summaryrefslogtreecommitdiff
path: root/src/wolff_finite.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/wolff_finite.c')
-rw-r--r--src/wolff_finite.c398
1 files changed, 64 insertions, 334 deletions
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
index 47fcc88..e41c326 100644
--- a/src/wolff_finite.c
+++ b/src/wolff_finite.c
@@ -1,93 +1,60 @@
+#include <time.h>
#include <getopt.h>
#include <initial_finite.h>
int main(int argc, char *argv[]) {
- L_t L = 128;
count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
+
+ finite_model_t model = ISING;
+
q_t q = 2;
D_t D = 2;
+ L_t L = 128;
double T = 2.26918531421;
double *J = (double *)calloc(MAX_Q, sizeof(double));
J[0] = 1.0;
double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool silent = false;
- bool snapshots = false;
- bool snapshot = false;
- bool record_autocorrelation = false;
- bool record_distribution = false;
- count_t W = 10;
- count_t ac_skip = 1;
- finite_model_t model = ISING;
+ bool silent = false;
int opt;
q_t J_ind = 0;
q_t H_ind = 0;
- while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:drt:")) != -1) {
+ while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
switch (opt) {
- case 'N':
+ case 'N': // number of steps
N = (count_t)atof(optarg);
break;
- case 'n':
- n = (count_t)atof(optarg);
+ case 't': // type of simulation
+ model = (finite_model_t)atoi(optarg);
+ break;
+ case 'q': // number of states, if relevant
+ q = atoi(optarg);
break;
- case 'D':
+ case 'D': // dimension
D = atoi(optarg);
break;
- case 'L':
+ case 'L': // linear size
L = atoi(optarg);
break;
- case 'q':
- q = atoi(optarg);
- break;
- case 'T':
+ case 'T': // temperature
T = atof(optarg);
break;
- case 'J':
+ case 'J': // couplings, if relevant. nth call couples states i and i + n
J[J_ind] = atof(optarg);
J_ind++;
break;
- case 'H':
+ case 'H': // external field. nth call couples to state n
H[H_ind] = atof(optarg);
H_ind++;
break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 's':
+ case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
- case 'S':
- snapshots = true;
- break;
- case 'P':
- snapshot = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'k':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- case 'd':
- record_distribution = true;
- break;
- case 't':
- model = (finite_model_t)atoi(optarg);
- break;
default:
exit(EXIT_FAILURE);
}
@@ -95,9 +62,6 @@ int main(int argc, char *argv[]) {
state_finite_t *s;
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
switch (model) {
case ISING:
s = initial_finite_prepare_ising(D, L, T, H);
@@ -113,318 +77,84 @@ int main(int argc, char *argv[]) {
break;
default:
printf("Not a valid model!\n");
- return 1;
+ free(J);
+ free(H);
+ exit(EXIT_FAILURE);
}
free(J);
free(H);
+ // initialize random number generator
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
+ unsigned long timestamp = (unsigned long)time(NULL);
- meas_t *E, *clust, **M, **sE, ***sM;
+ char *filename_M = (char *)malloc(256 * sizeof(char));
+ char *filename_B = (char *)malloc(256 * sizeof(char));
+ char *filename_S = (char *)malloc(256 * sizeof(char));
- M = (meas_t **)malloc(q * sizeof(meas_t *));
+ sprintf(filename_M, "wolff_%s_%" PRIq "_%" PRID "_%" PRIL "_%.8f", finite_model_t_strings[model], q, D, L, T);
for (q_t i = 0; i < q; i++) {
- M[i] = (meas_t *)calloc(1, sizeof(meas_t));
+ sprintf(filename_M + strlen(filename_M), "_%.8f", s->H[i]);
}
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
+ strcpy(filename_B, filename_M);
+ strcpy(filename_S, filename_M);
- sE = (meas_t **)malloc(q * sizeof(meas_t *));
- sM = (meas_t ***)malloc(q * sizeof(meas_t **));
+ sprintf(filename_M + strlen(filename_M), "_%lu_M.dat", timestamp);
+ sprintf(filename_B + strlen(filename_B), "_%lu_B.dat", timestamp);
+ sprintf(filename_S + strlen(filename_S), "_%lu_S.dat", timestamp);
- for (q_t i = 0; i < q; i++) {
- sE[i] = (meas_t *)calloc(1, sizeof(meas_t));
- sM[i] = (meas_t **)malloc(q * sizeof(meas_t *));
- for (q_t j = 0; j < q; j++) {
- sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t));
- }
- }
+ FILE *outfile_M = fopen(filename_M, "wb");
+ FILE *outfile_B = fopen(filename_B, "wb");
+ FILE *outfile_S = fopen(filename_S, "wb");
- count_t *freqs = (count_t *)calloc(q, sizeof(count_t));
- q_t cur_M = 0;
+ free(filename_M);
+ free(filename_B);
+ free(filename_S);
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- count_t *mag_dist;
- if (record_distribution) {
- mag_dist = (count_t *)calloc(s->nv + 1, sizeof(count_t));
- }
+ v_t cluster_size = 0;
if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
-
- count_t n_flips = 0;
+ for (count_t steps = 0; steps < N; steps++) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
- while (n_flips / s->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, s->nv);
- R_t step;
+ v_t v0 = gsl_rng_uniform_int(r, s->nv);
+ R_t step;
- bool changed = false;
- while (!changed) {
- step = gsl_rng_uniform_int(r, s->n_transformations);
- if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
- changed = true;
- }
+ bool changed = false;
+ while (!changed) {
+ step = gsl_rng_uniform_int(r, s->n_transformations);
+ if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
+ changed = true;
}
-
- v_t tmp_flips = flip_cluster_finite(s, v0, step, r);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
-
- if (record_autocorrelation && n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
-
- }
-
}
- for (q_t i = 0; i < q; i++) {
- meas_update(M[i], s->M[i]);
- }
- meas_update(E, s->E);
-
- q_t n_at_max = 0;
- q_t max_M_i = 0;
- v_t max_M = 0;
-
- for (q_t i = 0; i < q; i++) {
- if (s->M[i] > max_M) {
- n_at_max = 1;
- max_M_i = i;
- max_M = s->M[i];
- } else if (s->M[i] == max_M) {
- n_at_max++;
- }
- }
+ cluster_size = flip_cluster_finite(s, v0, step, r);
- if (record_distribution) {
- mag_dist[s->M[0]]++;
- }
+ // v_t is never going to be bigger than 32 bits, but since it's specified
+ // as a fast time many machines will actually have it be 64 bits. we cast
+ // it down here to halve space.
- if (n_at_max == 1) {
- for (q_t i = 0; i < q; i++) {
- meas_update(sM[max_M_i][i], s->M[i]);
- }
- meas_update(sE[max_M_i], s->E);
- freqs[max_M_i]++;
+ for (q_t i = 0; i < q - 1; i++) {
+ fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M); // if we know the occupation of the first q - 1 states, we know the occupation of the last
+ fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B); // if we know the occupation of the first q - 1 states, we know the occupation of the last
}
- diff = fabs(meas_dx(clust) / clust->x);
+ fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
- n_runs++;
}
if (!silent) {
printf("\033[F\033[J");
}
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), s->nv / clust->x);
-
- if (snapshots) {
- FILE *snapfile = fopen("snapshots.m", "a");
- fprintf(snapfile, "\n");
- }
-
- if (snapshot) {
- q_t *R_inv = symmetric_invert(q, s->R);
- FILE *snapfile = fopen("snapshot.m", "a");
- fprintf(snapfile, "{{");
- for (L_t i = 0; i < L; i++) {
- fprintf(snapfile, "{");
- for (L_t j = 0; j < L; j++) {
- fprintf(snapfile, "%" PRIq, symmetric_act(R_inv, s->spins[L * i + j]));
- if (j != L - 1) {
- fprintf(snapfile, ",");
- }
- }
- fprintf(snapfile, "}");
- if (i != L - 1) {
- fprintf(snapfile, ",");
- }
- }
- fprintf(snapfile, "}}\n");
- fclose(snapfile);
- }
+ printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
- double tau = 0;
- int tau_failed = 0;
+ fclose(outfile_M);
+ fclose(outfile_B);
+ fclose(outfile_S);
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = 1;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = 2;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- tau = ttau * ac_skip * clust->x / s->nv;
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
- }
-
- if (tau_failed) {
- //tau = 0;
- }
-
- {
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", s->J[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},H->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", s->H[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / s->nv, meas_dx(E) / s->nv, meas_c(E) / s->nv, meas_dc(E) / s->nv);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", M[i]->x / s->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]M->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dx(M[i]) / s->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_c(M[i]) / s->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dc(M[i]) / s->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / s->nv, i, meas_dx(sE[i]) / s->nv, i, meas_c(sE[i]) / s->nv, i, meas_dc(sE[i]) / s->nv, i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", sM[i][j]->x / s->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / s->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_c(sM[i][j]) / s->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / s->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- }
- fprintf(outfile,"}");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs);
- }
- fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / s->nv, meas_dx(clust) / s->nv, meas_c(clust) / s->nv, meas_dc(clust) / s->nv,tau,tau_failed);
- if (record_distribution) {
- fprintf(outfile, ",S->{");
- for (v_t i = 0; i < s->nv + 1; i++) {
- fprintf(outfile, "%" PRIcount, mag_dist[i]);
- if (i != s->nv) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "}");
- free(mag_dist);
- }
- fprintf(outfile, "|>\n");
-
- fclose(outfile);
- }
-
- free(E);
- free(clust);
- for (q_t i = 0; i < q; i++) {
- free(M[i]);
- for (q_t j = 0; j < q; j++) {
- free(sM[i][j]);
- }
- free(sM[i]);
- }
- free(M);
- free(sM);
- for (q_t i = 0; i < q; i++) {
- free(sE[i]);
- }
- free(freqs);
- free(sE);
state_finite_free(s);
gsl_rng_free(r);