summaryrefslogtreecommitdiff
path: root/src/wolff_ising.cpp
blob: 4d4c7912f445b27963bfd97dcf84ab66b47ee2e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

#include <getopt.h>

#include <wolff.h>
#include <correlation.h>
#include <measure.h>

int main(int argc, char *argv[]) {

  count_t N = (count_t)1e7;

  D_t D = 2;
  L_t L = 128;
  double T = 2.26918531421;
  double H = 0.0;

  bool silent = false;
  bool N_is_sweeps = false;

  int opt;

  unsigned char measurement_flags = measurement_energy | measurement_clusterSize;

  while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:sM:S")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (count_t)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature 
      T = atof(optarg);
      break;
    case 'H': // external field. nth call couples to state n
      H = atof(optarg);
      break;
    case 's': // don't print anything during simulation. speeds up slightly
      silent = true;
      break;
    case 'M':
      measurement_flags ^= 1 << atoi(optarg);
      break;
    case 'S':
      N_is_sweeps = true;
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  unsigned long timestamp;

  {
    struct timespec spec;
    clock_gettime(CLOCK_REALTIME, &spec);
    timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
  }

  FILE *outfile_info = fopen("wolff_metadata.txt", "a");

  fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"ISING\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> %.15f |>\n", timestamp, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T, H);

  fclose(outfile_info);

  unsigned int n_measurements = 0;
  std::function <void(const state_t <z2_t, ising_t> *)> *measurements = (std::function <void(const state_t <z2_t, ising_t> *)> *)calloc(POSSIBLE_MEASUREMENTS, sizeof(std::function <void(const state_t <z2_t, ising_t> *)>));
  FILE *outfile_M, *outfile_E, *outfile_S, *outfile_F;

  if (measurement_flags & measurement_energy) {
    char *filename_E = (char *)malloc(255 * sizeof(char));
    sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
    outfile_E = fopen(filename_E, "wb");
    free(filename_E);
    measurements[n_measurements] = measurement_energy_file<z2_t, ising_t> (outfile_E);
    n_measurements++;
  }

  if (measurement_flags & measurement_clusterSize) {
    char *filename_S = (char *)malloc(255 * sizeof(char));
    sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
    outfile_S = fopen(filename_S, "wb");
    free(filename_S);
    measurements[n_measurements] = measurement_cluster_file<z2_t, ising_t> (outfile_S);
    n_measurements++;
  }

  if (measurement_flags & measurement_magnetization) {
    char *filename_M = (char *)malloc(255 * sizeof(char));
    sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
    outfile_M = fopen(filename_M, "wb");
    free(filename_M);
    measurements[n_measurements] = measurement_magnetization_file<z2_t, ising_t> (outfile_M);
    n_measurements++;
  }

  if (measurement_flags & measurement_fourierZero) {
    char *filename_F = (char *)malloc(255 * sizeof(char));
    sprintf(filename_F, "wolff_%lu_F.dat", timestamp);
    outfile_F = fopen(filename_F, "wb");
    free(filename_F);
    measurements[n_measurements] = measurement_fourier_file<z2_t, ising_t> (outfile_F);
    n_measurements++;
  }

  meas_t *meas_sweeps;
  if (N_is_sweeps) {
    meas_sweeps = (meas_t *)calloc(1, sizeof(meas_t));
    measurements[n_measurements] = measurement_average_cluster<z2_t, ising_t> (meas_sweeps);
    n_measurements++;
  }

  // initialize random number generator
  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
  gsl_rng_set(r, rand_seed());

  state_t <z2_t, ising_t> s(D, L, T, ising_dot, std::bind(scalar_field, std::placeholders::_1, H));

  std::function <z2_t(gsl_rng *, const state_t <z2_t, ising_t> *)> gen = generate_ising_rotation;

  if (N_is_sweeps) {
    count_t N_rounds = 0;
    printf("\n");
    while (N_rounds * N * meas_sweeps->x < N * s.nv) {
      printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)(N_rounds * N * meas_sweeps->x / s.nv), N, s.E, s.last_cluster_size);
      wolff(N, &s, gen, n_measurements, measurements, r, silent);
      N_rounds++;
    }
    printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)(N_rounds * N * meas_sweeps->x / s.nv), N, s.E, s.last_cluster_size);
  } else {
    wolff(N, &s, gen, n_measurements, measurements, r, silent);
  }

  free(measurements);

  if (measurement_flags & measurement_energy) {
    fclose(outfile_E);
  }
  if (measurement_flags & measurement_clusterSize) {
    fclose(outfile_S);
  }
  if (measurement_flags & measurement_magnetization) {
    fclose(outfile_M);
  }
  if (measurement_flags & measurement_fourierZero) {
    fclose(outfile_F);
  }

  if (N_is_sweeps) {
    free(meas_sweeps);
  }

  gsl_rng_free(r);

  return 0;
}