summaryrefslogtreecommitdiff
path: root/examples/ising_standalone.cpp
blob: 8646cffddaf9c6b601f7b2a23b62e30572b1b8cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include <iostream>
#include <chrono>

#include <wolff.hpp>

using namespace wolff;

class ising_t {
  public:
    int s;

    ising_t() : s(1) {};
    ising_t(int i) : s(i) {};

    ising_t act(const ising_t& x) const {
      return ising_t(s * x.s);
    }

    ising_t act_inverse(const ising_t& x) const {
      return this->act(x);
    }
};

typedef graph<> G_t;
typedef wolff::system<ising_t, ising_t> sys;

class measure_clusters : public measurement<ising_t, ising_t> {
  private:
    unsigned C;

  public:
    double Ctotal;

    measure_clusters() { Ctotal = 0; }

    void pre_cluster(unsigned, unsigned, const sys&, const G_t::vertex&, const ising_t&) override { C = 0; }

    void plain_site_transformed(const sys&, const G_t::vertex&, const ising_t&) override { C++; }

    void post_cluster(unsigned, unsigned, const sys&) override { Ctotal += C; }
};

int main(int argc, char *argv[]) {
  // set defaults
  unsigned N = (unsigned)1e3;
  unsigned D = 2;
  unsigned L = 128;
  double T = 2.26918531421;
  double H = 0.01;

  // define the spin-spin coupling
  std::function <double(const ising_t&, const ising_t&)> Z =
    [](const ising_t& s1, const ising_t& s2) -> double {
      return (double)(s1.s * s2.s);
    };

  // define the spin-field coupling
  std::function <double(const ising_t&)> B =
    [=](const ising_t& s) -> double {
      return H * s.s;
    };

  // initialize the lattice
  G_t G(D, L);

  // initialize the system
  sys S(G, T, Z, B);

  // define function that generates self-inverse rotations
  std::function <ising_t(std::mt19937&, const sys&, const G_t::vertex&)> gen_R =
    [] (std::mt19937&, const sys&, const G_t::vertex&) -> ising_t {
      return ising_t(-1);
    };

  // initailze the measurement object
  measure_clusters A;

  // initialize the random number generator
  auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
  std::mt19937 rng(seed);

  // run wolff N times
  S.run_wolff(N, gen_R, A, rng);

  // print results
  std::cout << "The average cluster size per site was " << (A.Ctotal / N) / S.nv << ".\n";

  // exit
  return 0;
}