summaryrefslogtreecommitdiff
path: root/src/wolff_dgm.cpp
blob: 8667fb55d8eb84b35ce3ba0609e4be7f57d28d0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

#include <getopt.h>

#ifdef HAVE_GLUT
#include <GL/glut.h>
#endif

// include your group and spin space
#include <dihedral_inf.h>
#include <height.h>

// include wolff.h
#include <rand.h>
#include <wolff.h>

typedef state_t <dihedral_inf_t<int64_t>, height_t<int64_t>> sim_t;

int main(int argc, char *argv[]) {

  count_t N = (count_t)1e4;

  D_t D = 2;
  L_t L = 128;
  double T = 2.26918531421;
  double H = 0;

  bool silent = false;
  bool draw = false;
  unsigned int window_size = 512;
  uint64_t epsilon = 1;

  int opt;

  while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (count_t)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature 
      T = atof(optarg);
      break;
    case 'H': // external field. nth call couples to state n
      H = atof(optarg);
      break;
    case 'e': // external field. nth call couples to state n
      epsilon = atof(optarg);
      break;
    case 's': // don't print anything during simulation. speeds up slightly
      silent = true;
      break;
    case 'd':
#ifdef HAVE_GLUT
      draw = true;
      break;
#else
      printf("You didn't compile this with the glut library installed!\n");
      exit(EXIT_FAILURE);
#endif
    case 'w':
      window_size = atoi(optarg);
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  // initialize random number generator
  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  gsl_rng_set(r, rand_seed());

  // define spin-spin coupling
  std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& h1, const height_t<int64_t>& h2) -> double {
    return -pow(h1.x - h2.x, 2);
  };

  // define spin-field coupling
  std::function <double(const height_t<int64_t> &)> B = [=] (const height_t<int64_t>& h) -> double {
    return -H * pow(h.x, 2);;
  };

  // initialize state object
  sim_t s(D, L, T, Z, B);

  // define function that generates self-inverse rotations
  std::function <dihedral_inf_t<int64_t>(gsl_rng *, height_t<int64_t>)> gen_R = [=] (gsl_rng *r, height_t<int64_t> h) -> dihedral_inf_t<int64_t> {
    dihedral_inf_t<int64_t> rot;
    rot.is_reflection = true;

    int direction = gsl_rng_uniform_int(r, 2);
    int64_t amount = gsl_rng_uniform_int(r, epsilon);

    if (direction == 0) {
      rot.x = 2 * h.x + (1 + amount);
    } else {
      rot.x = 2 * h.x - (1 + amount);
    }

    return rot;
  };

  // define function that updates any number of measurements
  std::function <void(const sim_t&)> measurement;

  double average_M = 0;
  if (!draw) {
    // a very simple example: measure the average magnetization
    measurement = [&] (const sim_t& s) {
      average_M += (double)s.M / (double)N / (double)s.nv;
    };
  } else {
    // a more complex example: measure the average magnetization, and draw the spin configuration to the screen

#ifdef HAVE_GLUT
    // initialize glut
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize(window_size, window_size);
    glutCreateWindow("wolff");
    glClearColor(0.0,0.0,0.0,0.0);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluOrtho2D(0.0, L, 0.0, L);

    measurement = [&] (const sim_t& s) {
      average_M += (double)s.M / (double)N / (double)s.nv;
      glClear(GL_COLOR_BUFFER_BIT);
      int64_t max_h = INT64_MIN;
      int64_t min_h = INT64_MAX;
      for (v_t i = 0; i < pow(L, 2); i++) {
        int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
        if (cur_h < min_h) {
          min_h = cur_h;
        }
        if (cur_h > max_h) {
          max_h = cur_h;
        }
      }

      for (v_t i = 0; i < pow(L, 2); i++) {
        int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
        double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h));
        glColor3f(mag, mag, mag);
        glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
      }
      glFlush();
    };
#endif
  }

  // run wolff for N cluster flips
  wolff(N, s, gen_R, measurement, r, silent);

  // tell us what we found!
  printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);

  // free the random number generator
  gsl_rng_free(r);

  if (draw) {
  }

  return 0;

}