summaryrefslogtreecommitdiff
path: root/examples/simple_ising.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/simple_ising.cpp')
-rw-r--r--examples/simple_ising.cpp192
1 files changed, 192 insertions, 0 deletions
diff --git a/examples/simple_ising.cpp b/examples/simple_ising.cpp
new file mode 100644
index 0000000..24e4ae5
--- /dev/null
+++ b/examples/simple_ising.cpp
@@ -0,0 +1,192 @@
+
+#include <getopt.h>
+#include <iostream>
+
+#include "include/randutils/randutils.hpp"
+
+#include <wolff.hpp>
+
+// define your R_t and X_t. here both are the same, ising_t
+class ising_t {
+ public:
+ bool x;
+
+ // both X_t and R_t need a default constructor (and destructor, if relevant)
+ ising_t() : x(false) {}
+ ising_t(bool x) : x(x) {}
+
+ // R_t needs the member functions
+ // X_t act(const X_t& s) const {}
+ // R_t act(const R_t& s) const {}
+ // to define action on both spins and other transformations
+ ising_t act(const ising_t& s) const {
+ if (x) {
+ return ising_t(!(s.x));
+ } else {
+ return ising_t(s.x);
+ }
+ }
+
+ // R_t needs the member functions
+ // X_t act_inverse(const X_t& s) const {}
+ // R_t act_inverse(const R_t& s) const {}
+ // to define action of its inverse on both spins and other transformations
+ ising_t act_inverse(const ising_t& s) const {
+ return this->act(s);
+ }
+};
+
+// define how measurements should be taken by importing the interface wolff_measurement<R_t, X_t>
+class ising_measurements : public wolff_measurement<ising_t, ising_t> {
+ private:
+ count_t n;
+
+ double E;
+ int M;
+ v_t S;
+
+ double totalE;
+ double totalM;
+ double totalS;
+
+ public:
+ ising_measurements(D_t D, L_t L, double H) {
+ n = 0;
+ M = (int)pow(L, D);
+ E = -D * pow(L, D) - H * pow(L, D);
+
+ totalE = 0;
+ totalM = 0;
+ totalS = 0;
+ }
+
+ void pre_cluster(const state_t<ising_t, ising_t>& s, count_t step, count_t N, v_t v0, const ising_t& R) {
+ S = 0;
+ }
+
+ void plain_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, v_t vn, const ising_t& sn, double dE) {
+ E += dE;
+ }
+
+ void ghost_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, double dE) {
+ E += dE;
+
+ if (s_old.x) {
+ M++;
+ } else {
+ M--;
+ }
+
+ if (s_new.x) {
+ M--;
+ } else {
+ M++;
+ }
+ }
+
+ void plain_site_transformed(v_t v, const ising_t& s_old, const ising_t& s_new) {
+ S++;
+ }
+
+ void ghost_site_transformed(const ising_t& R_old, const ising_t& R_new) {
+ }
+
+ void post_cluster(const state_t<ising_t, ising_t>& s, count_t step, count_t N) {
+ totalE += E;
+ totalM += M;
+ totalS += S;
+ n++;
+ }
+
+ double avgE() {
+ return totalE / n;
+ }
+
+ double avgM() {
+ return totalM / n;
+ }
+
+ double avgS() {
+ return totalS / n;
+ }
+};
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ count_t N = (count_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double H = 0.0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
+ if (s1.x == s2.x) {
+ return 1.0;
+ } else {
+ return -1.0;
+ }
+ };
+
+ // define the spin-field coupling
+ std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
+ if (s.x) {
+ return -H;
+ } else {
+ return H;
+ }
+ };
+
+ // initialize the system
+ state_t<ising_t, ising_t> s(D, L, T, Z, B);
+
+ // initialize the random number generator
+ randutils::auto_seed_128 seeds;
+ std::mt19937 rng{seeds};
+
+ // define function that generates self-inverse rotations
+ std::function <ising_t(std::mt19937&, const ising_t&)> gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t {
+ return ising_t(true);
+ };
+
+ // initailze the measurement object
+ ising_measurements m(D, L, H);
+
+ // run wolff N times
+ wolff<ising_t, ising_t>(N, s, gen_R, m, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << m.avgE() / s.nv
+ << ".\nThe average magnetization per site was " << m.avgM() / s.nv
+ << ".\nThe average cluster size per site was " << m.avgS() / s.nv << ".\n";
+
+ // exit
+ return 0;
+}
+