1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
#include <getopt.h>
#include <stdio.h>
#ifdef HAVE_GLUT
#include <GL/glut.h>
#endif
// include your group and spin space
#include <symmetric.h>
#include <potts.h>
// hack to speed things up considerably
#define N_STATES POTTSQ
#include <finite_states.h>
// include wolff.h
#include <measure.h>
#include <colors.h>
#include <rand.h>
#include <wolff.h>
typedef state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> sim_t;
int main(int argc, char *argv[]) {
count_t N = (count_t)1e4;
D_t D = 2;
L_t L = 128;
double T = 2.26918531421;
double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
bool silent = false;
bool draw = false;
bool N_is_sweeps = false;
unsigned int window_size = 512;
// don't measure anything by default
unsigned char measurement_flags = 0;
int opt;
q_t H_ind = 0;
while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) {
switch (opt) {
case 'N': // number of steps
N = (count_t)atof(optarg);
break;
case 'D': // dimension
D = atoi(optarg);
break;
case 'L': // linear size
L = atoi(optarg);
break;
case 'T': // temperature
T = atof(optarg);
break;
case 'H': // external field. nth call couples to state n
H_vec[H_ind] = atof(optarg);
H_ind++;
break;
case 's': // don't print anything during simulation. speeds up slightly
silent = true;
break;
case 'S':
N_is_sweeps = true;
break;
case 'd':
#ifdef HAVE_GLUT
draw = true;
break;
#else
printf("You didn't compile this with the glut library installed!\n");
exit(EXIT_FAILURE);
#endif
case 'w':
window_size = atoi(optarg);
break;
case 'M':
measurement_flags ^= 1 << atoi(optarg);
break;
default:
exit(EXIT_FAILURE);
}
}
// get nanosecond timestamp for unique run id
unsigned long timestamp;
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
}
// initialize random number generator
gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
gsl_rng_set(r, rand_seed());
// define spin-spin coupling
std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double {
if (s1.x == s2.x) {
return 1.0;
} else {
return 0.0;
}
};
// define spin-field coupling
std::function <double(const potts_t<POTTSQ> &)> B = [=] (const potts_t<POTTSQ>& s) -> double {
return H_vec[s.x];
};
// initialize state object
state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> s(D, L, T, Z, B);
// define function that generates self-inverse rotations
std::function <symmetric_t<POTTSQ>(gsl_rng *, potts_t<POTTSQ>)> gen_R = [] (gsl_rng *r, potts_t<POTTSQ> v) -> symmetric_t<POTTSQ> {
symmetric_t<POTTSQ> rot;
q_t j = gsl_rng_uniform_int(r, POTTSQ - 1);
q_t swap_v;
if (j < v.x) {
swap_v = j;
} else {
swap_v = j + 1;
}
rot[v.x] = swap_v;
rot[swap_v] = v.x;
return rot;
};
FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
std::function <void(const sim_t&)> other_f;
uint64_t sum_of_clusterSize = 0;
if (N_is_sweeps) {
other_f = [&] (const sim_t& s) {
sum_of_clusterSize += s.last_cluster_size;
};
} else if (draw) {
#ifdef HAVE_GLUT
// initialize glut
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(window_size, window_size);
glutCreateWindow("wolff");
glClearColor(0.0,0.0,0.0,0.0);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
other_f = [] (const sim_t& s) {
glClear(GL_COLOR_BUFFER_BIT);
for (v_t i = 0; i < pow(s.L, 2); i++) {
potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]);
glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ));
glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
}
glFlush();
};
#endif
} else {
other_f = [] (const sim_t& s) {};
}
std::function <void(const sim_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
// add line to metadata file with run info
{
FILE *outfile_info = fopen("wolff_metadata.txt", "a");
fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"POTTS\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, POTTSQ, s.D, s.L, s.nv, s.ne, T);
for (q_t i = 0; i < POTTSQ; i++) {
fprintf(outfile_info, "%.15f", H_vec[i]);
if (i < POTTSQ - 1) {
fprintf(outfile_info, ", ");
}
}
fprintf(outfile_info, "} |>\n");
fclose(outfile_info);
}
// run wolff for N cluster flips
if (N_is_sweeps) {
count_t N_rounds = 0;
printf("\n");
while (sum_of_clusterSize < N * s.nv) {
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
wolff(N, s, gen_R, measurements, r, silent);
N_rounds++;
}
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
} else {
wolff(N, s, gen_R, measurements, r, silent);
}
// free the random number generator
gsl_rng_free(r);
free(H_vec);
measure_free_files(measurement_flags, outfiles);
return 0;
}
|