1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
#include <getopt.h>
#include <iostream>
#include <chrono>
#include <GL/glut.h>
#define WOLFF_USE_FINITE_STATES
#include <wolff_models/ising.hpp>
using namespace wolff;
typedef wolff::system<ising_t, ising_t, graph<>> sys;
class draw_ising : public measurement<ising_t, ising_t, graph<>> {
private:
unsigned int frame_skip;
unsigned C;
public:
draw_ising(const sys& S, unsigned int window_size, unsigned int frame_skip, int argc, char *argv[]) : frame_skip(frame_skip){
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(window_size, window_size);
glutCreateWindow("wolff");
glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, S.G.L, 0.0, S.G.L);
}
void pre_cluster(unsigned, unsigned, const sys& S, const graph<>::vertex&, const ising_t&) override {
glClear(GL_COLOR_BUFFER_BIT);
for (unsigned i = 0; i < pow(S.G.L, 2); i++) {
if (S.s[i].x == S.s0.x) {
glColor3f(0.0, 0.0, 0.0);
} else {
glColor3f(1.0, 1.0, 1.0);
}
glRecti(i / S.G.L, i % S.G.L, (i / S.G.L) + 1, (i % S.G.L) + 1);
}
glFlush();
C = 0;
}
void plain_site_transformed(const sys& S, const graph<>::vertex& v, const ising_t&) override {
glColor3f(1.0, 0.0, 0.0);
glRecti(v.ind / S.G.L, v.ind % S.G.L, (v.ind / S.G.L) + 1, (v.ind % S.G.L) + 1);
C++;
if (C % frame_skip == 0) {
glFlush();
}
}
};
int main(int argc, char *argv[]) {
// set defaults
unsigned N = (unsigned)1e4;
unsigned D = 2;
unsigned L = 128;
double T = 2.26918531421;
double H = 0.0;
unsigned int window_size = 512;
unsigned int frame_skip = 1;
int opt;
// take command line arguments
while ((opt = getopt(argc, argv, "N:D:L:T:H:w:f:")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (unsigned)atof(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'H': // external field
H = atof(optarg);
break;
case 'w':
window_size = atoi(optarg);
break;
case 'f':
frame_skip = atoi(optarg);
break;
default:
exit(EXIT_FAILURE);
}
}
// define the spin-spin coupling
std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
return (double)(s1 * s2);
};
// define the spin-field coupling
std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
return H * s;
};
// initialize the lattice
graph<> G(D, L);
// initialize the system
sys S(G, T, Z, B);
// initailze the measurement object
draw_ising A(S, window_size, frame_skip, argc, argv);
// initialize the random number generator
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 rng(seed);
// run wolff N times
S.run_wolff(N, gen_ising<graph<>>, A, rng);
// exit
return 0;
}
|