summaryrefslogtreecommitdiff
path: root/examples/ising_animation.cpp
blob: d420f2bc9863c6a32c3c3ec38c53f3737cd3d5e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

#include <getopt.h>
#include <iostream>
#include <chrono>

#include <GL/glut.h>

#define WOLFF_USE_FINITE_STATES
#include <wolff_models/ising.hpp>

using namespace wolff;

typedef wolff::system<ising_t, ising_t, graph<>> sys;

class draw_ising : public measurement<ising_t, ising_t, graph<>> {
  private:
    unsigned int frame_skip;
    unsigned C;
  public:
    draw_ising(const sys& S, unsigned int window_size, unsigned int frame_skip, int argc, char *argv[]) : frame_skip(frame_skip){
      glutInit(&argc, argv);
      glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
      glutInitWindowSize(window_size, window_size);
      glutCreateWindow("wolff");
      glClearColor(0.0,0.0,0.0,0.0);
      glMatrixMode(GL_PROJECTION);
      glLoadIdentity();
      gluOrtho2D(0.0, S.G.L, 0.0, S.G.L);
    }

    void pre_cluster(unsigned, unsigned, const sys& S, const graph<>::vertex&, const ising_t&) override {
      glClear(GL_COLOR_BUFFER_BIT);
      for (unsigned i = 0; i < pow(S.G.L, 2); i++) {
        if (S.s[i].x == S.s0.x) {
          glColor3f(0.0, 0.0, 0.0);
        } else {
          glColor3f(1.0, 1.0, 1.0);
        }
        glRecti(i / S.G.L, i % S.G.L, (i / S.G.L) + 1, (i % S.G.L) + 1);
      }
      glFlush();
      C = 0;
    }

    void plain_site_transformed(const sys& S, const graph<>::vertex& v, const ising_t&) override {
      glColor3f(1.0, 0.0, 0.0);
      glRecti(v.ind / S.G.L, v.ind % S.G.L, (v.ind / S.G.L) + 1, (v.ind % S.G.L) + 1);
      C++;
      if (C % frame_skip == 0) {
        glFlush();
      }
    }
};

int main(int argc, char *argv[]) {

  // set defaults
  unsigned N = (unsigned)1e4;
  unsigned D = 2;
  unsigned L = 128;
  double T = 2.26918531421;
  double H = 0.0;
  unsigned int window_size = 512;
  unsigned int frame_skip = 1;

  int opt;

  // take command line arguments
  while ((opt = getopt(argc, argv, "N:D:L:T:H:w:f:")) != -1) {
    switch (opt) {
      case 'N': // number of steps
        N = (unsigned)atof(optarg);
        break;
      case 'D': // dimension
        D = atoi(optarg);
        break;
      case 'L': // linear size
        L = atoi(optarg);
        break;
      case 'T': // temperature
        T = atof(optarg);
        break;
      case 'H': // external field
        H = atof(optarg);
        break;
      case 'w':
        window_size = atoi(optarg);
        break;
      case 'f':
        frame_skip = atoi(optarg);
        break;
      default:
        exit(EXIT_FAILURE);
    }
  }

  // define the spin-spin coupling
  std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
    return (double)(s1 * s2);
  };

  // define the spin-field coupling
  std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
    return H * s;
  };

  // initialize the lattice
  graph<> G(D, L);

  // initialize the system
  sys S(G, T, Z, B);

  // initailze the measurement object
  draw_ising A(S, window_size, frame_skip, argc, argv);

  // initialize the random number generator
  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
  std::mt19937 rng(seed);

  // run wolff N times
  S.run_wolff(N, gen_ising<graph<>>, A, rng);

  // exit
  return 0;
}