1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
#include <getopt.h>
#include <correlation.h>
#include <wolff.h>
typedef state_t <orthogonal_t <3, double>, vector_t <3, double>> sim_t;
int main(int argc, char *argv[]) {
count_t N = (count_t)1e7;
D_t D = 2;
L_t L = 128;
double T = 2.26918531421;
double *H = (double *)calloc(MAX_Q, sizeof(double));
bool silent = false;
bool use_pert = false;
int opt;
q_t J_ind = 0;
q_t H_ind = 0;
double epsilon = 1;
while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:spe:")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (count_t)atof(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'H': // external field. nth call couples to state n
H[H_ind] = atof(optarg);
H_ind++;
break;
case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
case 'p':
use_pert = true;
break;
case 'e':
epsilon = atof(optarg);
break;
default:
exit(EXIT_FAILURE);
}
}
unsigned long timestamp;
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
}
std::function <orthogonal_t <3, double>(gsl_rng *, const sim_t *)> gen_R;
const char *pert_type;
if (use_pert) {
gen_R = std::bind(generate_rotation_perturbation <3>, std::placeholders::_1, std::placeholders::_2, epsilon);
pert_type = "PERTURB";
} else {
gen_R = generate_rotation_uniform <3>;
pert_type = "UNIFORM";
}
FILE *outfile_info = fopen("wolff_metadata.txt", "a");
fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"HEISENBERG\", \"q\" -> 3, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, L * L, D * L * L, T);
for (q_t i = 0; i < 3; i++) {
fprintf(outfile_info, "%.15f", H[i]);
if (i < 3 - 1) {
fprintf(outfile_info, ", ");
}
}
fprintf(outfile_info, "}, \"GENERATOR\" -> \"%s\", \"EPS\" -> %g |>\n", pert_type, epsilon);
fclose(outfile_info);
char *filename_M = (char *)malloc(255 * sizeof(char));
char *filename_E = (char *)malloc(255 * sizeof(char));
char *filename_S = (char *)malloc(255 * sizeof(char));
char *filename_X = (char *)malloc(255 * sizeof(char));
sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
sprintf(filename_X, "wolff_%lu_X.dat", timestamp);
FILE *outfile_M = fopen(filename_M, "wb");
FILE *outfile_E = fopen(filename_E, "wb");
FILE *outfile_S = fopen(filename_S, "wb");
FILE *outfile_X = fopen(filename_X, "wb");
free(filename_M);
free(filename_E);
free(filename_S);
free(filename_X);
std::function <void(const sim_t *)> *measurements = (std::function <void(const sim_t *)> *)malloc(4 * sizeof(std::function <void(const sim_t *)>));
measurements[0] = [&](const sim_t *s) {
float smaller_E = (float)s->E;
fwrite(&smaller_E, sizeof(float), 1, outfile_E);
};
measurements[1] = [&](const sim_t *s) {
float smaller_X = (float)correlation_length(s);
fwrite(&smaller_X, sizeof(float), 1, outfile_X);
};
measurements[2] = [&](const sim_t *s) {
write_magnetization(s->M, outfile_M);
};
measurements[3] = [&](const sim_t *s) {
fwrite(&(s->last_cluster_size), sizeof(uint32_t), 1, outfile_S);
};
wolff <orthogonal_t <3, double>, vector_t <3, double>> (N, D, L, T, dot <3, double>, std::bind(H_vector <3, double>, std::placeholders::_1, H), gen_R, 4, measurements, silent);
free(measurements);
fclose(outfile_M);
fclose(outfile_E);
fclose(outfile_S);
fclose(outfile_X);
free(H);
fftw_cleanup();
return 0;
}
|