summaryrefslogtreecommitdiff
path: root/lib/wolff_tools.c
blob: a417d4e7c76fe371e216edb2a596cbd4e78d826d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

#include "queue.h"
#include "wolff.h"

int8_t spin_to_sign(bool spin) {
  /* takes a spin (represented by a bool) and converts it to an integer (plus
   * or minus one). our convention takes true to be negative spin and false to
   * be positive spin
   */
  if (spin) {
    return -1;
  } else {
    return 1;
  }
}

int8_t sign(double x) {
  // the sign function. zero returns positive sign.
  return x >= 0 ? 1 : -1;
}

graph_t *graph_add_ext(const graph_t *G) {
  /* takes a graph object G and returns tG, the same graph with an extra vertex
   * that is connected to every other vertex.
   */
  graph_t *tG = (graph_t *)calloc(1, sizeof(graph_t));

  tG->nv = G->nv + 1;
  tG->ne = G->ne + G->nv;

  tG->ev = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t));
  tG->vei = (uint32_t *)malloc((tG->nv + 1) * sizeof(uint32_t));
  tG->ve = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t));
  tG->vx = (double *)malloc(2 * tG->nv * sizeof(double));
  tG->bq = (bool *)malloc(tG->nv * sizeof(bool));

  memcpy(tG->ev, G->ev, 2 * G->ne * sizeof(uint32_t));
  memcpy(tG->vx, G->vx, 2 * G->nv * sizeof(double));
  memcpy(tG->bq, G->bq, G->nv * sizeof(bool));

  tG->vx[2 * G->nv] = -1;
  tG->vx[2 * G->nv + 1] = -0.5;
  tG->bq[G->nv] = false;

  for (uint32_t i = 0; i < G->nv; i++) {
    tG->ev[2 * G->ne + 2 * i] = i;
    tG->ev[2 * G->ne + 2 * i + 1] = G->nv;
  }

  for (uint32_t i = 0; i < G->nv; i++) {
    tG->vei[i] = G->vei[i] + i;

    for (uint32_t j = 0; j < G->vei[i + 1] - G->vei[i]; j++) {
      tG->ve[tG->vei[i] + j] = G->ve[G->vei[i] + j];
    }

    tG->ve[tG->vei[i] + G->vei[i + 1] - G->vei[i]] = G->ne + i;
  }

  tG->vei[G->nv] = G->vei[G->nv] + G->nv;
  tG->vei[G->nv + 1] = tG->vei[G->nv] + G->nv;

  for (uint32_t i = 0; i < G->nv; i++) {
    tG->ve[tG->vei[G->nv] + i] = G->ne + i;
  }

  return tG;
}

uint32_t get_neighbor(const graph_t *g, uint32_t v, uint32_t i) {
  // returns the index of the ith neighbor of vertex v on graph g.
  assert(i < g->vei[v + 1] - g->vei[v]); // don't request a neighbor over the total number of neighbors!
  
  uint32_t e, v1, v2;

  e = g->ve[g->vei[v] + i]; // select the ith bond connected to site
  v1 = g->ev[2 * e];
  v2 = g->ev[2 * e + 1];

  return v == v1 ? v2 : v1; // distinguish neighboring site from site itself
}

cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *s, bool stop_on_ghost,
                        gsl_rng *r) {
  /* flips a wolff cluster on the graph g with initial state s. s is always
   * changed by the routine. the probability of adding a normal bond to the
   * cluster is passed by ps[0], and the probability of adding a bond with the
   * external field spin to the cluster is passed by ps[1]. if stop_on_ghost is
   * true, adding the external field spin to the cluster stops execution of the
   * routine. flip_cluster returns an object of type cluster_t, which encodes
   * information about the flipped cluster.
   */
  uint32_t v0;
  int32_t n_h_bonds, n_bonds;
  bool s0;
  cluster_t *c;

  v0 = gsl_rng_uniform_int(r, g->nv); // pick a random vertex
  s0 = s[v0];                         // record its orientation

  ll_t *stack = NULL;     // create a new stack
  stack_push(&stack, v0); // push the initial vertex to the stack

  // initiate the data structure for returning flip information
  c = (cluster_t *)calloc(1, sizeof(cluster_t));

  while (stack != NULL) {
    uint32_t v;
    uint32_t nn;

    v = stack_pop(&stack);
    nn = g->vei[v + 1] - g->vei[v];

    if (s[v] == s0 && !(c->hit_ghost && stop_on_ghost)) { // if the vertex hasn't already been flipped
      s[v] = !s[v];   // flip the vertex
      if (stop_on_ghost) {
        stack_push(&(c->spins), v);
      }

      for (uint32_t i = 0; i < nn; i++) {
        bool is_ext;
        uint32_t vn;
        int32_t *bond_counter;
        double prob;

        vn = get_neighbor(g, v, i);

        is_ext = (v == g->nv - 1 || vn == g->nv - 1); // our edge contained the "ghost" spin if either of its vertices was the last in the graph

        bond_counter = is_ext ? &(c->dHb) : &(c->dJb);
        prob = is_ext ? ps[1] : ps[0];

        if (s[vn] ==
            s0) { // if the neighboring site matches the flipping cluster...
          (*bond_counter)++;

          if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
            if (is_ext && stop_on_ghost) {
              c->hit_ghost = true;
            }
            stack_push(&stack, vn); // push the neighboring vertex to the stack
          }
        } else {
          (*bond_counter)--;
        }
      }

      if (v != g->nv - 1) { // count the number of non-external sites that flip
        c->nv++;
      }
    }
  }

  return c;
}

uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r,
                    double *ps) {
  uint32_t n_flips;
  bool no_r, no_ps;
  no_r = false;
  no_ps = false;

  if (r == NULL) {
    no_r = true;
    r = gsl_rng_alloc(gsl_rng_mt19937);
    gsl_rng_set(r, jst_rand_seed());
  }

  if (ps == NULL) { // computing exponentials is relatively expensive, so calling functions are given the option to supply values calculated once in the entire runtime
    no_ps = true;
    ps = (double *)malloc(2 * sizeof(double));
    ps[0] = 1 - exp(-2 / T);
    ps[1] = 1 - exp(-2 * fabs(H) / T);
  }

  switch (sim) {
    case METROPOLIS: {
      uint32_t v0 = gsl_rng_uniform_int(r, s->g->nv); // pick a random vertex
      uint32_t nn = s->g->vei[v0 + 1] - s->g->vei[v0];

      double dE = 0;
      for (uint32_t i = 0; i < nn; i++) {
        bool is_ext;
        uint32_t vn;
        int32_t *bond_counter;
        double prob;

        vn = get_neighbor(s->g, v0, i);

        is_ext = (v0 == s->g->nv - 1 || vn == s->g->nv - 1); // our edge contained the "ghost" spin if either of its vertices was the last in the graph

        if (is_ext) {
          dE += 2 * H * spin_to_sign(s->spins[vn]) * spin_to_sign(s->spins[v0]);
        } else {
          dE += 2 * spin_to_sign(s->spins[vn]) * spin_to_sign(s->spins[v0]);
        }
      }

      double p = exp(-dE / T);
      if (gsl_rng_uniform(r) < p) {
        s->M += - sign(H) * 2 * spin_to_sign(s->spins[v0]) * spin_to_sign(s->spins[s->g->nv - 1]);
        s->H += dE;
        s->spins[v0] = !s->spins[v0];
      }

      n_flips = 1;
      } break;

    case WOLFF: {
      cluster_t *c = flip_cluster(s->g, ps, s->spins, false, r);
      s->M += - sign(H) * 2 * c->dHb;
      s->H += 2 * (c->dJb + sign (H) * H * c->dHb);
      n_flips = c->nv;

      free(c);
      } break;
    case WOLFF_GHOST: {
      cluster_t *c = flip_cluster(s->g, ps, s->spins, true, r);

      if (c->hit_ghost) {
        while (c->spins != NULL) {
          uint32_t v = stack_pop(&(c->spins));
          s->spins[v] = !s->spins[v];
          // if we hit the external spin, undo the cluster flip
        }
      } else {
        while (c->spins != NULL) {
          stack_pop(&(c->spins));
          // we have to clear the memory on the stack anyway...
        }
        s->M += - sign(H) * 2 * c->dHb;
        s->H += 2 * (c->dJb + sign (H) * H * c->dHb);
      }

      n_flips = c->nv;

      free(c);
      } break;
  }

  if (no_ps) {
    free(ps);
  }

  if (no_r) {
    gsl_rng_free(r);
  }

  return n_flips;
}

double add_to_avg(double mx, double x, uint64_t n) {
  return mx * (n / (n + 1.)) + x * 1. / (n + 1.);
}

void update_autocorr(autocorr_t *OO, double O) {
  OO->O = add_to_avg(OO->O, O, OO->n);
  OO->O2 = add_to_avg(OO->O2, pow(O, 2), OO->n);

  dll_t *Otmp = OO->Op;
  dll_t *Osave;
  uint64_t t = 0;

  while (Otmp != NULL) {
    OO->OO[t] = add_to_avg(OO->OO[t], O * (Otmp->x), OO->n - t - 1);
    t++;
    if (t == OO->W - 1) {
      Osave = Otmp;
    }
    Otmp = Otmp->next;
  }

  if (t == OO->W) {
    if (OO->W == 1) {
      free(OO->Op);
      OO->Op = NULL;
    } else {
      free(Osave->next);
      Osave->next = NULL;
    }
  }

  stack_push_d(&(OO->Op), O);

  OO->n++;
}

double rho(autocorr_t *o, uint64_t i) {
  return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2));
}

void update_meas(meas_t *m, double x) {
  uint64_t n = m->n;

  m->x = add_to_avg(m->x, x, n);
  m->x2 = add_to_avg(m->x2, pow(x, 2), n);

  m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n);
  m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n);

  if (n > 1) {
    double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2));
    m->dx = sqrt(s2 / n);
    m->c = s2;
    m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n);
  }

  (m->n)++;
}