diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/wolff_O2.cpp | 278 | ||||
-rw-r--r-- | src/wolff_On.cpp | 2 | ||||
-rw-r--r-- | src/wolff_cgm.cpp | 2 | ||||
-rw-r--r-- | src/wolff_clock.cpp | 4 | ||||
-rw-r--r-- | src/wolff_dgm.cpp | 4 | ||||
-rw-r--r-- | src/wolff_ising.cpp | 4 | ||||
-rw-r--r-- | src/wolff_potts.cpp | 4 |
7 files changed, 288 insertions, 10 deletions
diff --git a/src/wolff_O2.cpp b/src/wolff_O2.cpp new file mode 100644 index 0000000..63ca0a7 --- /dev/null +++ b/src/wolff_O2.cpp @@ -0,0 +1,278 @@ + +#include <getopt.h> +#include <stdio.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +#include <circle_group.h> +#include <angle.h> + +#include <wolff.h> +#include <measure.h> +#include <colors.h> +#include <rand.h> + +typedef circle_group_t orthogonal_R_t; +typedef angle_t vector_R_t; +typedef state_t <orthogonal_R_t, vector_R_t> On_t; + +double H_modulated(vector_R_t v, int order, double mag) { + return mag * cos(order * v.x); +} + +double theta(double *v) { + double x = v[0]; + double y = v[1]; + + if (x == 0) { + if (y >= 0) { + return M_PI / 2; + } else { + return - M_PI / 2; + } + } else { + double val = atan(y / x); + + if (x < 0.0 && y > 0.0) { + return M_PI + val; + } else if ( x < 0.0 && y < 0.0 ) { + return - M_PI + val; + } else { + return val; + } + } +} + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e7; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + bool use_pert = false; + bool N_is_sweeps = false; + bool draw = false; + unsigned int window_size = 512; + + bool modulated_field = false; + unsigned int order = 1; + + int opt; + q_t H_ind = 0; + double epsilon = 1; + +// unsigned char measurement_flags = measurement_energy | measurement_clusterSize; + + unsigned char measurement_flags = 0; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H_vec[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'p': + use_pert = true; + break; + case 'e': + epsilon = atof(optarg); + break; + case 'm': + modulated_field = true; + break; + case 'M': + measurement_flags ^= 1 << atoi(optarg); + break; + case 'o': + order = atoi(optarg); + break; + case 'S': + N_is_sweeps = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + const char *pert_type; + + std::function <orthogonal_R_t(gsl_rng *, vector_R_t)> gen_R; + + if (use_pert) { + gen_R = [=] (gsl_rng *r, const angle_t& t) -> circle_group_t { + circle_group_t rot; + rot.is_reflection = true; + + unsigned int x = gsl_rng_uniform_int(r, order); + double amount = epsilon * gsl_ran_ugaussian(r); + + rot.x = fmod(2 * M_PI * (1.0 + (double)x / (double)order + amount), 2 * M_PI); + + return rot; + }; + pert_type = "PERTURB"; + } else { + gen_R = [=] (gsl_rng *r, const angle_t& t) -> circle_group_t { + circle_group_t rot; + rot.is_reflection = true; + rot.x = 2 * M_PI * gsl_rng_uniform(r); + + return rot; + }; + pert_type = "UNIFORM"; + } + + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[2], 2, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T); + if (modulated_field) { + fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]); + } else { + fprintf(outfile_info, "\"VECTOR\", \"H\" -> {"); + for (q_t i = 0; i < 2; i++) { + fprintf(outfile_info, "%.15f", H_vec[i]); + if (i < 2 - 1) { + fprintf(outfile_info, ", "); + } + } + fprintf(outfile_info, "}, "); + } + + fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type); + + if (use_pert) { + fprintf(outfile_info, ", \"EPS\" -> %g", epsilon); + } + + fprintf(outfile_info, " |>\n"); + + fclose(outfile_info); + + FILE **outfiles = measure_setup_files(measurement_flags, timestamp); + + std::function <void(const On_t *)> other_f; + uint64_t sum_of_clusterSize = 0; + + if (N_is_sweeps) { + other_f = [&] (const On_t *s) { + sum_of_clusterSize += s->last_cluster_size; + }; + } else if (draw) { +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + other_f = [&] (const On_t *s) { + glClear(GL_COLOR_BUFFER_BIT); + for (v_t i = 0; i < pow(L, 2); i++) { + vector_R_t v_tmp = s->R.act_inverse(s->spins[i]); + double saturation = 0.7; + double value = 0.9; + double chroma = saturation * value; + glColor3f(chroma * hue_to_R(v_tmp.x) + (value - chroma), chroma * hue_to_G(v_tmp.x) + (value - chroma), chroma * hue_to_B(v_tmp.x) + (value - chroma)); + glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); + } + glFlush(); + }; +#endif + } else { + other_f = [] (const On_t *s) {}; + } + + std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); + + std::function <double(const angle_t&, const angle_t&)> J = [] (const angle_t& t1, const angle_t& t2) -> double { + return cos(t1.x - t2.x); + }; + + std::function <double(const angle_t &)> H; + + if (modulated_field) { + H = [=] (const angle_t& t) -> double { + return H_vec[0] * cos(order * t.x); + }; + } else { + double mag = 0; + for (q_t i = 0; i < 2; i++) { + mag += pow(H_vec[i], 2); + } + mag = sqrt(mag); + double t0 = theta(H_vec); + H = [=] (const angle_t& t) -> double { + return mag * cos(t0 + t.x); + }; + } + + // initialize random number generator + gsl_rng *r = gsl_rng_alloc(gsl_rng_taus2); + gsl_rng_set(r, rand_seed()); + + state_t <orthogonal_R_t, vector_R_t> s(D, L, T, J, H); + + if (N_is_sweeps) { + count_t N_rounds = 0; + printf("\n"); + while (sum_of_clusterSize < N * s.nv) { + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent); + N_rounds++; + } + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + } else { + wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent); + } + + measure_free_files(measurement_flags, outfiles); + free(H_vec); + gsl_rng_free(r); + + return 0; +} + diff --git a/src/wolff_On.cpp b/src/wolff_On.cpp index 5458860..cbde498 100644 --- a/src/wolff_On.cpp +++ b/src/wolff_On.cpp @@ -206,7 +206,7 @@ int main(int argc, char *argv[]) { std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); - std::function <double(vector_R_t)> H; + std::function <double(const vector_R_t&)> H; if (modulated_field) { H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]); diff --git a/src/wolff_cgm.cpp b/src/wolff_cgm.cpp index 7613691..ec3ae36 100644 --- a/src/wolff_cgm.cpp +++ b/src/wolff_cgm.cpp @@ -75,7 +75,7 @@ int main(int argc, char *argv[]) { gsl_rng_set(r, rand_seed()); // define spin-spin coupling - std::function <double(height_t<double>, height_t<double>)> Z = [] (height_t<double> h1, height_t<double> h2) -> double { + std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& h1, const height_t<double>& h2) -> double { return -pow(h1.x - h2.x, 2); }; diff --git a/src/wolff_clock.cpp b/src/wolff_clock.cpp index bc2c5d1..376eaec 100644 --- a/src/wolff_clock.cpp +++ b/src/wolff_clock.cpp @@ -78,12 +78,12 @@ int main(int argc, char *argv[]) { gsl_rng_set(r, rand_seed()); // define spin-spin coupling - std::function <double(potts_t<POTTSQ>, potts_t<POTTSQ>)> Z = [] (potts_t<POTTSQ> s1, potts_t<POTTSQ> s2) -> double { + std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double { return cos(2 * M_PI * (double)(s1.x + POTTSQ - s2.x) / (double)POTTSQ); }; // define spin-field coupling - std::function <double(potts_t<POTTSQ>)> B = [=] (potts_t<POTTSQ> s) -> double { + std::function <double(const potts_t<POTTSQ>&)> B = [=] (const potts_t<POTTSQ>& s) -> double { return H_vec[s.x]; }; diff --git a/src/wolff_dgm.cpp b/src/wolff_dgm.cpp index 2583704..d00cae5 100644 --- a/src/wolff_dgm.cpp +++ b/src/wolff_dgm.cpp @@ -75,12 +75,12 @@ int main(int argc, char *argv[]) { gsl_rng_set(r, rand_seed()); // define spin-spin coupling - std::function <double(height_t<int64_t>, height_t<int64_t>)> Z = [] (height_t<int64_t> h1, height_t<int64_t> h2) -> double { + std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& h1, const height_t<int64_t>& h2) -> double { return -pow(h1.x - h2.x, 2); }; // define spin-field coupling - std::function <double(height_t<int64_t>)> B = [=] (height_t<int64_t> h) -> double { + std::function <double(const height_t<int64_t> &)> B = [=] (const height_t<int64_t>& h) -> double { return -H * pow(h.x, 2);; }; diff --git a/src/wolff_ising.cpp b/src/wolff_ising.cpp index 410e046..0c9485d 100644 --- a/src/wolff_ising.cpp +++ b/src/wolff_ising.cpp @@ -99,7 +99,7 @@ int main(int argc, char *argv[]) { gsl_rng_set(r, rand_seed()); // define spin-spin coupling - std::function <double(ising_t, ising_t)> Z = [] (ising_t s1, ising_t s2) -> double { + std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double { if (s1.x == s2.x) { return 1.0; } else { @@ -108,7 +108,7 @@ int main(int argc, char *argv[]) { }; // define spin-field coupling - std::function <double(ising_t)> B = [=] (ising_t s) -> double { + std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double { if (s.x) { return -H; } else { diff --git a/src/wolff_potts.cpp b/src/wolff_potts.cpp index 07663d5..2bc306b 100644 --- a/src/wolff_potts.cpp +++ b/src/wolff_potts.cpp @@ -99,7 +99,7 @@ int main(int argc, char *argv[]) { gsl_rng_set(r, rand_seed()); // define spin-spin coupling - std::function <double(potts_t<POTTSQ>, potts_t<POTTSQ>)> Z = [] (potts_t<POTTSQ> s1, potts_t<POTTSQ> s2) -> double { + std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double { if (s1.x == s2.x) { return 1.0; } else { @@ -108,7 +108,7 @@ int main(int argc, char *argv[]) { }; // define spin-field coupling - std::function <double(potts_t<POTTSQ>)> B = [=] (potts_t<POTTSQ> s) -> double { + std::function <double(const potts_t<POTTSQ> &)> B = [=] (const potts_t<POTTSQ>& s) -> double { return H_vec[s.x]; }; |