1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#pragma once
#include "state.h"
#include "correlation.h"
#include <functional>
#define POSSIBLE_MEASUREMENTS 4
const unsigned char measurement_energy = 1 << 0;
const unsigned char measurement_clusterSize = 1 << 1;
const unsigned char measurement_magnetization = 1 << 2;
const unsigned char measurement_fourierZero = 1 << 3;
char const *measurement_labels[] = {"E", "S", "M", "F"};
FILE **measure_setup_files(unsigned char flags, unsigned long timestamp) {
FILE **files = (FILE **)calloc(POSSIBLE_MEASUREMENTS, sizeof(FILE *));
for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) {
if (flags & (1 << i)) {
char *filename = (char *)malloc(255 * sizeof(char));
sprintf(filename, "wolff_%lu_%s.dat", timestamp, measurement_labels[i]);
files[i] = fopen(filename, "wb");
free(filename);
}
}
return files;
}
template <class R_t, class X_t>
std::function <void(const state_t <R_t, X_t> *)> measure_function_write_files(unsigned char flags, FILE **files, std::function <void(const state_t <R_t, X_t> *)> other_f) {
return [=] (const state_t <R_t, X_t> *s) {
if (flags & measurement_energy) {
float smaller_E = (float)s->E;
fwrite(&smaller_E, sizeof(float), 1, files[0]);
}
if (flags & measurement_clusterSize) {
fwrite(&(s->last_cluster_size), sizeof(uint32_t), 1, files[1]);
}
if (flags & measurement_magnetization) {
write_magnetization(s->M, files[2]);
}
if (flags & measurement_fourierZero) {
float smaller_X = (float)correlation_length(s);
fwrite(&smaller_X, sizeof(float), 1, files[3]);
}
other_f(s);
};
}
void measure_free_files(unsigned char flags, FILE **files) {
for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) {
if (flags & (1 << i)) {
fclose(files[i]);
}
}
free(files);
}
|