summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-01-08 17:22:42 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-01-08 17:22:42 -0500
commitb849c84315a262ac47010cdee306875b650aa918 (patch)
treedf72de15b4148efe44e0ca09eb35bff99b1eafcc
parent8056fe046011a46b25b6924b2d96229d06dbb4f7 (diff)
downloadspace_wolff-b849c84315a262ac47010cdee306875b650aa918.tar.gz
space_wolff-b849c84315a262ac47010cdee306875b650aa918.tar.bz2
space_wolff-b849c84315a262ac47010cdee306875b650aa918.zip
many updates
-rw-r--r--space_wolff.hpp20
-rw-r--r--spheres.cpp23
2 files changed, 18 insertions, 25 deletions
diff --git a/space_wolff.hpp b/space_wolff.hpp
index 1335f07..b542fbb 100644
--- a/space_wolff.hpp
+++ b/space_wolff.hpp
@@ -271,7 +271,7 @@ void one_sequences(std::list<std::array<double, D>>& sequences, unsigned level)
new_sequence[new_level] = -1;
sequences.push_front(new_sequence);
}
- one_sequences(sequences, new_level);
+ one_sequences<D>(sequences, new_level);
}
}
@@ -282,6 +282,7 @@ std::vector<Vector<U, D>> torus_vecs(U L) {
ini_sequence.fill(1);
std::list<std::array<double, D>> sequences;
sequences.push_back(ini_sequence);
+ one_sequences<D>(sequences, D);
sequences.pop_front(); // don't want the identity matrix!
for (std::array<double, D> sequence : sequences) {
@@ -309,7 +310,7 @@ std::vector<Matrix<U, D>> torus_mats() {
std::list<std::array<double, D>> sequences;
sequences.push_back(ini_sequence);
- one_sequences(sequences, D);
+ one_sequences<D>(sequences, D);
sequences.pop_front(); // don't want the identity matrix!
@@ -375,7 +376,6 @@ public:
void step(double T, unsigned ind, Euclidean<U, D> r) {
unsigned cluster_size = 0;
- std::uniform_real_distribution<double> dist(0.0, 1.0);
std::queue<Spin<U, D, S>*> queue;
queue.push(&(s[ind]));
@@ -396,7 +396,7 @@ public:
Spin<U, D, S> s0s_new = s0_new.inverse().act(ss);
double p = 1.0 - exp(-(B(s0s_new) - B(s0s_old)) / T);
A.ghost_bond_visited(*this, s0s_old, s0s_new, p);
- if (dist(rng) < p) {
+ if (rng.uniform(0.0, 1.0) < p) {
queue.push(&ss);
}
}
@@ -423,7 +423,7 @@ public:
p = 1.0 - exp(-(Z(*si, *sj) - Z(si_new, *sj)) / T);
A.plain_bond_visited(*this, si, sj, si_new, p);
}
- if (dist(rng) < p) {
+ if (rng.uniform(0.0, 1.0) < p) {
queue.push(sj);
}
}
@@ -439,15 +439,13 @@ public:
}
void wolff(double T, unsigned N) {
- std::uniform_int_distribution<unsigned> ind_dist(0, s.size() - 1);
-
for (unsigned i = 0; i < N; i++) {
- R g = g(*this, rng);
- unsigned ind = ind_dist(rng);
+ R r = g(*this, rng);
+ unsigned ind = rng.uniform((unsigned)0, (unsigned)(s.size() - 1));
- A.pre_cluster(*this, ind, g);
+ A.pre_cluster(*this, ind, r);
- this->step(T, ind, g, rng);
+ this->step(T, ind, r);
A.post_cluster(*this);
}
diff --git a/spheres.cpp b/spheres.cpp
index 9e67b87..4ed329e 100644
--- a/spheres.cpp
+++ b/spheres.cpp
@@ -37,17 +37,14 @@ class animation : public measurement<double, 2, Euclidean<double, D>, double> {
std::function<Euclidean<double, D>(const model&, randutils::mt19937_rng&)> eGen(const std::vector<Matrix<double, 2>>& mats, const std::vector<Vector<double, 2>>& vecs) {
return [&mats, &vecs] (const model& M, randutils::mt19937_rng& rng) -> Euclidean<double, 2> {
- std::uniform_real_distribution<double> t_dist(0, M.L);
- std::uniform_int_distribution<unsigned> r_dist(0, D - 1);
- std::uniform_int_distribution<unsigned> ind_dist(0, M.s.size() - 1);
- std::uniform_int_distribution<unsigned> coin(0, mats.size() + vecs.size() - 1);
-
Vector<double, D> t;
Matrix<double, D> m;
- unsigned flip = coin(rng);
+ unsigned flip = rng.uniform((unsigned)0, (unsigned)(mats.size() + vecs.size() - 1));
if (flip < mats.size()) {
+ unsigned f_ind = rng.uniform((unsigned)0, (unsigned)M.s.size());
+ t = M.s[f_ind].x;
for (unsigned j = 0; j < D; j++) {
- t(j) = (double)t_dist(rng);
+ t(j) += rng.variate<double, std::normal_distribution>(0.0, 0.1);
}
m = mats[flip];
} else {
@@ -120,7 +117,7 @@ int main(int argc, char* argv[]) {
std::function<double(Spin<double, D, double>)> B =
[L, H] (Spin<double, D, double> s) -> double {
- return H * sin(2 * M_PI * 3 * s.x(0) / L);
+ return H * s.x(1);
};
std::vector<Matrix<double, D>> mats = torus_mats<double, D>();
@@ -129,16 +126,14 @@ int main(int argc, char* argv[]) {
animation A(L, 750, argc, argv);
model sphere(L, Z, B, g, std::floor(log2(L)), 2, A);
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- std::uniform_real_distribution<double> dist(0.0, L);
+ randutils::mt19937_rng rng;
sphere.s.reserve(n);
+ unsigned nx = floor(sqrt(n));
for (unsigned i = 0; i < n; i++) {
- Vector<double, D> pos = {dist(rng), dist(rng)};
- sphere.s.push_back({pos, dist(rng) / L});
+ Vector<double, D> pos = {(i / nx) * L / nx + rng.uniform(0.0, L / (4 * nx)), (i % nx) * L / nx + rng.uniform(0.0, L / (4 * nx))};
+ sphere.s.push_back({pos, 0.5});
sphere.dict.insert(&sphere.s.back());
}