1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
#include <getopt.h>
#include <GL/glut.h>
// include your group and spin space
#include <symmetric.h>
#include <potts.h>
// include wolff.h
#include <wolff.h>
int main(int argc, char *argv[]) {
count_t N = (count_t)1e7;
D_t D = 2;
L_t L = 128;
double T = 2.26918531421;
double H = 0.0;
bool silent = false;
bool draw = false;
int opt;
while ((opt = getopt(argc, argv, "N:D:L:T:H:sd")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (count_t)atof(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'H': // external field
H = atof(optarg);
break;
case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
case 'd':
draw = true;
break;
default:
exit(EXIT_FAILURE);
}
}
// initialize random number generator
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(r, rand_seed());
// define spin-spin coupling
std::function <double(potts_t, ising_t)> Z = [] (ising_t s1, ising_t s2) -> double {
if (s1.x == s2.x) {
return 1.0;
} else {
return -1.0;
}
};
// define spin-field coupling
std::function <double(ising_t)> B = [=] (ising_t s) -> double {
if (s.x) {
return -H;
} else {
return H;
}
};
// initialize state object
state_t <z2_t, ising_t> s(D, L, T, Z, B);
// define function that generates self-inverse rotations
std::function <z2_t(gsl_rng *, const state_t <z2_t, ising_t> *)> gen_R = [] (gsl_rng *, const state_t <z2_t, ising_t> *) -> z2_t {
z2_t rot;
rot.x = true;
return rot;
};
// define function that updates any number of measurements
std::function <void(const state_t <z2_t, ising_t> *)> measurement;
double average_M = 0;
if (!draw) {
// a very simple example: measure the average magnetization
measurement = [&] (const state_t <z2_t, ising_t> *s) {
average_M += (double)s->M / (double)N / (double)s->nv;
};
} else {
// a more complex example: measure the average magnetization, and draw the spin configuration to the screen
// initialize glut
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(L,L);
glutCreateWindow("null");
glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
measurement = [&] (const state_t <z2_t, ising_t> *s) {
average_M += (double)s->M / (double)N / (double)s->nv;
glClear(GL_COLOR_BUFFER_BIT);
for (v_t i = 0; i < pow(L, 2); i++) {
if (s->spins[i].x == s->R.x) {
glColor3f(0.0, 0.0, 0.0);
} else {
glColor3f(1.0, 1.0, 1.0);
}
glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
}
glFlush();
};
}
// run wolff for N cluster flips
wolff(N, &s, gen_R, measurement, r, silent);
// tell us what we found!
printf("%" PRIcount " Ising runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);
// free the random number generator
gsl_rng_free(r);
if (draw) {
}
return 0;
}
|