1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
#include "space_wolff.hpp"
std::function<double(spin<signed, 2, signed>)> B_sin(unsigned L, unsigned n, double H) {
return [n, H, L] (spin<signed, 2, signed> s) -> double {
return H * s.s * cos(2 * M_PI * n * s.x(0) / ((double)L));
};
}
int main(int argc, char* argv[]) {
const unsigned D = 2;
unsigned L = 32;
unsigned N = 1000;
unsigned mod = 0;
unsigned multi = 1e4;
double mag = 0.5;
double T = 2.0 / log(1.0 + sqrt(2.0));
double H = 1.0;
double ε = 0.1;
int opt;
while ((opt = getopt(argc, argv, "N:L:T:H:e:m:M:n:")) != -1) {
switch (opt) {
case 'N':
N = (unsigned)atof(optarg);
break;
case 'L':
L = atoi(optarg);
break;
case 'T':
T = atof(optarg);
break;
case 'H':
H = atof(optarg);
break;
case 'e':
ε = atof(optarg);
break;
case 'm':
mod = atoi(optarg);
break;
case 'M':
multi = atoi(optarg);
break;
case 'n':
mag = atof(optarg);
break;
default:
exit(1);
}
}
double pZ = 1.0 - exp(-1.0 / T);
std::function<double(spin<signed, D, signed>, spin<signed, D, signed>, spin<signed, D, signed>)> Z =
[L, pZ] (spin<signed, D, signed> s1, spin<signed, D, signed> s2, spin<signed, D, signed> s1_new) -> double {
bool old_one_one = false;
bool old_many_ones = false;
bool old_any_two = false;
bool new_one_one = false;
bool new_many_ones = false;
bool new_any_two = false;
vector<signed, D> old_diff = diff<signed, D>(L, s1.x, s2.x);
vector<signed, D> new_diff = diff<signed, D>(L, s1_new.x, s2.x);
for (unsigned i = 0; i < D; i++) {
if (old_diff(i) == 1 && !old_one_one) {
old_one_one = true;
} else if (old_diff(i) == 1 && old_one_one) {
old_many_ones = true;
} else if (old_diff(i) > 1) {
old_any_two = true;
}
if (new_diff(i) == 1 && !new_one_one) {
new_one_one = true;
} else if (new_diff(i) == 1 && new_one_one) {
new_many_ones = true;
} else if (new_diff(i) > 1) {
new_any_two = true;
}
}
bool were_on_someone = !old_one_one && !old_any_two;
bool are_on_someone = !new_one_one && !new_any_two;
bool were_nearest_neighbors = old_one_one && !old_many_ones && !old_any_two;
bool are_nearest_neighbors = new_one_one && !new_many_ones && !new_any_two;
if (were_on_someone) {
return 0.0;
} else if (are_on_someone) {
return 1.0;
} else if (were_nearest_neighbors && are_nearest_neighbors) {
return 0.0;
} else if (were_nearest_neighbors) {
if (s1.s * s2.s == 1) {
return pZ;
} else {
return 0.0;
}
} else if (are_nearest_neighbors) {
if (s1_new.s * s2.s == -1) {
return pZ;
} else {
return 0.0;
}
} else {
return 0.0;
}
};
std::function<double(spin<signed, D, signed>)> B_face =
[L, H] (spin<signed, D, signed> s) -> double {
return H * s.s * smiley[s.x(0) * 16 / L][s.x(1) * 16 / L];
};
std::function<double(spin<signed, D, signed>)> B;
if (mod > 0) {
B = B_sin(L, mod, H);
} else {
B = B_face;
}
std::function<std::set<unsigned>(model<signed, D, signed>&, unsigned, spin<signed, D, signed>)> neighbors =
[] (model<signed, D, signed>& m, unsigned i0, spin<signed, D, signed> s1) -> std::set<unsigned> {
std::set<unsigned> nn;
if (i0 < m.s.size()) {
std::set<unsigned> nn0 = m.dict.neighbors(m.s[i0].x, 1);
std::set<unsigned> nn1 = m.dict.neighbors(s1.x, 1);
nn.insert(nn0.begin(), nn0.end());
nn.insert(nn1.begin(), nn1.end());
nn.insert(m.s.size());
} else {
for (unsigned i = 0; i < m.s.size(); i++) {
nn.insert(i);
}
}
return nn;
};
model<signed, D, signed> ising(L, Z, B, neighbors);
randutils::auto_seed_128 seeds;
std::mt19937 rng{seeds};
std::uniform_int_distribution<unsigned> coin(0, 1);
unsigned n = 0;
unsigned up = 0;
unsigned down = 0;
for (unsigned i = 0; i < L; i++) {
for (unsigned j = 0; j < L; j++) {
if ((coin(rng) && up < pow(L, 2) * mag) || down >= pow(L, 2) * mag) {
ising.s.push_back({{i, j}, 1});
up++;
} else {
ising.s.push_back({{i, j}, -1});
down++;
}
ising.dict.record<signed>({i, j}, n);
n++;
}
}
/*
for (unsigned i = 0; i < L; i++) {
for (unsigned j = 0; j < L; j++) {
if (i < L / 2) {
ising.s.push_back({{i, j}, 1});
} else {
ising.s.push_back({{i, j}, -1});
}
ising.dict.record<signed>({i, j}, n);
n++;
}
}
*/
ising.update_energy();
while (true) {
ising.wolff(T, N, rng);
std::array<double, 2> τ = ising.Eq.τ();
std::cout << ising.Eq.num_added() << " " << τ[0] << " " << τ[1] << " " << τ[1] / τ[0] << "\n";
if (τ[1] / τ[0] < ε && τ[0] * multi < ising.Eq.num_added()) {
break;
}
}
std::ofstream outfile;
outfile.open("out.dat", std::ios::app);
std::array<double, 2> act = ising.Eq.τ();
std::vector<double> ρ = ising.Eq.ρ();
outfile << L << " " << T << " " << mod << " " << H << " " << ising.Eq.num_added() << " " << ising.Cq.avg() << " " << ising.Cq.serr() << " " << act[0] << " " << act[1];
for (double ρi : ρ) {
outfile << " " << ρi;
}
outfile << "\n";
std::ofstream snapfile;
snapfile.open("snap.dat");
std::vector<std::vector<signed>> snap(L);
for (std::vector<signed>& line : snap) {
line.resize(L);
}
for (spin<signed, D, signed> s : ising.s) {
spin<signed, D, signed> snew = ising.s0.inverse().act(s);
snap[snew.x(0)][snew.x(1)] = snew.s;
}
for (std::vector<signed> row : snap) {
for (signed s : row) {
snapfile << s << " ";
}
snapfile << "\n";
}
snapfile.close();
return 0;
}
|