summaryrefslogtreecommitdiff
path: root/sample_ising.cpp
blob: 0a8e952c89ff0ae97cb8483cdb7d89916d253474 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

#include <fstream>
#include <getopt.h>

#include "randutils/randutils.hpp"

#define WOLFF_USE_FINITE_STATES
#include "wolff/lib/wolff_models/ising.hpp"

using namespace wolff;

class track : public measurement<ising_t, ising_t, graph<>> {
public:
  int e;
  int m;
  track(const wolff::system<ising_t, ising_t, graph<>>& s) {
    e = -s.ne;
    m = s.nv;
  }

  void ghost_bond_visited(const system<ising_t, ising_t, graph<>>&, const typename graph<>::vertex&,
                          const ising_t& s_old, const ising_t& s_new, double dE) override {
    m += s_new - s_old;
  }

  void plain_bond_visited(const wolff::system<ising_t, ising_t, graph<>>& s,
                          const typename graph<>::halfedge& ed, const ising_t& si_new,
                          double dE) override {
    e -= 2 * (si_new * s.s[ed.neighbor.ind]);
  }
};

class sample : public measurement<ising_t, ising_t, graph<>> {
private:
  int e;
  int m;
  int64_t e_tot;
  int64_t m_tot;
  unsigned N;

public:
  sample(int eold, int mold) {
    e = eold;
    m = mold;
    e_tot = 0;
    m_tot = 0;
    N = 0;
  }

  void ghost_bond_visited(const system<ising_t, ising_t, graph<>>&, const typename graph<>::vertex&,
                          const ising_t& s_old, const ising_t& s_new, double dE) override {
    m += s_new - s_old;
  }

  void plain_bond_visited(const wolff::system<ising_t, ising_t, graph<>>& s,
                          const typename graph<>::halfedge& ed, const ising_t& si_new,
                          double dE) override {
    e -= 2 * (si_new * s.s[ed.neighbor.ind]);
  }

  void post_cluster(unsigned n, unsigned,
                    const wolff::system<ising_t, ising_t, graph<>>&) override {
    e_tot += e;
    m_tot += m;
    N++;
  }

  double e_avg() const {
    return ((double)e_tot) / N;
  }

  double m_avg() const {
    return ((double)m_tot) / N;
  }
};

int main(int argc, char* argv[]) {

  // set defaults
  unsigned N = (unsigned)1e4;
  unsigned D = 2;
  unsigned L = 128;
  double T = 2 / log(1 + sqrt(2));
  double H = 0;
  double w = 1.0;

  int opt;

  // take command line arguments
  while ((opt = getopt(argc, argv, "N:D:L:T:H:w:")) != -1) {
    switch (opt) {
    case 'N': // number of steps
      N = (unsigned)atof(optarg);
      break;
    case 'D': // dimension
      D = atoi(optarg);
      break;
    case 'L': // linear size
      L = atoi(optarg);
      break;
    case 'T': // temperature
      T = atof(optarg);
      break;
    case 'H': // field
      H = atof(optarg);
      break;
    case 'w':
      w = atof(optarg);
      break;
    default:
      exit(EXIT_FAILURE);
    }
  }

  unsigned N_wait = w * pow(L, D);

  // define the spin-spin coupling
  std::function<double(const ising_t&, const ising_t&)> Z =
      [](const ising_t& s1, const ising_t& s2) -> double { return (double)(s1 * s2); };

  // define the spin-field coupling
  std::function<double(const ising_t&)> B = [=](const ising_t& s) -> double { return H * s; };

  // initialize the lattice
  graph<> G(D, L);

  // initialize the system
  wolff::system<ising_t, ising_t, graph<>> S(G, T, Z, B);

  // initialize the random number generator
  randutils::auto_seed_128 seeds;
  std::mt19937 rng{seeds};

  // define function that generates self-inverse rotations
  std::function<ising_t(std::mt19937&, const wolff::system<ising_t, ising_t, graph<>>&,
                        const graph<>::vertex&)>
      gen_r = gen_ising<graph<>>;

  // initailze the measurement object
  track AA(S);
  S.run_wolff(N_wait, gen_r, AA, rng);
  sample A(AA.e, AA.m);
  S.run_wolff(N, gen_r, A, rng);

  std::ifstream checkfile("out.dat");
  bool already_exists = checkfile.good();
  if (already_exists) {
    checkfile.close();
  }

  std::ofstream outfile;
  outfile.open("out.dat", std::ios::app);
  if (!already_exists) {
    outfile << "N D L T H E M\n";
  }
  outfile << N << " " << D << " " << L << " " << T << " " << H << " " << A.e_avg() / S.nv << " " << A.m_avg() / S.nv << "\n";
  outfile.close();

  // exit
  return 0;
}