1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
#pragma once
#include <stdlib.h>
#include <cmath>
#include <array>
#include "types.h"
/* The following is the minimum definition of a spin class.
*
* The class must contain an M_t and an F_t for holding the sum of an
* integer number of spins and a double-weighted number of spins,
* respectively.
*
* void init(X_t *p);
* void free_spin(X_t p);
* X_t copy(X_t x);
* void add(M_t *x1, int factor, X_t x2);
* void add(F_t *x1, double factor, X_t x2);
* M_t scalar_multiple(int factor, X_t x);
* double norm_squared(F_t x);
* void write_magnetization(M_t M, FILE *outfile);
*
*/
template <q_t q, class T>
class vector_t : public std::array<T, q> {
public:
// M_t needs to hold the sum of nv spins
typedef vector_t <q, T> M_t;
// F_t needs to hold the double-weighted sum of spins
typedef vector_t <q, double> F_t;
vector_t() {
this->fill((T)0);
(*this)[1] = (T)1;
}
vector_t(const T *x) {
for (q_t i = 0; i < q; i++) {
(*this)[i] = x[i];
}
}
template <class U>
inline vector_t<q, T>& operator+=(const vector_t<q, U> &v) {
for (q_t i = 0; i < q; i++) {
(*this)[i] += (U)v[i];
}
return *this;
}
template <class U>
inline vector_t<q, T>& operator-=(const vector_t<q, U> &v) {
for (q_t i = 0; i < q; i++) {
(*this)[i] -= (U)v[i];
}
return *this;
}
inline vector_t<q, T> operator*(v_t x) const {
vector_t<q, T> result;
for (q_t i = 0; i < q; i++) {
result[i] = x * (*this)[i];
}
return result;
}
inline vector_t<q, double> operator*(double x) const {
vector_t<q, double> result;
for (q_t i = 0; i < q; i++) {
result[i] = x * (*this)[i];
}
return result;
}
};
template<q_t q, class T>
double norm_squared(vector_t<q, T> v) {
double tmp = 0;
for (T &x : v) {
tmp += pow(x, 2);
}
return tmp;
}
template <q_t q, class T>
void write_magnetization(vector_t <q, T> M, FILE *outfile) {
for (q_t i = 0; i < q; i++) {
fwrite(&(M[i]), sizeof(T), q, outfile);
}
}
// below functions and definitions are unnecessary for wolff.h but useful.
template <q_t q> // save some space and don't write whole doubles
void write_magnetization(vector_t <q, double> M, FILE *outfile) {
for (q_t i = 0; i < q; i++) {
float M_tmp = (float)M[i];
fwrite(&M_tmp, sizeof(float), 1, outfile);
}
}
template <q_t q, class T>
T dot(vector_t <q, T> v1, vector_t <q, T> v2) {
T prod = 0;
for (q_t i = 0; i < q; i++) {
prod += v1[i] * v2[i];
}
return prod;
}
template <q_t q, class T>
double H_vector(vector_t <q, T> v1, T *H) {
vector_t <q, T> H_vec(H);
return (double)(dot <q, T> (v1, H_vec));
}
char const *ON_strings[] = {"TRIVIAL", "ISING", "PLANAR", "HEISENBERG"};
|