summaryrefslogtreecommitdiff
path: root/lib/cluster.h
blob: cc2dc70ea402a39367722134d6c9aacdcf325b6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

#pragma once

#include <functional>
#include <assert.h>
#include <fftw3.h>
#include <float.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <inttypes.h>
#include <cmath>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>

#include "state.h"
#include "types.h"
#include "rand.h"
#include "stack.h"
#include "convex.h"
#include "graph.h"
#include "tree.h"
#include "measurement.h"
#include "vector.h"
#include "orthogonal.h"
#include "dihedral.h"
#include "dihinf.h"
#include "yule_walker.h"

template <class R_t, class X_t>
void flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
  v_t nv = 0;

  ll_t *stack = NULL;     // create a new stack
  stack_push(&stack, v0); // push the initial vertex to the stack

  bool *marks = (bool *)calloc(state->nv + 1, sizeof(bool));

  while (stack != NULL) {
    v_t v = stack_pop(&stack);

    if (!marks[v]) {
      X_t si_old, si_new;
      R_t R_old, R_new;

      R_old = state->R;
      marks[v] = true;

      if (v == state->nv) {
        R_new = act (r, R_old);
      } else {
        si_old = state->spins[v];
        si_new = act (r, si_old);
      }

      v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];

      for (v_t i = 0; i < nn; i++) {
        v_t vn = state->g->v_adj[state->g->v_i[v] + i];

        X_t sj;

        if (vn != state->nv) {
          sj = state->spins[vn];
        }

        double prob;

        bool is_ext = (v == state->nv || vn == state->nv);

        if (is_ext) {
          X_t rs_old, rs_new;
          v_t non_ghost;
          if (vn == state->nv) {
            rs_old = act_inverse (R_old, si_old);
            rs_new = act_inverse (R_old, si_new);
            non_ghost = v;
          } else {
            rs_old = act_inverse (R_old, sj);
            rs_new = act_inverse (R_new, sj);
            non_ghost = vn;
          }
          double dE = state->H(rs_old) - state->H(rs_new);
          prob = 1.0 - exp(-dE / state->T);

          add(&(state->M), -1, rs_old);
          add(&(state->M),  1, rs_new);
          state->E += dE;

          for (D_t i = 0; i < state->D; i++) {
            L_t x = (non_ghost / (v_t)pow(state->L, state->D - i - 1)) % state->L;

            add(&(state->ReF[i]), -state->precomputed_cos[i], rs_old);
            add(&(state->ReF[i]),  state->precomputed_cos[i], rs_new);

            add(&(state->ImF[i]), -state->precomputed_sin[i], rs_old);
            add(&(state->ImF[i]),  state->precomputed_sin[i], rs_new);
          }

          free_spin (rs_old);
          free_spin (rs_new);
        } else {
          double dE = state->J(si_old, sj) - state->J(si_new, sj);
          prob = 1.0 - exp(-dE / state->T);
          state->E += dE;
        }

        if (gsl_rng_uniform(rand) < prob) { // and with probability...
          stack_push(&stack, vn); // push the neighboring vertex to the stack
        }
      }

      if (v == state->g->nv - 1) {
        free_spin(state->R);
        state->R = R_new;
      } else {
        free_spin(state->spins[v]);
        state->spins[v] = si_new;
      }

      if (v != state->g->nv - 1) { // count the number of non-external sites that flip
        nv++;
      }
    }
  }

  free(marks);

  state->last_cluster_size = nv;
}