1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
#pragma once
#include <functional>
#include <assert.h>
#include <fftw3.h>
#include <float.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <inttypes.h>
#include <cmath>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
#include "types.h"
#include "rand.h"
#include "stack.h"
#include "convex.h"
#include "graph.h"
#include "tree.h"
#include "measurement.h"
#include "vector.h"
#include "orthogonal.h"
#include "dihedral.h"
#include "dihinf.h"
#include "yule_walker.h"
template <class T>
void init(T*);
template <class T>
T scalar_multiple(v_t a, T b);
template <class R_t, class X_t>
X_t act(R_t a, X_t b);
template <class R_t, class X_t>
X_t act_inverse(R_t a, X_t b);
template <class T>
T copy(T a);
template <class T>
void free_spin(T a);
template <class T>
T add(T, T);
template <class T>
T subtract(T, T);
template <class T>
T gen_rot(gsl_rng *r);
template <class R_t, class X_t>
class state_t {
public:
D_t D;
L_t L;
v_t nv;
v_t ne;
graph_t *g;
double T;
X_t *spins;
R_t R;
double E;
X_t M; // the "sum" of the spins, like the total magnetization
std::function <double(X_t, X_t)> J;
std::function <double(X_t)> H;
state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) {
graph_t *h = graph_create_square(D, L);
nv = h->nv;
ne = h->ne;
g = graph_add_ext(h);
graph_free(h);
spins = (X_t *)malloc(nv * sizeof(X_t));
for (v_t i = 0; i < nv; i++) {
init (&(spins[i]));
}
init (&R);
E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
M = scalar_multiple (nv, spins[0]);
}
~state_t() {
graph_free(g);
for (v_t i = 0; i < nv; i++) {
free_spin(spins[i]);
}
free(spins);
free_spin(R);
free_spin(M);
}
};
template <class R_t, class X_t>
v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
v_t nv = 0;
ll_t *stack = NULL; // create a new stack
stack_push(&stack, v0); // push the initial vertex to the stack
bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
while (stack != NULL) {
v_t v = stack_pop(&stack);
if (!marks[v]) {
X_t si_old, si_new;
R_t R_old, R_new;
si_old = state->spins[v];
R_old = state->R;
marks[v] = true;
if (v == state->g->nv - 1) {
R_new = act (r, R_old);
} else {
si_new = act (r, si_old);
}
v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
for (v_t i = 0; i < nn; i++) {
v_t vn = state->g->v_adj[state->g->v_i[v] + i];
X_t sj;
if (vn != state->g->nv - 1) {
sj = state->spins[vn];
}
double prob;
bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
if (is_ext) {
X_t rs_old, rs_new;
if (vn == state->g->nv - 1) {
rs_old = act_inverse (R_old, si_old);
rs_new = act_inverse (R_old, si_new);
} else {
rs_old = act_inverse (R_old, sj);
rs_new = act_inverse (R_new, sj);
}
double dE = state->H(rs_old) - state->H(rs_new);
prob = 1.0 - exp(-dE / state->T);
subtract (state->M, rs_old);
add (state->M, rs_new);
state->E += dE;
free_spin (rs_old);
free_spin (rs_new);
} else {
double dE = state->J(si_old, sj) - state->J(si_new, sj);
prob = 1.0 - exp(-dE / state->T);
state->E += dE;
}
if (gsl_rng_uniform(rand) < prob) { // and with probability...
stack_push(&stack, vn); // push the neighboring vertex to the stack
}
}
if (v == state->g->nv - 1) {
free_spin(state->R);
state->R = R_new;
} else {
free_spin(state->spins[v]);
state->spins[v] = si_new;
}
if (v != state->g->nv - 1) { // count the number of non-external sites that flip
nv++;
}
}
}
free(marks);
return nv;
}
|