summaryrefslogtreecommitdiff
path: root/lib/cluster.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/cluster.h')
-rw-r--r--lib/cluster.h391
1 files changed, 337 insertions, 54 deletions
diff --git a/lib/cluster.h b/lib/cluster.h
index d118735..29dd0cb 100644
--- a/lib/cluster.h
+++ b/lib/cluster.h
@@ -1,13 +1,14 @@
#pragma once
+#include <functional>
#include <assert.h>
#include <fftw3.h>
#include <float.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <inttypes.h>
-#include <math.h>
+#include <cmath>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
@@ -24,57 +25,339 @@
#include "dihinf.h"
#include "yule_walker.h"
-typedef struct {
- graph_t *g;
- q_t *spins;
- double T;
- double *J;
- double *H;
- double *J_probs;
- double *H_probs;
- dihedral_t *R;
- double E;
- v_t *M;
- q_t q;
-} ising_state_t;
-
-typedef struct {
- graph_t *g;
- h_t *spins;
- double T;
- double (*J)(h_t);
- double (*H)(double *, h_t);
- double *H_info;
- dihinf_t *R;
- double E;
- h_t M;
-} dgm_state_t;
-
-typedef struct {
- graph_t *g;
- double *spins;
- double T;
- double (*J)(double);
- double (*H)(q_t, double *, double *);
- double *H_info;
- double *R;
- double E;
- double *M;
- q_t n;
-} vector_state_t;
-
-typedef enum {
- VECTOR,
- MODULATED,
- CUBIC,
- QUADRATIC
-} vector_field_t;
-
-v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r);
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r);
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r);
-
-graph_t *graph_add_ext(const graph_t *g);
+template <class T>
+void init(T*);
+
+template <class T>
+T scalar_multiple(v_t a, T b);
+
+template <class R_t, class X_t>
+X_t act(R_t a, X_t b);
+
+template <class R_t, class X_t>
+X_t act_inverse(R_t a, X_t b);
+
+template <class T>
+T copy(T a);
+
+template <class T>
+void free_spin(T a);
+
+template <class T>
+T add(T, T);
+
+template <class T>
+T subtract(T, T);
+
+template <class T>
+T gen_rot(gsl_rng *r);
+
+template <class R_t, class X_t>
+class state_t {
+ public:
+ D_t D;
+ L_t L;
+ v_t nv;
+ v_t ne;
+ graph_t *g;
+ double T;
+ X_t *spins;
+ R_t R;
+ double E;
+ X_t M; // the "sum" of the spins, like the total magnetization
+
+ std::function <double(X_t, X_t)> J;
+ std::function <double(X_t)> H;
+
+ state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) {
+ graph_t *h = graph_create_square(D, L);
+ nv = h->nv;
+ ne = h->ne;
+ g = graph_add_ext(h);
+ graph_free(h);
+ spins = (X_t *)malloc(nv * sizeof(X_t));
+ for (v_t i = 0; i < nv; i++) {
+ init (&(spins[i]));
+ }
+ init (&R);
+ E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
+ M = scalar_multiple (nv, spins[0]);
+ }
+
+ ~state_t() {
+ graph_free(g);
+ for (v_t i = 0; i < nv; i++) {
+ free_spin(spins[i]);
+ }
+ free(spins);
+ free_spin(R);
+ free_spin(M);
+ }
+};
+
+template <q_t q, class T>
+struct vector_t { T *x; };
+
+template <q_t q, class T>
+void init(vector_t <q, T> *ptr) {
+ ptr->x = (T *)calloc(q, sizeof(T));
+
+ ptr->x[0] = (T)1;
+}
+
+template <q_t q, class T>
+vector_t <q, T> copy (vector_t <q, T> v) {
+ vector_t <q, T> v_copy;
+
+ v_copy.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ v_copy.x[i] = v.x[i];
+ }
+
+ return v_copy;
+}
+
+template <q_t q, class T>
+void add (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] += v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+void subtract (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] -= v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) {
+ vector_t <q, T> multiple;
+ multiple.x = (T *)malloc(q * sizeof(T));
+ for (q_t i = 0; i < q; i++) {
+ multiple.x[i] = a * v.x[i];
+ }
+
+ return multiple;
+}
+
+template <q_t q, class T>
+T dot(vector_t <q, T> v1, vector_t <q, T> v2) {
+ T prod = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ prod += v1.x[i] * v2.x[i];
+ }
+
+ return prod;
+}
+
+template <q_t q, class T>
+void free_spin (vector_t <q, T> v) {
+ free(v.x);
+}
+
+template <q_t q, class T>
+struct orthogonal_t { T *x; };
+
+template <q_t q, class T>
+void init(orthogonal_t <q, T> *ptr) {
+ ptr->x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[q * i + i] = (T)1;
+ }
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> copy (orthogonal_t <q, T> m) {
+ orthogonal_t <q, T> m_copy;
+ m_copy.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q * q; i++) {
+ m_copy.x[i] = m.x[i];
+ }
+
+ return m_copy;
+}
+
+template <q_t q, class T>
+void free_spin (orthogonal_t <q, T> m) {
+ free(m.x);
+}
+
+template <q_t q, class T>
+vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * i + j] * v.x[j];
+ }
+ }
+
+ return v_rot;
+}
+
+
+template <q_t q, class T>
+orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ orthogonal_t <q, T> m2_rot;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k];
+ }
+ }
+ }
+
+ return m2_rot;
+}
+
+template <q_t q, class T>
+vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * j + i] * v.x[j];
+ }
+ }
+
+ return v_rot;
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ orthogonal_t <q, T> m2_rot;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k];
+ }
+ }
+ }
+
+ return m2_rot;
+}
+
+template <q_t q>
+void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) {
+ double *v = (double *)malloc(q * sizeof(double));
+ double v2 = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ v[i] = gsl_ran_ugaussian(r);
+ v2 += v[i] * v[i];
+ }
+
+ ptr->x = (double *)calloc(q * q, sizeof(double));
+
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[q * i + i] = 1.0;
+ for (q_t j = 0; j < q; j++) {
+ ptr->x[q * i + j] -= 2 * v[i] * v[j] / v2;
+ }
+ }
+
+ free(v);
+}
+
+template <class R_t, class X_t>
+v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
+ v_t nv = 0;
+
+ ll_t *stack = NULL; // create a new stack
+ stack_push(&stack, v0); // push the initial vertex to the stack
+
+ bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
+
+ while (stack != NULL) {
+ v_t v = stack_pop(&stack);
+
+ if (!marks[v]) {
+ X_t si_old, si_new;
+ R_t R_old, R_new;
+
+ si_old = state->spins[v];
+ R_old = state->R;
+
+ marks[v] = true;
+
+ if (v == state->g->nv - 1) {
+ R_new = act (r, R_old);
+ } else {
+ si_new = act (r, si_old);
+ }
+
+ v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
+
+ for (v_t i = 0; i < nn; i++) {
+ v_t vn = state->g->v_adj[state->g->v_i[v] + i];
+
+ X_t sj;
+
+ if (vn != state->g->nv - 1) {
+ sj = state->spins[vn];
+ }
+
+ double prob;
+
+ bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
+
+ if (is_ext) {
+ X_t rs_old, rs_new;
+ if (vn == state->g->nv - 1) {
+ rs_old = act_inverse (R_old, si_old);
+ rs_new = act_inverse (R_old, si_new);
+ } else {
+ rs_old = act_inverse (R_old, sj);
+ rs_new = act_inverse (R_new, sj);
+ }
+ double dE = state->H(rs_old) - state->H(rs_new);
+ prob = 1.0 - exp(-dE / state->T);
+
+ subtract (state->M, rs_old);
+ add (state->M, rs_new);
+ state->E += dE;
+
+ free_spin (rs_old);
+ free_spin (rs_new);
+ } else {
+ double dE = state->J(si_old, sj) - state->J(si_new, sj);
+ prob = 1.0 - exp(-dE / state->T);
+ state->E += dE;
+ }
+
+ if (gsl_rng_uniform(rand) < prob) { // and with probability...
+ stack_push(&stack, vn); // push the neighboring vertex to the stack
+ }
+ }
+
+ if (v == state->g->nv - 1) {
+ free_spin(state->R);
+ state->R = R_new;
+ } else {
+ free_spin(state->spins[v]);
+ state->spins[v] = si_new;
+ }
+
+ if (v != state->g->nv - 1) { // count the number of non-external sites that flip
+ nv++;
+ }
+ }
+ }
+
+ free(marks);
+
+ return nv;
+}