summaryrefslogtreecommitdiff
path: root/src/wolff_finite.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/wolff_finite.c')
-rw-r--r--src/wolff_finite.c433
1 files changed, 433 insertions, 0 deletions
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
new file mode 100644
index 0000000..47fcc88
--- /dev/null
+++ b/src/wolff_finite.c
@@ -0,0 +1,433 @@
+
+#include <getopt.h>
+
+#include <initial_finite.h>
+
+int main(int argc, char *argv[]) {
+
+ L_t L = 128;
+ count_t N = (count_t)1e7;
+ count_t min_runs = 10;
+ count_t n = 3;
+ q_t q = 2;
+ D_t D = 2;
+ double T = 2.26918531421;
+ double *J = (double *)calloc(MAX_Q, sizeof(double));
+ J[0] = 1.0;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+ double eps = 0;
+ bool silent = false;
+ bool snapshots = false;
+ bool snapshot = false;
+ bool record_autocorrelation = false;
+ bool record_distribution = false;
+ count_t W = 10;
+ count_t ac_skip = 1;
+
+ finite_model_t model = ISING;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:drt:")) != -1) {
+ switch (opt) {
+ case 'N':
+ N = (count_t)atof(optarg);
+ break;
+ case 'n':
+ n = (count_t)atof(optarg);
+ break;
+ case 'D':
+ D = atoi(optarg);
+ break;
+ case 'L':
+ L = atoi(optarg);
+ break;
+ case 'q':
+ q = atoi(optarg);
+ break;
+ case 'T':
+ T = atof(optarg);
+ break;
+ case 'J':
+ J[J_ind] = atof(optarg);
+ J_ind++;
+ break;
+ case 'H':
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 'm':
+ min_runs = atoi(optarg);
+ break;
+ case 'e':
+ eps = atof(optarg);
+ break;
+ case 's':
+ silent = true;
+ break;
+ case 'S':
+ snapshots = true;
+ break;
+ case 'P':
+ snapshot = true;
+ break;
+ case 'a':
+ record_autocorrelation = true;
+ break;
+ case 'k':
+ ac_skip = (count_t)atof(optarg);
+ break;
+ case 'W':
+ W = (count_t)atof(optarg);
+ break;
+ case 'd':
+ record_distribution = true;
+ break;
+ case 't':
+ model = (finite_model_t)atoi(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ state_finite_t *s;
+
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
+
+ switch (model) {
+ case ISING:
+ s = initial_finite_prepare_ising(D, L, T, H);
+ break;
+ case POTTS:
+ s = initial_finite_prepare_potts(D, L, q, T, H);
+ break;
+ case CLOCK:
+ s = initial_finite_prepare_clock(D, L, q, T, H);
+ break;
+ case DGM:
+ s = initial_finite_prepare_dgm(D, L, q, T, H);
+ break;
+ default:
+ printf("Not a valid model!\n");
+ return 1;
+ }
+
+ free(J);
+ free(H);
+
+
+ double diff = 1e31;
+ count_t n_runs = 0;
+ count_t n_steps = 0;
+
+ meas_t *E, *clust, **M, **sE, ***sM;
+
+ M = (meas_t **)malloc(q * sizeof(meas_t *));
+ for (q_t i = 0; i < q; i++) {
+ M[i] = (meas_t *)calloc(1, sizeof(meas_t));
+ }
+
+ E = calloc(1, sizeof(meas_t));
+ clust = calloc(1, sizeof(meas_t));
+
+ sE = (meas_t **)malloc(q * sizeof(meas_t *));
+ sM = (meas_t ***)malloc(q * sizeof(meas_t **));
+
+ for (q_t i = 0; i < q; i++) {
+ sE[i] = (meas_t *)calloc(1, sizeof(meas_t));
+ sM[i] = (meas_t **)malloc(q * sizeof(meas_t *));
+ for (q_t j = 0; j < q; j++) {
+ sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t));
+ }
+ }
+
+ count_t *freqs = (count_t *)calloc(q, sizeof(count_t));
+ q_t cur_M = 0;
+
+ autocorr_t *autocorr;
+ if (record_autocorrelation) {
+ autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
+ autocorr->W = 2 * W + 1;
+ autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
+ }
+
+ count_t *mag_dist;
+ if (record_distribution) {
+ mag_dist = (count_t *)calloc(s->nv + 1, sizeof(count_t));
+ }
+
+ if (!silent) printf("\n");
+ while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
+ ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
+ n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
+
+ count_t n_flips = 0;
+
+ while (n_flips / s->nv < n) {
+ v_t v0 = gsl_rng_uniform_int(r, s->nv);
+ R_t step;
+
+ bool changed = false;
+ while (!changed) {
+ step = gsl_rng_uniform_int(r, s->n_transformations);
+ if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
+ changed = true;
+ }
+ }
+
+ v_t tmp_flips = flip_cluster_finite(s, v0, step, r);
+ n_flips += tmp_flips;
+
+ if (n_runs > 0) {
+ n_steps++;
+ meas_update(clust, tmp_flips);
+
+ if (record_autocorrelation && n_steps % ac_skip == 0) {
+ update_autocorr(autocorr, s->E);
+ }
+
+ }
+
+ }
+
+ for (q_t i = 0; i < q; i++) {
+ meas_update(M[i], s->M[i]);
+ }
+ meas_update(E, s->E);
+
+ q_t n_at_max = 0;
+ q_t max_M_i = 0;
+ v_t max_M = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ if (s->M[i] > max_M) {
+ n_at_max = 1;
+ max_M_i = i;
+ max_M = s->M[i];
+ } else if (s->M[i] == max_M) {
+ n_at_max++;
+ }
+ }
+
+ if (record_distribution) {
+ mag_dist[s->M[0]]++;
+ }
+
+ if (n_at_max == 1) {
+ for (q_t i = 0; i < q; i++) {
+ meas_update(sM[max_M_i][i], s->M[i]);
+ }
+ meas_update(sE[max_M_i], s->E);
+ freqs[max_M_i]++;
+ }
+
+ diff = fabs(meas_dx(clust) / clust->x);
+
+ n_runs++;
+ }
+ if (!silent) {
+ printf("\033[F\033[J");
+ }
+ printf("WOLFF: sweep %" PRIu64
+ ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
+ n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
+
+ if (snapshots) {
+ FILE *snapfile = fopen("snapshots.m", "a");
+ fprintf(snapfile, "\n");
+ }
+
+ if (snapshot) {
+ q_t *R_inv = symmetric_invert(q, s->R);
+ FILE *snapfile = fopen("snapshot.m", "a");
+ fprintf(snapfile, "{{");
+ for (L_t i = 0; i < L; i++) {
+ fprintf(snapfile, "{");
+ for (L_t j = 0; j < L; j++) {
+ fprintf(snapfile, "%" PRIq, symmetric_act(R_inv, s->spins[L * i + j]));
+ if (j != L - 1) {
+ fprintf(snapfile, ",");
+ }
+ }
+ fprintf(snapfile, "}");
+ if (i != L - 1) {
+ fprintf(snapfile, ",");
+ }
+ }
+ fprintf(snapfile, "}}\n");
+ fclose(snapfile);
+ }
+
+ double tau = 0;
+ int tau_failed = 0;
+
+ if (record_autocorrelation) {
+ double *Gammas = (double *)malloc((W + 1) * sizeof(double));
+
+ Gammas[0] = 1 + rho(autocorr, 0);
+ for (uint64_t i = 0; i < W; i++) {
+ Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
+ }
+
+ uint64_t n;
+ for (n = 0; n < W + 1; n++) {
+ if (Gammas[n] <= 0) {
+ break;
+ }
+ }
+
+ if (n == W + 1) {
+ printf("WARNING: correlation function never hit the noise floor.\n");
+ tau_failed = 1;
+ }
+
+ if (n < 2) {
+ printf("WARNING: correlation function only has one nonnegative term.\n");
+ tau_failed = 2;
+ }
+
+ double *conv_Gamma = get_convex_minorant(n, Gammas);
+
+ double ttau = - 0.5;
+
+ for (uint64_t i = 0; i < n + 1; i++) {
+ ttau += conv_Gamma[i];
+ }
+
+ tau = ttau * ac_skip * clust->x / s->nv;
+
+ free(Gammas);
+ free(autocorr->OO);
+ while (autocorr->Op != NULL) {
+ stack_pop_d(&(autocorr->Op));
+ }
+ free(autocorr);
+ }
+
+ if (tau_failed) {
+ //tau = 0;
+ }
+
+ {
+ FILE *outfile = fopen("out.m", "a");
+
+ fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T);
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", s->J[i]);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},H->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", s->H[i]);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / s->nv, meas_dx(E) / s->nv, meas_c(E) / s->nv, meas_dc(E) / s->nv);
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", M[i]->x / s->nv);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},\\[Delta]M->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", meas_dx(M[i]) / s->nv);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},\\[Chi]->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", meas_c(M[i]) / s->nv);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},\\[Delta]\\[Chi]->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", meas_dc(M[i]) / s->nv);
+ if (i != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / s->nv, i, meas_dx(sE[i]) / s->nv, i, meas_c(sE[i]) / s->nv, i, meas_dc(sE[i]) / s->nv, i);
+ for (q_t j = 0; j < q; j++) {
+ fprintf(outfile, "%.15f", sM[i][j]->x / s->nv);
+ if (j != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i);
+ for (q_t j = 0; j < q; j++) {
+ fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / s->nv);
+ if (j != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i);
+ for (q_t j = 0; j < q; j++) {
+ fprintf(outfile, "%.15f", meas_c(sM[i][j]) / s->nv);
+ if (j != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i);
+ for (q_t j = 0; j < q; j++) {
+ fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / s->nv);
+ if (j != q-1) {
+ fprintf(outfile, ",");
+ }
+ }
+ }
+ fprintf(outfile,"}");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs);
+ }
+ fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / s->nv, meas_dx(clust) / s->nv, meas_c(clust) / s->nv, meas_dc(clust) / s->nv,tau,tau_failed);
+ if (record_distribution) {
+ fprintf(outfile, ",S->{");
+ for (v_t i = 0; i < s->nv + 1; i++) {
+ fprintf(outfile, "%" PRIcount, mag_dist[i]);
+ if (i != s->nv) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "}");
+ free(mag_dist);
+ }
+ fprintf(outfile, "|>\n");
+
+ fclose(outfile);
+ }
+
+ free(E);
+ free(clust);
+ for (q_t i = 0; i < q; i++) {
+ free(M[i]);
+ for (q_t j = 0; j < q; j++) {
+ free(sM[i][j]);
+ }
+ free(sM[i]);
+ }
+ free(M);
+ free(sM);
+ for (q_t i = 0; i < q; i++) {
+ free(sE[i]);
+ }
+ free(freqs);
+ free(sE);
+ state_finite_free(s);
+ gsl_rng_free(r);
+
+ return 0;
+}
+