1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
#include <GL/glut.h>
#include <fstream>
#include <iostream>
#include "title.hpp"
#include "space_wolff.hpp"
#include "torus_symmetries.hpp"
#include "animation.hpp"
const unsigned D = 2;
typedef Model<double, D, TorusGroup<double, D>, Radius> model;
std::function<double(const Spin<double, D, double>&)> sphereTitle(double L, double H) {
return [L, H](const Spin<double, D, double>& s) -> double {
return 1e8 * critical[(320+(511 - unsigned(s.x(1) * 512 / L))) % 512][unsigned(s.x(0) * 512 / L)] + H * s.x(1);
};
}
int main(int argc, char* argv[]) {
const unsigned D = 2;
double L = 32;
unsigned N = 1000;
double T = 2.0 / log(1.0 + sqrt(2.0));
double H = 1.0;
unsigned n = 25;
double ε = 0.1;
double k = 1e8;
double a = 0.0;
int opt;
while ((opt = getopt(argc, argv, "n:N:L:T:H:e:k:a:")) != -1) {
switch (opt) {
case 'n':
n = (unsigned)atof(optarg);
break;
case 'N':
N = (unsigned)atof(optarg);
break;
case 'L':
L = atof(optarg);
break;
case 'T':
T = atof(optarg);
break;
case 'H':
H = atof(optarg);
break;
case 'e':
ε = atof(optarg);
break;
case 'k':
k = atof(optarg);
break;
case 'a':
a = atof(optarg);
break;
default:
exit(1);
}
}
std::function<double(const Spin<double, D, double>&, const Spin<double, D, double>&)> Z =
[L, a, k](const Spin<double, D, double>& s1, const Spin<double, D, double>& s2) -> double {
Vector<double, D> d = diff(L, s1.x, s2.x);
double σ = s1.s + s2.s;
double δ = σ - sqrt(d.transpose() * d);
if (δ > -a * σ) {
return 0.5 * k * (2 * pow(a * σ, 2) - pow(δ, 2));
} else if (δ > -2 * a * σ) {
return 0.5 * k * pow(δ + 2 * a * σ, 2);
} else {
return 0;
}
};
/*
std::function<double(Spin<double, D, double>)> B = [L, H](Spin<double, D, double> s) -> double {
return H * s.x(1);
};
*/
auto g1 = rotateSwapTorus<D, Radius>(L, ε);
auto g2 = nudgeGenTorus<D, Radius>(L, ε);
auto g3 = uniformGenTorus<D, Radius>(L);
Animation<double, D, TorusGroup<double, D>, Radius> A(L, 750, argc, argv, 1e7, true);
model sphere(L, Z, sphereTitle(L, H));
randutils::mt19937_rng rng;
sphere.s.resize(n);
unsigned nx = ceil(sqrt(n));
for (unsigned i = 0; i < sphere.s.size(); i++) {
Spin<double, 2, double>* ss = new Spin<double, 2, double>();
ss->x = {(i / nx) * L / nx, (i % nx) * L / nx};
ss->s = rng.pick({0.45, 0.45});
sphere.s[i] = ss;
sphere.dict.insert(ss);
}
sphere.wolff(T, {g1, g2, g3}, A, N);
std::ofstream ofile("sphere_snap.dat");
for (const Spin<double, 2, double>* ss : sphere.s) {
Vector<double, 2> sx = sphere.s0.inverse().act(ss->x);
ofile << ss->s << " " << sx(0) << " " << sx(1) << "\n";
}
ofile.close();
return 0;
}
|