summaryrefslogtreecommitdiff
path: root/src/wolff_On.cpp
blob: 491fb27967b19736ceb126dc32a0220d8f0a12ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

#include <getopt.h>

#include <wolff.h>
#include <correlation.h>
#include <measure.h>

typedef orthogonal_t <N_COMP, double> orthogonal_R_t;
typedef vector_t <N_COMP, double> vector_R_t;
typedef state_t <orthogonal_R_t, vector_R_t> On_t;

// angle from the x-axis of a two-vector
double theta(vector_R_t v) {
  double x = v.x[0];
  double y = v.x[1];

  double val = atan(y / x);

  if (x < 0.0 && y > 0.0) {
    return M_PI + val;
  } else if ( x < 0.0 && y < 0.0 ) {
    return - M_PI + val;
  } else {
    return val;
  }
}

double H_modulated(vector_R_t v, int order, double mag) {
  return mag * cos(order * theta(v));
}

int main(int argc, char *argv[]) {

  count_t N = (count_t)1e7;

  D_t D = 2;
  L_t L = 128;
  double T = 2.26918531421;
  double *H_vec = (double *)calloc(MAX_Q, sizeof(double));

  bool silent = false;
  bool use_pert = false;
  bool N_is_sweeps = false;

  bool modulated_field = false;
  int order = 2;

  int opt;
  q_t J_ind = 0;
  q_t H_ind = 0;
  double epsilon = 1;

//  unsigned char measurement_flags = measurement_energy | measurement_clusterSize;

  unsigned char measurement_flags = 0;

  while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:spe:mo:M:S")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (count_t)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature 
      T = atof(optarg);
      break;
    case 'H': // external field. nth call couples to state n
      H_vec[H_ind] = atof(optarg);
      H_ind++;
      break;
    case 's': // don't print anything during simulation. speeds up slightly
      silent = true;
      break;
    case 'p':
      use_pert = true;
      break;
    case 'e':
      epsilon = atof(optarg);
      break;
    case 'm':
      modulated_field = true;
      break;
    case 'M':
      measurement_flags ^= 1 << atoi(optarg);
      break;
    case 'o':
      order = atoi(optarg);
      break;
    case 'S':
      N_is_sweeps = true;
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  unsigned long timestamp;

  {
    struct timespec spec;
    clock_gettime(CLOCK_REALTIME, &spec);
    timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
  }

  const char *pert_type;

  std::function <orthogonal_R_t(gsl_rng *, const On_t *)> gen_R;

  if (use_pert) {
    gen_R = std::bind(generate_rotation_perturbation <N_COMP>, std::placeholders::_1, std::placeholders::_2, epsilon);
    pert_type = "PERTURB";
  } else {
    gen_R = generate_rotation_uniform <N_COMP>;
    pert_type = "UNIFORM";
  }

  FILE *outfile_info = fopen("wolff_metadata.txt", "a");

  fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T);
  if (modulated_field) {
    fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]);
  } else {
    fprintf(outfile_info, "\"VECTOR\", \"H\" -> {");
    for (q_t i = 0; i < N_COMP; i++) {
      fprintf(outfile_info, "%.15f", H_vec[i]);
      if (i < N_COMP - 1) {
        fprintf(outfile_info, ", ");
      }
    }
    fprintf(outfile_info, "}, ");
  }

  fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type);

  if (use_pert) {
    fprintf(outfile_info, ", \"EPS\" -> %g", epsilon);
  }

  fprintf(outfile_info, " |>\n");

  fclose(outfile_info);

  FILE **outfiles = measure_setup_files(measurement_flags, timestamp);

  std::function <void(const On_t *)> other_f;
  uint64_t sum_of_clusterSize = 0;

  if (N_is_sweeps) {
    other_f = [&] (const On_t *s) {
      sum_of_clusterSize += s->last_cluster_size;
    };
  } else {
    other_f = [] (const On_t *s) {};
  }

  std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);

  std::function <double(vector_R_t)> H;

  if (modulated_field) {
    H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]);
  } else {
    H = std::bind(H_vector <N_COMP, double>, std::placeholders::_1, H_vec);
  }

  // initialize random number generator
  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  gsl_rng_set(r, rand_seed());

  state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>, H);

  if (N_is_sweeps) {
    count_t N_rounds = 0;
    printf("\n");
    while (sum_of_clusterSize < N * s.nv) {
      printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
      wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
      N_rounds++;
    }
    printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
  } else {
    wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
  }


  measure_free_files(measurement_flags, outfiles);
  free(H_vec);
  gsl_rng_free(r);

  return 0;
}