summaryrefslogtreecommitdiff
path: root/examples/potts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/potts.cpp')
-rw-r--r--examples/potts.cpp110
1 files changed, 110 insertions, 0 deletions
diff --git a/examples/potts.cpp b/examples/potts.cpp
new file mode 100644
index 0000000..84494e2
--- /dev/null
+++ b/examples/potts.cpp
@@ -0,0 +1,110 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/potts.hpp>
+#include <wolff/models/symmetric.hpp>
+#include <wolff/finite_states.hpp>
+
+#include <wolff.hpp>
+
+using namespace wolff;
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ vector_t<WOLFF_POTTSQ, double> H;
+ H.fill(0.0);
+ q_t Hi = 0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H[Hi] = atof(optarg);
+ Hi++;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double {
+ if (s1.x == s2.x) {
+ return 1.0;
+ } else {
+ return 0.0;
+ }
+ };
+
+ // define the spin-field coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double {
+ return H[s.x];
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // define function that generates self-inverse rotations
+ std::function <symmetric_t<WOLFF_POTTSQ>(std::mt19937&, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> symmetric_t<WOLFF_POTTSQ> {
+ symmetric_t<WOLFF_POTTSQ> rot;
+
+ std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2);
+ q_t j = dist(r);
+ q_t swap_v;
+ if (j < S.s[i0].x) {
+ swap_v = j;
+ } else {
+ swap_v = j + 1;
+ }
+
+ rot[S.s[i0].x] = swap_v;
+ rot[swap_v] = S.s[i0].x;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // run wolff N times
+ S.run_wolff(N, gen_r, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+