summaryrefslogtreecommitdiff
path: root/src/wolff.cpp
blob: f685129a74cb5dd5d22f5630a82a8a897121af75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

#include <time.h>
#include <getopt.h>

#include <cluster.h>

double H_vector(vector_t <2, double> v1, double *H) {
  vector_t <2, double> H_vec;
  H_vec.x = H;
  return dot <2, double> (v1, H_vec);
}

int main(int argc, char *argv[]) {

  count_t N = (count_t)1e7;

  D_t D = 2;
  L_t L = 128;
  double T = 2.26918531421;
  double *H = (double *)calloc(MAX_Q, sizeof(double));

  bool silent = false;

  int opt;
  q_t J_ind = 0;
  q_t H_ind = 0;

  while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (count_t)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature 
      T = atof(optarg);
      break;
    case 'H': // external field. nth call couples to state n
      H[H_ind] = atof(optarg);
      H_ind++;
      break;
    case 's': // don't print anything during simulation. speeds up slightly
      silent = true;
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  state_t <orthogonal_t <2, double>, vector_t <2, double>> s(D, L, T, dot <2, double>, std::bind(H_vector, std::placeholders::_1, H));

  // initialize random number generator
  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  gsl_rng_set(r, rand_seed());

  unsigned long timestamp;

  {
    struct timespec spec;
    clock_gettime(CLOCK_REALTIME, &spec);
    timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
  }

  FILE *outfile_info = fopen("wolff_metadata.txt", "a");

  fprintf(outfile_info, "<| \"ID\" -> %lu, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, s.nv, s.ne, T);

  for (q_t i = 0; i < 2; i++) {
    fprintf(outfile_info, "%.15f", H[i]);
    if (i < 2 - 1) {
      fprintf(outfile_info, ", ");
    }
  }

  fprintf(outfile_info, "} |>\n");

  fclose(outfile_info);

  char *filename_M = (char *)malloc(255 * sizeof(char));
  char *filename_E = (char *)malloc(255 * sizeof(char));
  char *filename_S = (char *)malloc(255 * sizeof(char));

  sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
  sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
  sprintf(filename_S, "wolff_%lu_S.dat", timestamp);

  FILE *outfile_M = fopen(filename_M, "wb");
  FILE *outfile_E = fopen(filename_E, "wb");
  FILE *outfile_S = fopen(filename_S, "wb");

  free(filename_M);
  free(filename_E);
  free(filename_S);

  v_t cluster_size = 0;

  if (!silent) printf("\n");
  for (count_t steps = 0; steps < N; steps++) {
    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", steps, N, s.E, s.M.x[0], cluster_size);

    v_t v0 = gsl_rng_uniform_int(r, s.nv);
     
    orthogonal_t <2, double> step;
    generate_rotation<2>(r, &step);

    cluster_size = flip_cluster <orthogonal_t <2, double>, vector_t <2, double>> (&s, v0, step, r);

    free_spin(step);

    fwrite(&(s.E), sizeof(double), 1, outfile_E);
    fwrite(s.M.x, sizeof(double), 2, outfile_M);
    fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);

  }
  if (!silent) {
    printf("\033[F\033[J");
  }
  printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", N, N, s.E, s.M.x[0], cluster_size);

  fclose(outfile_M);
  fclose(outfile_E);
  fclose(outfile_S);

  gsl_rng_free(r);

  free(H);

  return 0;
}