1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
#include <getopt.h>
#include <stdio.h>
#ifdef HAVE_GLUT
#include <GL/glut.h>
#endif
#include <vector.h>
#include <orthogonal.h>
#include <wolff.h>
#include <correlation.h>
#include <measure.h>
#include <colors.h>
#include <rand.h>
typedef orthogonal_t <N_COMP, double> orthogonal_R_t;
typedef vector_t <N_COMP, double> vector_R_t;
typedef state_t <orthogonal_R_t, vector_R_t> On_t;
// angle from the x-axis of a two-vector
double theta(vector_R_t v) {
double x = v.x[0];
double y = v.x[1];
double val = atan(y / x);
if (x < 0.0 && y > 0.0) {
return M_PI + val;
} else if ( x < 0.0 && y < 0.0 ) {
return - M_PI + val;
} else {
return val;
}
}
double H_modulated(vector_R_t v, int order, double mag) {
return mag * cos(order * theta(v));
}
int main(int argc, char *argv[]) {
count_t N = (count_t)1e7;
D_t D = 2;
L_t L = 128;
double T = 2.26918531421;
double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
bool silent = false;
bool use_pert = false;
bool N_is_sweeps = false;
bool draw = false;
unsigned int window_size = 512;
bool modulated_field = false;
unsigned int order = 1;
int opt;
q_t H_ind = 0;
double epsilon = 1;
// unsigned char measurement_flags = measurement_energy | measurement_clusterSize;
unsigned char measurement_flags = 0;
while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (count_t)atof(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'H': // external field. nth call couples to state n
H_vec[H_ind] = atof(optarg);
H_ind++;
break;
case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
case 'p':
use_pert = true;
break;
case 'e':
epsilon = atof(optarg);
break;
case 'm':
modulated_field = true;
break;
case 'M':
measurement_flags ^= 1 << atoi(optarg);
break;
case 'o':
order = atoi(optarg);
break;
case 'S':
N_is_sweeps = true;
break;
case 'd':
#ifdef HAVE_GLUT
draw = true;
break;
#else
printf("You didn't compile this with the glut library installed!\n");
exit(EXIT_FAILURE);
#endif
case 'w':
window_size = atoi(optarg);
break;
default:
exit(EXIT_FAILURE);
}
}
unsigned long timestamp;
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
}
const char *pert_type;
std::function <orthogonal_R_t(gsl_rng *, vector_R_t)> gen_R;
if (use_pert) {
gen_R = std::bind(generate_rotation_perturbation <N_COMP>, std::placeholders::_1, std::placeholders::_2, epsilon, order);
pert_type = "PERTURB";
} else {
gen_R = generate_rotation_uniform <N_COMP>;
pert_type = "UNIFORM";
}
FILE *outfile_info = fopen("wolff_metadata.txt", "a");
fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T);
if (modulated_field) {
fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]);
} else {
fprintf(outfile_info, "\"VECTOR\", \"H\" -> {");
for (q_t i = 0; i < N_COMP; i++) {
fprintf(outfile_info, "%.15f", H_vec[i]);
if (i < N_COMP - 1) {
fprintf(outfile_info, ", ");
}
}
fprintf(outfile_info, "}, ");
}
fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type);
if (use_pert) {
fprintf(outfile_info, ", \"EPS\" -> %g", epsilon);
}
fprintf(outfile_info, " |>\n");
fclose(outfile_info);
FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
std::function <void(const On_t *)> other_f;
uint64_t sum_of_clusterSize = 0;
if (N_is_sweeps) {
other_f = [&] (const On_t *s) {
sum_of_clusterSize += s->last_cluster_size;
};
} else if (draw) {
#ifdef HAVE_GLUT
// initialize glut
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(window_size, window_size);
glutCreateWindow("wolff");
glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
other_f = [&] (const On_t *s) {
glClear(GL_COLOR_BUFFER_BIT);
for (v_t i = 0; i < pow(L, 2); i++) {
vector_R_t v_tmp = act_inverse(s->R, s->spins[i]);
double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI);
free_spin(v_tmp);
double saturation = 0.7;
double value = 0.9;
double chroma = saturation * value;
glColor3f(chroma * hue_to_R(thetai) + (value - chroma), chroma * hue_to_G(thetai) + (value - chroma), chroma * hue_to_B(thetai) + (value - chroma));
glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
}
glFlush();
};
#endif
} else {
other_f = [] (const On_t *s) {};
}
std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
std::function <double(vector_R_t)> H;
if (modulated_field) {
H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]);
} else {
H = std::bind(H_vector <N_COMP, double>, std::placeholders::_1, H_vec);
}
// initialize random number generator
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(r, rand_seed());
state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>, H);
if (N_is_sweeps) {
count_t N_rounds = 0;
printf("\n");
while (sum_of_clusterSize < N * s.nv) {
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
N_rounds++;
}
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
} else {
wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
}
measure_free_files(measurement_flags, outfiles);
free(H_vec);
gsl_rng_free(r);
return 0;
}
|