1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
#include <fstream>
#include <iostream>
#include <chrono>
#include "space_wolff.hpp"
#include "spheres.hpp"
#include "animation.hpp"
const unsigned D = 2;
typedef Model<double, D, Euclidean<double, D>, double> model;
class SaveFlip : public measurement<double, D, Euclidean<double, D>, Radius> {
std::ofstream snapfile;
unsigned n;
public:
SaveFlip() {}
void pre_cluster(const Model<double, D, Euclidean<double, D>, Radius>& m, unsigned,
const Transformation<double, D, Euclidean<double, D>, Radius>* t) override {
snapfile.open("sphere_flip.dat");
n = 0;
for (const Sphere<D>* s : m.s) {
snapfile << s << " " << s->s << " " << s->x.transpose() << " ";
}
snapfile << "\n";
}
void plain_site_transformed(const Model<double, D, Euclidean<double, D>, Radius>& m,
const Transformation<double, D, Euclidean<double, D>, Radius>& t) override {
for (const Sphere<D>* s : t.current()) {
snapfile << s << " ";
}
snapfile << "\n";
n++;
}
void post_cluster(const Model<double, D, Euclidean<double, D>, Radius>& m) override {
for (const Sphere<D>* s : m.s) {
snapfile << s << " " << s->s << " " << s->x.transpose() << " ";
}
snapfile << "\n";
snapfile.close();
std::cout << n << "\n";
if (2 < n && n < 20) {
getchar();
}
}
};
int main(int argc, char* argv[]) {
const unsigned D = 2;
double L = 32;
unsigned N = 1000;
double T = 2.0 / log(1.0 + sqrt(2.0));
double H = 1.0;
unsigned n = 25;
unsigned wait = 1000;
double k = 1e2;
double a = 0.1;
int opt;
while ((opt = getopt(argc, argv, "n:N:L:T:H:a:k:w:")) != -1) {
switch (opt) {
case 'n':
n = (unsigned)atof(optarg);
break;
case 'N':
N = (unsigned)atof(optarg);
break;
case 'L':
L = atof(optarg);
break;
case 'T':
T = atof(optarg);
break;
case 'H':
H = atof(optarg);
break;
case 'a':
a = atof(optarg);
break;
case 'k':
k = atof(optarg);
break;
case 'w':
wait = atoi(optarg);
break;
default:
exit(1);
}
}
std::function<double(Spin<double, D, double>)> B_hard = [L, H](Spin<double, D, double> s) -> double {
if (fabs(s.x(0)) < 3 * L / 4 && fabs(s.x(1)) < 3 * L / 4) {
return 0;
} else {
return std::numeric_limits<double>::infinity();
}
};
auto g1 = nudgeGen<D, Radius>(1);
auto g2 = swapGen<D, Radius>(0.01);
auto g3 = accrossGen<D, Radius>(0.1);
auto g4 = centerGen<D, Radius>(0);
auto tag = std::chrono::high_resolution_clock::now();
std::string filename = "flips_" + std::to_string(n) + "_" + std::to_string(T) + "_" + std::to_string(H) + "_" + std::to_string(a) + "_" + std::to_string(k) + "_" +
std::to_string(tag.time_since_epoch().count()) + ".dat";
std::ofstream file;
file.open(filename);
Animation<double, D, Euclidean<double, D>, Radius> A(L, 750, argc, argv, wait);
model sphere(1.0, zSpheres<D>(a, k), bCenter<D, Radius>(H));
Rng rng;
sphere.s.resize(n);
unsigned nx = floor(sqrt(n));
for (unsigned i = 0; i < sphere.s.size(); i++) {
Spin<double, 2, double>* ss = new Spin<double, 2, double>();
ss->x = {(i / nx) * L / nx - L / 2, (i % nx) * L / nx - L / 2};
ss->s = rng.pick({0.45, 0.45});
sphere.s[i] = ss;
sphere.dict.insert(ss);
}
measurement<double, D, Euclidean<double, D>, Radius> A_tmp;
sphere.wolff(T, {g1, g2, g3, g4}, A_tmp, N);
SaveFlip A_new;
sphere.wolff(T, {g2}, A_new, 10000);
return 0;
}
|