summaryrefslogtreecommitdiff
path: root/sample.cpp
blob: 71ee533adcab2278e023b705bdbfbef48df04063 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

#include <getopt.h>
#include <fstream>

#include "randutils/randutils.hpp"

#define WOLFF_NO_FIELD
#define WOLFF_USE_FINITE_STATES
#include "wolff/lib/wolff_models/ising.hpp"
#include "wolff/lib/wolff.hpp"

using namespace wolff;

class sample : public measurement<ising_t, ising_t, graph<>> {
  private:
    typedef struct _dat {
      int e;
      int m;
    } dat;
    std::ofstream e_file;
    dat e;
    unsigned w;
    unsigned N;
    unsigned τ;
  public:
    sample(const wolff::system<ising_t, ising_t, graph<>> &s, unsigned D, unsigned L, double T, unsigned wait) {
      e_file.open("sample_" + std::to_string(D) + "_" + std::to_string(L) + "_" + std::to_string(T) + ".bin" , std::ios::out | std::ios::binary | std::ios::app);
      e.e = - s.ne;
      e.m = s.nv;
      N = 0;
      τ = 2 * (unsigned)ceil(pow(L, 0.3));
      w = wait;
    }

    ~sample() {
      e_file.close();
    }

    void plain_site_transformed(const wolff::system<ising_t, ising_t, graph<>>&, const typename graph<>::vertex&, const ising_t& si_new) override {
      e.m += (unsigned)2 * si_new;
    }

    void plain_bond_visited(const wolff::system<ising_t, ising_t, graph<>>&s, const typename graph<>::halfedge& ed, const ising_t& si_new, double dE) override {
      e.e -= 2 * (si_new * s.s[ed.neighbor.ind]);
    }

    void post_cluster(unsigned n, unsigned, const wolff::system<ising_t, ising_t, graph<>>&) override {
      if (N >= w && (N - w) % τ == 0) {
        e_file.write((char *)&e, 2 * sizeof(int));
      }

      N++;
    }
};

int main(int argc, char *argv[]) {

  // set defaults
  unsigned N = (unsigned)1e4;
  unsigned w = (unsigned)1e3;
  unsigned D = 2;
  unsigned L = 128;
  double T = 2 / log(1 + sqrt(2));

  int opt;

  // take command line arguments
  while ((opt = getopt(argc, argv, "N:D:L:T:w:")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (unsigned)atof(optarg);
      break;
    case 'w': // number of steps
      w = (unsigned)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature
      T = atof(optarg);
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  // define the spin-spin coupling
  std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
    return (double)(s1 * s2);
  };

  // initialize the lattice
  graph<> G(D, L);

  // initialize the system
  wolff::system<ising_t, ising_t, graph<>> S(G, T, Z);

  // initialize the random number generator
  randutils::auto_seed_128 seeds;
  std::mt19937 rng{seeds};

  // define function that generates self-inverse rotations
  std::function <ising_t(std::mt19937&, const wolff::system<ising_t, ising_t, graph<>>&, const graph<>::vertex&)> gen_r = gen_ising<graph<>>;

  // initailze the measurement object
  sample A(S, D, L, T, w);

  // run wolff N times
  S.run_wolff(N, gen_r, A, rng);

  // exit
  return 0;
}