summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Debias <jaron@kent-dobias.com>2019-10-28 16:30:50 -0400
committerJaron Kent-Debias <jaron@kent-dobias.com>2019-10-28 16:30:50 -0400
commitdebd18ad06b40e30c67490ae3c7573089d52ae4f (patch)
tree04061b76fa45bf462b1c25d2636fe242a49eaeb7
parentb7b4a7f07b5db23eae48a4b1181f8e1369ef8cb8 (diff)
downloadspace_wolff-debd18ad06b40e30c67490ae3c7573089d52ae4f.tar.gz
space_wolff-debd18ad06b40e30c67490ae3c7573089d52ae4f.tar.bz2
space_wolff-debd18ad06b40e30c67490ae3c7573089d52ae4f.zip
renamed classes with capital letters
-rw-r--r--space_wolff.hpp116
1 files changed, 61 insertions, 55 deletions
diff --git a/space_wolff.hpp b/space_wolff.hpp
index 4c02406..f95c68a 100644
--- a/space_wolff.hpp
+++ b/space_wolff.hpp
@@ -29,12 +29,13 @@ const std::array<std::array<unsigned, 16>, 16> smiley = {
{{0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0}},
{{0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0}}}};
-template <class U, unsigned D> using vector = Eigen::Matrix<U, D, 1>;
+template <class U, unsigned D> using Vector = Eigen::Matrix<U, D, 1>;
-template <class U, unsigned D> using matrix = Eigen::Matrix<U, D, D>;
+template <class U, unsigned D> using Matrix = Eigen::Matrix<U, D, D>;
-template <class U, unsigned D> vector<U, D> diff(U L, vector<U, D> v1, vector<U, D> v2) {
- vector<U, D> v;
+template <class U, unsigned D>
+Vector<U, D> diff(U L, Vector<U, D> v1, Vector<U, D> v2) {
+ Vector<U, D> v;
for (unsigned i = 0; i < D; i++) {
v(i) = std::abs(v1(i) - v2(i));
@@ -46,20 +47,20 @@ template <class U, unsigned D> vector<U, D> diff(U L, vector<U, D> v1, vector<U,
return v;
}
-template <class U, unsigned D, class state> class spin {
+template <class U, unsigned D, class state> class Spin {
public:
- vector<U, D> x;
+ Vector<U, D> x;
state s;
};
-template <class U, unsigned D> class euclidean {
+template <class U, unsigned D> class Euclidean {
private:
U L;
public:
- vector<U, D> t;
- matrix<U, D> r;
- euclidean(U L) : L(L) {
+ Vector<U, D> t;
+ Matrix<U, D> r;
+ Euclidean(U L) : L(L) {
for (unsigned i = 0; i < D; i++) {
t(i) = 0;
r(i, i) = 1;
@@ -69,14 +70,14 @@ public:
}
}
- euclidean(U L, vector<U, D> t0, matrix<U, D> r0) : L(L) {
+ Euclidean(U L, Vector<U, D> t0, Matrix<U, D> r0) : L(L) {
t = t0;
r = r0;
}
template <class state>
- spin<U, D, state> act(const spin<U, D, state> &s) const {
- spin<U, D, state> s_new;
+ Spin<U, D, state> act(const Spin<U, D, state> &s) const {
+ Spin<U, D, state> s_new;
s_new.x = t + r * s.x;
s_new.s = s.s;
@@ -88,39 +89,39 @@ public:
return s_new;
}
- euclidean act(const euclidean& x) const {
- vector<U, D> tnew = r * x.t + t;
- matrix<U, D> rnew = r * x.r;
+ Euclidean act(const Euclidean &x) const {
+ Vector<U, D> tnew = r * x.t + t;
+ Matrix<U, D> rnew = r * x.r;
for (unsigned i = 0; i < D; i++) {
tnew(i) = fmod(L + tnew(i), L);
}
- euclidean pnew(this->L, tnew, rnew);
+ Euclidean pnew(this->L, tnew, rnew);
return pnew;
}
- euclidean inverse() const {
- vector<U, D> tnew = -r.transpose() * t;
- matrix<U, D> rnew = r.transpose();
+ Euclidean inverse() const {
+ Vector<U, D> tnew = -r.transpose() * t;
+ Matrix<U, D> rnew = r.transpose();
- euclidean pnew(this->L, tnew, rnew);
+ Euclidean pnew(this->L, tnew, rnew);
return pnew;
}
};
-template <class T, unsigned D> class dictionary {
+template <class T, unsigned D> class Dictionary {
private:
unsigned N;
T L;
std::vector<std::set<unsigned>> d;
public:
- dictionary(unsigned Ni, double Li) : N(Ni), L(Li), d(pow(Ni, D)) {};
+ Dictionary(unsigned Ni, double Li) : N(Ni), L(Li), d(pow(Ni, D)){};
- unsigned dictionary_index(vector<T, D> x) const {
+ unsigned dictionary_index(Vector<T, D> x) const {
unsigned pos_ind = 0;
for (unsigned i = 0; i < D; i++) {
@@ -130,15 +131,15 @@ public:
return pos_ind;
}
- void record(vector<T, D> x, unsigned ind) {
+ void record(Vector<T, D> x, unsigned ind) {
d[this->dictionary_index(x)].insert(ind);
};
- void remove(vector<T, D> x, unsigned ind) {
+ void remove(Vector<T, D> x, unsigned ind) {
d[this->dictionary_index(x)].erase(ind);
};
- std::set<unsigned> neighbors(vector<T, D> x, unsigned depth) const {
+ std::set<unsigned> neighbors(Vector<T, D> x, unsigned depth) const {
return nearest_neighbors_of(this->dictionary_index(x), depth, {});
};
@@ -169,7 +170,7 @@ public:
};
};
-class quantity {
+class Quantity {
private:
double total;
double total2;
@@ -180,7 +181,7 @@ public:
unsigned n;
std::list<double> hist;
- quantity(unsigned lag, unsigned wait) : C(lag), wait(wait) {
+ Quantity(unsigned lag, unsigned wait) : C(lag), wait(wait) {
n = 0;
total = 0;
total2 = 0;
@@ -244,20 +245,22 @@ public:
unsigned num_added() const { return n - wait; }
};
-template <class U, unsigned D, class state> class model {
+template <class U, unsigned D, class state> class Model {
public:
U L;
- euclidean<U, D> s0;
- std::vector<spin<U, D, state>> s;
- dictionary<U, D> dict;
- std::function<std::set<unsigned>(model<U, D, state>&, unsigned, spin<U, D, state>)> neighbors;
- std::function<double(spin<U, D, state>, spin<U, D, state>)> Z;
- std::function<double(spin<U, D, state>)> B;
- std::vector<matrix<U, D>> mats;
- std::vector<vector<U, D>> steps;
+ Euclidean<U, D> s0;
+ std::vector<Spin<U, D, state>> s;
+ Dictionary<U, D> dict;
+ std::function<std::set<unsigned>(Model<U, D, state> &, unsigned,
+ Spin<U, D, state>)>
+ neighbors;
+ std::function<double(Spin<U, D, state>, Spin<U, D, state>)> Z;
+ std::function<double(Spin<U, D, state>)> B;
+ std::vector<Matrix<U, D>> mats;
+ std::vector<Vector<U, D>> steps;
long double E;
- quantity Eq;
- quantity Cq;
+ Quantity Eq;
+ Quantity Cq;
void one_sequences(std::list<std::array<double, D>>& sequences, unsigned level) {
if (level > 0) {
@@ -272,10 +275,14 @@ public:
}
}
- model(U L, unsigned N, std::function<double(spin<U, D, state>, spin<U, D, state>)> Z,
- std::function<double(spin<U, D, state>)> B,
- std::function<std::set<unsigned>(model<U, D, state>&, unsigned, spin<U, D, state>)> ns)
- : L(L), s0(L), dict(N, L), neighbors(ns), Z(Z), B(B), Eq(1000, 1000), Cq(1000, 1000) {
+ Model(U L, unsigned N,
+ std::function<double(Spin<U, D, state>, Spin<U, D, state>)> Z,
+ std::function<double(Spin<U, D, state>)> B,
+ std::function<std::set<unsigned>(Model<U, D, state> &, unsigned,
+ Spin<U, D, state>)>
+ ns)
+ : L(L), s0(L), dict(N, L), neighbors(ns), Z(Z), B(B), Eq(1000, 1000),
+ Cq(1000, 1000) {
std::array<double, D> ini_sequence;
ini_sequence.fill(1);
std::list<std::array<double, D>> sequences;
@@ -286,7 +293,7 @@ public:
sequences.pop_front(); // don't want the identity matrix!
for (std::array<double, D> sequence : sequences) {
- matrix<U, D> m;
+ Matrix<U, D> m;
for (unsigned i = 0; i < D; i++) {
for (unsigned j = 0; j < D; j++) {
if (i == j) {
@@ -299,7 +306,7 @@ public:
mats.push_back(m);
- vector<U, D> v;
+ Vector<U, D> v;
for (unsigned i = 0; i < D; i++) {
if (sequence[i] == 1) {
v(i) = 0;
@@ -314,7 +321,7 @@ public:
for (unsigned i = 0; i < D; i++) {
for (unsigned j = 0; j < D; j++) {
if (i != j) {
- matrix<U, D> m;
+ Matrix<U, D> m;
for (unsigned k = 0; k < D; k++) {
for (unsigned l = 0; l < D; l++) {
if ((k == i && l == j) || (k == j && l == i)) {
@@ -345,7 +352,7 @@ public:
}
}
- void step(double T, unsigned ind, euclidean<U, D> r, std::mt19937& rng) {
+ void step(double T, unsigned ind, Euclidean<U, D> r, std::mt19937 &rng) {
unsigned cluster_size = 0;
std::uniform_real_distribution<double> dist(0.0, 1.0);
@@ -363,8 +370,8 @@ public:
bool we_are_ghost = i == s.size();
- spin<U, D, state> si_new;
- euclidean<U, D> s0_new(L);
+ Spin<U, D, state> si_new;
+ Euclidean<U, D> s0_new(L);
if (we_are_ghost) {
s0_new = r.act(s0);
@@ -378,7 +385,7 @@ public:
bool neighbor_is_ghost = j == s.size();
if (we_are_ghost || neighbor_is_ghost) {
- spin<U, D, state> s0s_old, s0s_new;
+ Spin<U, D, state> s0s_old, s0s_new;
unsigned non_ghost;
if (neighbor_is_ghost) {
@@ -423,8 +430,8 @@ public:
std::uniform_int_distribution<unsigned> coin(0, mats.size() + steps.size() - 1);
for (unsigned i = 0; i < N; i++) {
- vector<U, D> t;
- matrix<U, D> m;
+ Vector<U, D> t;
+ Matrix<U, D> m;
unsigned flip = coin(rng);
if (flip < mats.size()) {
for (unsigned j = 0; j < D; j++) {
@@ -445,7 +452,7 @@ public:
t = steps[flip - mats.size()];
}
- euclidean<U, D> g(L, t, m);
+ Euclidean<U, D> g(L, t, m);
this->step(T, ind_dist(rng), g, rng);
@@ -454,4 +461,3 @@ public:
}
}
};
-