolff N times
+ S.run_wolff(N, gen_R_IH, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+