1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
#include <time.h>
#include <getopt.h>
#include <initial_finite.h>
int main(int argc, char *argv[]) {
count_t N = (count_t)1e7;
finite_model_t model = ISING;
q_t q = 2;
D_t D = 2;
L_t L = 128;
double T = 2.26918531421;
double *J = (double *)calloc(MAX_Q, sizeof(double));
J[0] = 1.0;
double *H = (double *)calloc(MAX_Q, sizeof(double));
bool silent = false;
int opt;
q_t J_ind = 0;
q_t H_ind = 0;
while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (count_t)atof(optarg);
break;
case 't': // type of simulation
model = (finite_model_t)atoi(optarg);
break;
case 'q': // number of states, if relevant
q = atoi(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'J': // couplings, if relevant. nth call couples states i and i + n
J[J_ind] = atof(optarg);
J_ind++;
break;
case 'H': // external field. nth call couples to state n
H[H_ind] = atof(optarg);
H_ind++;
break;
case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
default:
exit(EXIT_FAILURE);
}
}
state_finite_t *s;
switch (model) {
case ISING:
s = initial_finite_prepare_ising(D, L, T, H);
break;
case POTTS:
s = initial_finite_prepare_potts(D, L, q, T, H);
break;
case CLOCK:
s = initial_finite_prepare_clock(D, L, q, T, H);
break;
case DGM:
s = initial_finite_prepare_dgm(D, L, q, T, H);
break;
default:
printf("Not a valid model!\n");
free(J);
free(H);
exit(EXIT_FAILURE);
}
free(J);
free(H);
// initialize random number generator
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(r, rand_seed());
unsigned long timestamp;
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
}
FILE *outfile_info = fopen("wolff_metadata.txt", "a");
fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %" PRIq ", \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"NB\" -> %" PRIq ", \"T\" -> %.15f, \"J\" -> {", timestamp, finite_model_t_strings[model], s->q, D, L, s->nv, s->ne, s->n_bond_types, T);
for (q_t i = 0; i < s->n_bond_types; i++) {
fprintf(outfile_info, "%.15f", s->J[i]);
if (i < s->n_bond_types - 1) {
fprintf(outfile_info, ", ");
}
}
fprintf(outfile_info, "}, \"H\" -> {");
for (q_t i = 0; i < s->q; i++) {
fprintf(outfile_info, "%.15f", s->H[i]);
if (i < s->q - 1) {
fprintf(outfile_info, ", ");
}
}
fprintf(outfile_info, "} |>\n");
fclose(outfile_info);
char *filename_M = (char *)malloc(255 * sizeof(char));
char *filename_B = (char *)malloc(255 * sizeof(char));
char *filename_S = (char *)malloc(255 * sizeof(char));
sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
sprintf(filename_B, "wolff_%lu_B.dat", timestamp);
sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
FILE *outfile_M = fopen(filename_M, "wb");
FILE *outfile_B = fopen(filename_B, "wb");
FILE *outfile_S = fopen(filename_S, "wb");
free(filename_M);
free(filename_B);
free(filename_S);
v_t cluster_size = 0;
if (!silent) printf("\n");
for (count_t steps = 0; steps < N; steps++) {
if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
v_t v0 = gsl_rng_uniform_int(r, s->nv);
R_t step;
bool changed = false;
while (!changed) {
step = gsl_rng_uniform_int(r, s->n_involutions);
if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) {
changed = true;
}
}
cluster_size = flip_cluster_finite(s, v0, step, r);
// v_t is never going to be bigger than 32 bits, but since it's specified
// as a fast time many machines will actually have it be 64 bits. we cast
// it down here to halve space.
for (q_t i = 0; i < s->n_bond_types - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B);
}
for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M);
}
fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
}
if (!silent) {
printf("\033[F\033[J");
}
printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
fclose(outfile_M);
fclose(outfile_B);
fclose(outfile_S);
state_finite_free(s);
gsl_rng_free(r);
return 0;
}
|