1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
#pragma once
#include <functional>
#include <vector>
#include "types.h"
#include "graph.h"
template <class R_t, class X_t>
class state_t {
public:
D_t D;
L_t L;
v_t nv;
v_t ne;
graph_t g;
double T;
std::vector<X_t> spins;
R_t R;
double E;
typename X_t::M_t M; // the "sum" of the spins, like the total magnetization
v_t last_cluster_size;
std::vector<typename X_t::F_t> ReF;
std::vector<typename X_t::F_t> ImF;
// updating fourier terms F requires many cos and sin calls, faster to do it beforehand.
std::vector<double> precomputed_cos;
std::vector<double> precomputed_sin;
std::function <double(X_t, X_t)> J;
std::function <double(X_t)> H;
state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), g(D, L), T(T), J(J), H(H) {
nv = g.nv;
ne = g.ne;
g.add_ext();
spins.resize(nv);
init (&R);
E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
M = spins[0] * nv;
last_cluster_size = 0;
ReF.resize(D);
ImF.resize(D);
for (D_t i = 0; i < D; i++) {
ReF[i] = spins[0] * 0.0;
ImF[i] = spins[0] * 0.0;
}
precomputed_cos.resize(L);
precomputed_sin.resize(L);
for (L_t i = 0; i < L; i++) {
precomputed_cos[i] = cos(2 * M_PI * (double)i / (double)L);
precomputed_sin[i] = sin(2 * M_PI * (double)i / (double)L);
}
}
~state_t() {
free_spin(R);
}
};
|