summaryrefslogtreecommitdiff
path: root/lib/cluster.c
blob: 970620e67645f111abb56063430cefb8f574a726 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

#include "cluster.h"

v_t flip_cluster(ising_state_t *s, v_t v0, q_t rot, gsl_rng *r) {
  v_t nv = 0;

  ll_t *stack = NULL;     // create a new stack
  stack_push(&stack, v0); // push the initial vertex to the stack

  bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));

  while (stack != NULL) {
    v_t v = stack_pop(&stack);

    if (!marks[v]) {
      q_t s_old, s_new;
      dihedral_t *R_new; 
      bool external_flipped;

      marks[v] = true;

      if (v == s->g->nv - 1) {
        R_new = dihedral_compose(s->q, rot, s->R);
        external_flipped = true;
      } else {
        s_old = s->spins[v];
        s_new = dihedral_act(s->q, rot, s_old);
        external_flipped = false;
      }

      v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];

      for (v_t i = 0; i < nn; i++) {
        q_t sn;
        double prob;
        bool external_neighbor = false;

        v_t vn = s->g->v_adj[s->g->v_i[v] + i];

        if (vn == s->g->nv - 1) {
          external_neighbor = true;
        } else {
          sn = s->spins[vn];
        }

        if (external_flipped || external_neighbor) {
          q_t rot_s_old, rot_s_new;

          if (external_neighbor) {
            rot_s_old = dihedral_inverse_act(s->q, s->R, s_old);
            rot_s_new = dihedral_inverse_act(s->q, s->R, s_new);
          } else {
            rot_s_old = dihedral_inverse_act(s->q, s->R, sn);
            rot_s_new = dihedral_inverse_act(s->q, R_new, sn);
          }

          prob = s->H_probs[rot_s_new * s->q + rot_s_old];

          s->M[rot_s_old]--;
          s->M[rot_s_new]++;

          s->E += - s->H[rot_s_new] + s->H[rot_s_old];
        } else {
          q_t diff_old = (s_old + s->q - sn) % s->q;
          q_t diff_new = (s_new + s->q - sn) % s->q;

          prob = s->J_probs[diff_new * s->q + diff_old];

          s->E += - s->J[diff_new] + s->J[diff_old];
        }

        if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
          stack_push(&stack, vn); // push the neighboring vertex to the stack
        }
      }

      if (external_flipped) {
        free(s->R);
        s->R = R_new;
      } else {
        s->spins[v] = s_new;
      }

      if (v != s->g->nv - 1) { // count the number of non-external sites that flip
        nv++;
      }
    }
  }

  free(marks);

  return nv;
}

v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) {
  v_t nv = 0;

  ll_t *stack = NULL;     // create a new stack
  stack_push(&stack, v0); // push the initial vertex to the stack

  //node_t *T = NULL;
  bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));

  while (stack != NULL) {
    v_t v = stack_pop(&stack);

//    if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped
    if (!marks[v]) {
      double *s_old, *s_new, *R_tmp; 

      //tree_insert(&T, v);
      marks[v] = true;

      if (v == s->g->nv - 1) {
        R_tmp = orthogonal_rotate(s->n, rot, s->R);
      } else {
        s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins
        s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector
      }

      v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];

      for (v_t i = 0; i < nn; i++) {
        v_t vn = s->g->v_adj[s->g->v_i[v] + i];
        double *sn;
        if (vn != s->g->nv - 1) {
          sn = &(s->spins[s->n * vn]);
        }
        double prob;

        bool is_ext = (v == s->g->nv - 1 || vn == s->g->nv - 1);

        if (is_ext) {
          double *rs_old, *rs_new;
          if (vn == s->g->nv - 1) {
            rs_old = vector_rotate_inverse(s->n, s->R, s_old);
            rs_new = vector_rotate_inverse(s->n, s->R, s_new);
          } else {
            rs_old = vector_rotate_inverse(s->n, s->R, sn);
            rs_new = vector_rotate_inverse(s->n, R_tmp, sn);
          }
          double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new);
          prob = 1.0 - exp(-dE / s->T);
          vector_subtract(s->n, s->M, rs_old);
          vector_add(s->n, s->M, rs_new);
          s->E += dE;

          free(rs_old);
          free(rs_new);
        } else {
          double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new));
          prob = 1.0 - exp(-dE / s->T);
          //printf("(%g %g) (%g %g) (%g %g) %g\n", s_old[0], s_old[1], s_new[0], s_new[1], sn[0], sn[1], dE);
          //getchar();
          s->E += dE;
        }

        if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
          stack_push(&stack, vn); // push the neighboring vertex to the stack
        }
      }

      if (v == s->g->nv - 1) {
        free(s->R);
        s->R = R_tmp;
      } else {
        vector_replace(s->n, s_old, s_new);
        free(s_new);
      }

      if (v != s->g->nv - 1) { // count the number of non-external sites that flip
        nv++;
      }
    }
  }

  //tree_freeNode(T);
  free(marks);

  return nv;
}