summaryrefslogtreecommitdiff
path: root/lib/vector.h
blob: 2f4077ad04b1cef0b2d53897a75c6682855b5b88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

#pragma once

#include <stdlib.h>
#include <cmath>
#include <array>

#include "types.h"

/* The following is the minimum definition of a spin class.
 *
 * The class must contain an M_t and an F_t for holding the sum of an
 * integer number of spins and a double-weighted number of spins,
 * respectively.
 *
 * void init(X_t *p);
 * void free_spin(X_t p);
 * X_t copy(X_t x);
 * void add(M_t *x1, int factor, X_t x2);
 * void add(F_t *x1, double factor, X_t x2);
 * M_t scalar_multiple(int factor, X_t x);
 * double norm_squared(F_t x);
 * void write_magnetization(M_t M, FILE *outfile);
 *
 */

template <q_t q, class T>
class vector_t : public std::array<T, q> {
  public: 

    // M_t needs to hold the sum of nv spins
    typedef vector_t <q, T> M_t;

    // F_t needs to hold the double-weighted sum of spins
    typedef vector_t <q, double> F_t;

    vector_t() {
      this->fill((T)0);
      (*this)[1] = (T)1;
    }

    vector_t(const T *x) {
      for (q_t i = 0; i < q; i++) {
        (*this)[i] = x[i];
      }
    }

    template <class U>
    inline vector_t<q, T>& operator+=(const vector_t<q, U> &v) {
      for (q_t i = 0; i < q; i++) {
        (*this)[i] += (U)v[i];
      }
      return *this;
    }

    template <class U>
    inline vector_t<q, T>& operator-=(const vector_t<q, U> &v) {
      for (q_t i = 0; i < q; i++) {
        (*this)[i] -= (U)v[i];
      }
      return *this;
    }

    inline vector_t<q, T> operator*(v_t x) const {
      vector_t<q, T> result;
      for (q_t i = 0; i < q; i++) {
        result[i] = x * (*this)[i];
      }

      return result;
    }

    inline vector_t<q, double> operator*(double x) const {
      vector_t<q, double> result;
      for (q_t i = 0; i < q; i++) {
        result[i] = x * (*this)[i];
      }

      return result;
    }
};


template<q_t q, class T>
double norm_squared(vector_t<q, T> v) {
  double tmp = 0;
  for (T &x : v) {
    tmp += pow(x, 2);
  }

  return tmp;
}

template <q_t q, class T>
void write_magnetization(vector_t <q, T> M, FILE *outfile) {
  for (q_t i = 0; i < q; i++) {
    fwrite(&(M[i]), sizeof(T), q, outfile);
  }
}

// below functions and definitions are unnecessary for wolff.h but useful.

template <q_t q> // save some space and don't write whole doubles
void write_magnetization(vector_t <q, double> M, FILE *outfile) {
  for (q_t i = 0; i < q; i++) {
    float M_tmp = (float)M[i];
    fwrite(&M_tmp, sizeof(float), 1, outfile);
  }
}

template <q_t q, class T>
T dot(const vector_t <q, T>& v1, const vector_t <q, T>& v2) {
  T prod = 0;

  for (q_t i = 0; i < q; i++) {
    prod += v1[i] * v2[i];
  }

  return prod;
}

template <q_t q, class T>
double H_vector(const vector_t <q, T>& v1, T *H) {
  vector_t <q, T> H_vec(H);
  return (double)(dot <q, T> (v1, H_vec));
}

char const *ON_strings[] = {"TRIVIAL", "ISING", "PLANAR", "HEISENBERG"};