1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
#pragma once
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <cmath>
#include "state.h"
#include "types.h"
#include "vector.h"
template <q_t q, class T>
class orthogonal_t : public std::array<std::array<T, q>, q> {
public :
bool is_reflection;
orthogonal_t() : is_reflection(false) {
for (q_t i = 0; i < q; i++) {
(*this)[i].fill(0);
(*this)[i][i] = (T)1;
}
}
vector_t<q, T> act(const vector_t <q, T>& v) const {
vector_t <q, T> v_rot;
if (is_reflection) {
double prod = 0;
for (q_t i = 0; i < q; i++) {
prod += v[i] * (*this)[0][i];
}
for (q_t i = 0; i < q; i++) {
v_rot[i] = v[i] - 2 * prod * (*this)[0][i];
}
} else {
for (q_t i = 0; i < q; i++) {
for (q_t j = 0; j < q; j++) {
v_rot[i] += (*this)[i][j] * v[j];
}
}
}
return v_rot;
}
orthogonal_t<q, T> act(const orthogonal_t <q, T>& m) const {
orthogonal_t <q, T> m_rot;
m_rot.is_reflection = false;
if (is_reflection) {
for (q_t i = 0; i < q; i++) {
double akOki = 0;
for (q_t k = 0; k < q; k++) {
akOki += (*this)[0][k] * m[k][i];
}
for (q_t j = 0; j < q; j++) {
m_rot[j][i] = m[j][i] - 2 * akOki * (*this)[0][j];
}
}
} else {
for (q_t i = 0; i < q; i++) {
m_rot[i].fill(0);
for (q_t j = 0; j < q; j++) {
for (q_t k = 0; k < q; k++) {
m_rot[i][j] += (*this)[i][j] * m[j][k];
}
}
}
}
return m_rot;
}
vector_t <q, T> act_inverse(const vector_t <q, T>& v) const {
if (is_reflection) {
return this->act(v); // reflections are their own inverse
} else {
vector_t <q, T> v_rot;
for (q_t i = 0; i < q; i++) {
for (q_t j = 0; j < q; j++) {
v_rot[i] += (*this)[j][i] * v[j];
}
}
return v_rot;
}
}
vector_t <q, T> act_inverse(const orthogonal_t <q, T>& m) const {
if (is_reflection) {
return this->act(m); // reflections are their own inverse
} else {
orthogonal_t <q, T> m_rot;
m_rot.is_reflection = false;
for (q_t i = 0; i < q; i++) {
m_rot[i].fill(0);
for (q_t j = 0; j < q; j++) {
for (q_t k = 0; k < q; k++) {
m_rot[i][j] += (*this)[j][i] * m[j][k];
}
}
}
return m_rot;
}
}
};
template <q_t q>
orthogonal_t <q, double> generate_rotation_uniform (gsl_rng *r, const vector_t <q, double>& v) {
orthogonal_t <q, double> ptr;
ptr.is_reflection = true;
double v2 = 0;
for (q_t i = 0; i < q; i++) {
ptr[0][i] = gsl_ran_ugaussian(r);
v2 += ptr[0][i] * ptr[0][i];
}
double mag_v = sqrt(v2);
for (q_t i = 0; i < q; i++) {
ptr[0][i] /= mag_v;
}
return ptr;
}
template <q_t q>
orthogonal_t <q, double> generate_rotation_perturbation (gsl_rng *r, const vector_t <q, double>& v0, double epsilon, unsigned int n) {
orthogonal_t <q, double> m;
m.is_reflection = true;
vector_t <q, double> v;
if (n > 1) {
unsigned int rotation = gsl_rng_uniform_int(r, n);
double cosr = cos(2 * M_PI * rotation / (double)n / 2.0);
double sinr = sin(2 * M_PI * rotation / (double)n / 2.0);
v[0] = v0[0] * cosr - v0[1] * sinr;
v[1] = v0[1] * cosr + v0[0] * sinr;
for (q_t i = 2; i < q; i++) {
v[i] = v0[i];
}
} else {
v = v0;
}
double m_dot_v = 0;
for (q_t i = 0; i < q; i++) {
m[0][i] = gsl_ran_ugaussian(r);
m_dot_v += m[0][i] * v[i];
}
double v2 = 0;
double factor = epsilon * gsl_ran_ugaussian(r);
for (q_t i = 0; i < q; i++) {
m[0][i] = m[0][i] - m_dot_v * v[i] + factor * v[i];
v2 += pow(m[0][i], 2);
}
double mag_v = sqrt(v2);
for (q_t i = 0; i < q; i++) {
m[0][i] /= mag_v;
}
return m;
}
|