diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2017-11-07 15:25:33 -0500 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2017-11-07 15:25:33 -0500 |
commit | 94e69df7939a687cedfa614955950a8d251e0b2e (patch) | |
tree | b49502b6e45052f528540735a00121e79fdf7471 | |
parent | e7220fadb6b3775e55afd9a07831e90136cfaf24 (diff) | |
download | PRE_98_063306-94e69df7939a687cedfa614955950a8d251e0b2e.tar.gz PRE_98_063306-94e69df7939a687cedfa614955950a8d251e0b2e.tar.bz2 PRE_98_063306-94e69df7939a687cedfa614955950a8d251e0b2e.zip |
many changes
-rw-r--r-- | fig_correlation.tex | 4 | ||||
-rw-r--r-- | fig_correlation_collapse-hL.tex | 1111 | ||||
-rw-r--r-- | figs/fig_correlation_collapse-hL.gplot | 8 | ||||
-rw-r--r-- | figs/fig_correlation_data_collapse-hL.dat | 253 | ||||
-rw-r--r-- | monte-carlo.bib | 9 | ||||
-rw-r--r-- | monte-carlo.tex | 385 | ||||
-rw-r--r-- | refs/geyer1992practical.pdf | bin | 0 -> 1790024 bytes |
7 files changed, 902 insertions, 868 deletions
diff --git a/fig_correlation.tex b/fig_correlation.tex index eb09910..9d379cd 100644 --- a/fig_correlation.tex +++ b/fig_correlation.tex @@ -8,7 +8,7 @@ {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot 5.2 patchlevel 0 -%%CreationDate: Mon Nov 6 21:12:43 2017 +%%CreationDate: Tue Nov 7 11:52:33 2017 %%DocumentFonts: %%BoundingBox: 0 0 246 455 %%EndComments @@ -448,7 +448,7 @@ SDict begin [ /Creator (gnuplot 5.2 patchlevel 0) % /Producer (gnuplot) % /Keywords () - /CreationDate (Mon Nov 6 21:12:43 2017) + /CreationDate (Tue Nov 7 11:52:33 2017) /DOCINFO pdfmark end } ifelse diff --git a/fig_correlation_collapse-hL.tex b/fig_correlation_collapse-hL.tex index 9609378..15cbb33 100644 --- a/fig_correlation_collapse-hL.tex +++ b/fig_correlation_collapse-hL.tex @@ -8,7 +8,7 @@ {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot 5.2 patchlevel 0 -%%CreationDate: Mon Nov 6 21:12:43 2017 +%%CreationDate: Tue Nov 7 11:52:33 2017 %%DocumentFonts: %%BoundingBox: 0 0 246 151 %%EndComments @@ -448,7 +448,7 @@ SDict begin [ /Creator (gnuplot 5.2 patchlevel 0) % /Producer (gnuplot) % /Keywords () - /CreationDate (Mon Nov 6 21:12:43 2017) + /CreationDate (Tue Nov 7 11:52:33 2017) /DOCINFO pdfmark end } ifelse @@ -489,13 +489,69 @@ doclip 0 setgray newpath BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {BackgroundColor C 1.000 0 0 4920.00 3038.00 BoxColFill} if +gsave % colour palette begin +/maxcolors 0 def +/HSV2RGB { exch dup 0.0 eq {pop exch pop dup dup} % achromatic gray + { /HSVs exch def /HSVv exch def 6.0 mul dup floor dup 3 1 roll sub + /HSVf exch def /HSVi exch cvi def /HSVp HSVv 1.0 HSVs sub mul def + /HSVq HSVv 1.0 HSVs HSVf mul sub mul def + /HSVt HSVv 1.0 HSVs 1.0 HSVf sub mul sub mul def + /HSVi HSVi 6 mod def 0 HSVi eq {HSVv HSVt HSVp} + {1 HSVi eq {HSVq HSVv HSVp}{2 HSVi eq {HSVp HSVv HSVt} + {3 HSVi eq {HSVp HSVq HSVv}{4 HSVi eq {HSVt HSVp HSVv} + {HSVv HSVp HSVq} ifelse} ifelse} ifelse} ifelse} ifelse + } ifelse} def +/Constrain { + dup 0 lt {0 exch pop}{dup 1 gt {1 exch pop} if} ifelse} def +/YIQ2RGB { + 3 copy -1.702 mul exch -1.105 mul add add Constrain 4 1 roll + 3 copy -0.647 mul exch -0.272 mul add add Constrain 5 1 roll + 0.621 mul exch -0.956 mul add add Constrain 3 1 roll } def +/CMY2RGB { 1 exch sub exch 1 exch sub 3 2 roll 1 exch sub 3 1 roll exch } def +/XYZ2RGB { 3 copy -0.9017 mul exch -0.1187 mul add exch 0.0585 mul exch add + Constrain 4 1 roll 3 copy -0.0279 mul exch 1.999 mul add exch + -0.9844 mul add Constrain 5 1 roll -0.2891 mul exch -0.5338 mul add + exch 1.91 mul exch add Constrain 3 1 roll} def +/SelectSpace {ColorSpace (HSV) eq {HSV2RGB}{ColorSpace (XYZ) eq { + XYZ2RGB}{ColorSpace (CMY) eq {CMY2RGB}{ColorSpace (YIQ) eq {YIQ2RGB} + if} ifelse} ifelse} ifelse} def +/InterpolatedColor true def +/grayindex {/gidx 0 def + {GrayA gidx get grayv ge {exit} if /gidx gidx 1 add def} loop} def +/dgdx {grayv GrayA gidx get sub GrayA gidx 1 sub get + GrayA gidx get sub div} def +/redvalue {RedA gidx get RedA gidx 1 sub get + RedA gidx get sub dgdxval mul add} def +/greenvalue {GreenA gidx get GreenA gidx 1 sub get + GreenA gidx get sub dgdxval mul add} def +/bluevalue {BlueA gidx get BlueA gidx 1 sub get + BlueA gidx get sub dgdxval mul add} def +/interpolate { + grayindex grayv GrayA gidx get sub abs 1e-5 le + {RedA gidx get GreenA gidx get BlueA gidx get} + {/dgdxval dgdx def redvalue greenvalue bluevalue} ifelse} def +/GrayA [0 .1429 .4286 1 ] def +/RedA [.3686 .8824 .5608 .9216 ] def +/GreenA [.5059 .6118 .6902 .3843 ] def +/BlueA [.7098 .1412 .1961 .2078 ] def +/pm3dround {maxcolors 0 gt {dup 1 ge + {pop 1} {maxcolors mul floor maxcolors 1 sub div} ifelse} if} def +/pm3dGamma 1.0 1.5 Gamma mul div def +/ColorSpace (RGB) def +Color InterpolatedColor or { % COLOUR vs. GRAY map + InterpolatedColor { %% Interpolation vs. RGB-Formula + /g {stroke pm3dround /grayv exch def interpolate + SelectSpace setrgbcolor} bind def + }{ + /g {stroke pm3dround dup cF7 Constrain exch dup cF5 Constrain exch cF15 Constrain + SelectSpace setrgbcolor} bind def + } ifelse +}{ + /g {stroke pm3dround pm3dGamma exp setgray} bind def +} ifelse 1.000 UL LTb LCb setrgbcolor -860 640 M -31 0 V -3668 0 R --31 0 V 860 746 M 63 0 V 3636 0 R @@ -504,33 +560,40 @@ stroke LTb LCb setrgbcolor 860 1443 M -31 0 V -3668 0 R --31 0 V +63 0 V +3636 0 R +-63 0 V +stroke +LTb +LCb setrgbcolor 860 1851 M -31 0 V -3668 0 R --31 0 V +63 0 V +3636 0 R +-63 0 V +stroke +LTb +LCb setrgbcolor 860 2140 M -31 0 V -3668 0 R --31 0 V +63 0 V +3636 0 R +-63 0 V +stroke +LTb +LCb setrgbcolor 860 2364 M -31 0 V -3668 0 R --31 0 V +63 0 V +3636 0 R +-63 0 V +stroke +LTb +LCb setrgbcolor 860 2548 M -31 0 V -3668 0 R --31 0 V -860 2703 M -31 0 V -3668 0 R --31 0 V -860 2837 M -31 0 V -3668 0 R --31 0 V +63 0 V +3636 0 R +-63 0 V +stroke +LTb +LCb setrgbcolor 860 640 M 0 31 V 0 2166 R @@ -892,885 +955,853 @@ LTb LCb setrgbcolor LTb 1.000 UP -1.000 UL +2.000 UL LTb -0.58 0.00 0.83 C 1100 2588 M +0 g 0 g 1100 2643 M 0 5 V -31 -5 R 62 0 V -62 5 R 62 0 V -55 -2 R +0 g 1186 2647 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -5 R -0 4 V --31 -4 R +0 g 1272 2645 M +0 3 V +-31 -3 R 62 0 V --62 4 R +-62 3 R 62 0 V -55 3 R -0 12 V --31 -12 R +0 g 1358 2651 M +0 9 V +-31 -9 R 62 0 V --62 12 R +-62 9 R 62 0 V -55 -16 R -0 6 V --31 -6 R +0 g 1444 2649 M +0 4 V +-31 -4 R 62 0 V --62 6 R +-62 4 R 62 0 V -55 -7 R -0 5 V --31 -5 R +0 g 1530 2647 M +0 3 V +-31 -3 R 62 0 V --62 5 R +-62 3 R 62 0 V -55 -6 R -0 6 V --31 -6 R +0 g 1616 2645 M +0 7 V +-31 -7 R 62 0 V --62 6 R +-62 7 R 62 0 V -55 -5 R +0 g 1702 2647 M 0 8 V -31 -8 R 62 0 V -62 8 R 62 0 V -55 -10 R -0 3 V --31 -3 R +0 g 1788 2645 M +0 2 V +-31 -2 R 62 0 V --62 3 R +-62 2 R 62 0 V -55 -8 R -0 6 V --31 -6 R +0 g 1874 2640 M +0 5 V +-31 -5 R 62 0 V --62 6 R +-62 5 R 62 0 V -55 -3 R -0 4 V --31 -4 R +0 g 1960 2642 M +0 5 V +-31 -5 R 62 0 V --62 4 R +-62 5 R 62 0 V -55 1 R +0 g 2046 2648 M 0 5 V -31 -5 R 62 0 V -62 5 R 62 0 V -55 -8 R +0 g 2132 2645 M 0 9 V -31 -9 R 62 0 V -62 9 R 62 0 V -55 -22 R +0 g 2218 2632 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -35 R +0 g 2304 2604 M 0 1 V -31 -1 R 62 0 V -62 1 R 62 0 V -55 -80 R -0 1 V --31 -1 R -62 0 V --62 1 R -62 0 V -55 -112 R -0 14 V --31 -14 R -62 0 V --62 14 R -62 0 V -55 -125 R -0 6 V --31 -6 R -62 0 V -stroke 2593 2247 M --62 6 R -62 0 V -55 -113 R --31 0 R +0 g 2390 2525 M +0 4 V +-31 -4 R 62 0 V --62 0 R +-62 4 R 62 0 V -55 -104 R +0 g 2476 2415 M 0 9 V -31 -9 R 62 0 V -62 9 R 62 0 V -55 -101 R +0 g 2562 2303 M +0 4 V +-31 -4 R +62 0 V +stroke 2593 2303 M +-62 4 R +62 0 V +0 g 2648 2195 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 -98 R -0 5 V --31 -5 R +0 g 2734 2095 M +0 6 V +-31 -6 R 62 0 V --62 5 R +-62 6 R 62 0 V -55 -88 R -0 2 V --31 -2 R +0 g 2820 2001 M +0 3 V +-31 -3 R 62 0 V --62 2 R +-62 3 R 62 0 V -55 -84 R -0 8 V --31 -8 R +0 g 2906 1906 M +0 6 V +-31 -6 R 62 0 V --62 8 R +-62 6 R 62 0 V -55 -76 R +0 g 2992 1821 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -50 R +0 g 3078 1738 M +0 6 V +-31 -6 R +62 0 V +-62 6 R +62 0 V +0 g 3164 1670 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -34 R -0 4 V --31 -4 R +0 g 3250 1625 M +0 3 V +-31 -3 R 62 0 V --62 4 R +-62 3 R 62 0 V -55 -15 R -0 989 V --31 -989 R +0 g 3336 1594 M +0 2 V +-31 -2 R 62 0 V --62 989 R +-62 2 R 62 0 V -55 -989 R +0 g 3508 1583 M 0 1 V -31 -1 R 62 0 V -62 1 R 62 0 V -55 0 R -0 1 V --31 -1 R +0 g 3594 1583 M +-31 0 R 62 0 V --62 1 R +-62 0 R 62 0 V -1343 2612 M -0 2 V --31 -2 R +0 g 3422 1582 M +0 3 V +-31 -3 R 62 0 V --62 2 R +-62 3 R 62 0 V -55 2 R +.1429 g 1343 2682 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -8 R -0 5 V --31 -5 R +.1429 g 1429 2682 M +0 6 V +-31 -6 R 62 0 V --62 5 R +-62 6 R 62 0 V -55 0 R -0 14 V --31 -14 R +.1429 g 1515 2683 M +0 4 V +-31 -4 R 62 0 V --62 14 R +-62 4 R 62 0 V -55 -20 R -0 5 V --31 -5 R +.1429 g 1601 2687 M +0 11 V +-31 -11 R 62 0 V --62 5 R +-62 11 R 62 0 V -55 -2 R +.1429 g 1687 2680 M +0 4 V +-31 -4 R +62 0 V +-62 4 R +62 0 V +.1429 g 1773 2683 M 0 2 V -stroke 1773 2616 M +stroke 1773 2685 M -31 -2 R 62 0 V -62 2 R 62 0 V -55 4 R +.1429 g 1859 2690 M 0 6 V -31 -6 R 62 0 V -62 6 R 62 0 V -55 -6 R +.1429 g 1945 2690 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -15 R +.1429 g 2031 2679 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -7 R +.1429 g 2117 2679 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -18 R -0 9 V --31 -9 R -62 0 V --62 9 R -62 0 V -55 -37 R +.1429 g 2203 2664 M 0 10 V -31 -10 R 62 0 V -62 10 R 62 0 V -55 -74 R +.1429 g 2289 2637 M +0 9 V +-31 -9 R +62 0 V +-62 9 R +62 0 V +.1429 g 2375 2573 M 0 6 V -31 -6 R 62 0 V -62 6 R 62 0 V -55 -107 R +.1429 g 2461 2472 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 -111 R -0 6 V --31 -6 R +.1429 g 2547 2363 M +0 4 V +-31 -4 R 62 0 V --62 6 R +-62 4 R 62 0 V -55 -100 R +.1429 g 2633 2266 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -99 R -0 12 V --31 -12 R +.1429 g 2719 2177 M +0 8 V +-31 -8 R 62 0 V --62 12 R +-62 8 R 62 0 V -55 -103 R +.1429 g 2805 2084 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -97 R -0 1 V --31 -1 R -62 0 V --62 1 R -62 0 V -55 -99 R -0 5 V --31 -5 R -62 0 V --62 5 R -62 0 V -55 -96 R +.1429 g 2891 1991 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 -95 R +.1429 g 2977 1894 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -92 R -0 9 V --31 -9 R +.1429 g 3063 1804 M +0 5 V +-31 -5 R 62 0 V -stroke 3266 1553 M --62 9 R +-62 5 R 62 0 V -55 -90 R +.1429 g 3149 1710 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -69 R -0 8 V --31 -8 R -62 0 V --62 8 R -62 0 V -55 -57 R -0 10 V --31 -10 R +.1429 g 3235 1623 M +0 6 V +-31 -6 R 62 0 V --62 10 R +stroke 3266 1623 M +-62 6 R 62 0 V -55 -38 R +.1429 g 3321 1543 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -11 R -0 1 V --31 -1 R +.1429 g 3407 1477 M +0 4 V +-31 -4 R 62 0 V --62 1 R +-62 4 R +62 0 V +.1429 g 3493 1429 M +0 7 V +-31 -7 R +62 0 V +-62 7 R 62 0 V -55 -7 R +.1429 g 3579 1400 M +0 6 V +-31 -6 R +62 0 V +-62 6 R +62 0 V +.1429 g 3665 1389 M +0 2 V +-31 -2 R +62 0 V +-62 2 R +62 0 V +.1429 g 3751 1384 M 0 1 V -31 -1 R 62 0 V -62 1 R 62 0 V -55 -2 R -0 7 V --31 -7 R +.1429 g 3837 1383 M +0 8 V +-31 -8 R 62 0 V --62 7 R +-62 8 R 62 0 V -1586 2608 M -0 14 V --31 -14 R +.4286 g 1586 2693 M +0 11 V +-31 -11 R 62 0 V --62 14 R +-62 11 R 62 0 V -55 -15 R -0 20 V --31 -20 R +.4286 g 1672 2692 M +0 16 V +-31 -16 R 62 0 V --62 20 R +-62 16 R 62 0 V -55 -22 R -0 5 V --31 -5 R +.4286 g 1758 2691 M +0 7 V +-31 -7 R 62 0 V --62 5 R +-62 7 R 62 0 V -55 3 R -0 6 V --31 -6 R +.4286 g 1844 2699 M +0 9 V +-31 -9 R 62 0 V --62 6 R +-62 9 R 62 0 V -55 -17 R -0 5 V --31 -5 R +.4286 g 1930 2688 M +0 9 V +-31 -9 R 62 0 V --62 5 R +-62 9 R 62 0 V -55 -6 R +.4286 g 2016 2686 M +0 7 V +-31 -7 R +62 0 V +-62 7 R +62 0 V +.4286 g 2102 2688 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 1 R -0 3 V --31 -3 R -62 0 V --62 3 R -62 0 V -55 -17 R +.4286 g 2188 2674 M 0 5 V -31 -5 R 62 0 V -62 5 R 62 0 V -55 -27 R +.4286 g 2274 2652 M 0 16 V -31 -16 R 62 0 V -62 16 R 62 0 V -55 -70 R +.4286 g 2360 2598 M 0 1 V -31 -1 R 62 0 V -62 1 R 62 0 V -stroke 2391 2515 M -55 -94 R +stroke 2391 2599 M +.4286 g 2446 2505 M 0 6 V -31 -6 R 62 0 V -62 6 R 62 0 V -55 -100 R -0 16 V --31 -16 R -62 0 V --62 16 R -62 0 V -55 -110 R -0 8 V --31 -8 R -62 0 V --62 8 R -62 0 V -55 -95 R +.4286 g 2532 2411 M 0 15 V -31 -15 R 62 0 V -62 15 R 62 0 V -55 -102 R -0 7 V --31 -7 R +.4286 g 2618 2316 M +0 9 V +-31 -9 R 62 0 V --62 7 R +-62 9 R 62 0 V -55 -92 R -0 12 V --31 -12 R +.4286 g 2704 2233 M +0 9 V +-31 -9 R 62 0 V --62 12 R +-62 9 R 62 0 V -55 -101 R -0 10 V --31 -10 R +.4286 g 2790 2145 M +0 5 V +-31 -5 R 62 0 V --62 10 R +-62 5 R 62 0 V -55 -94 R +.4286 g 2876 2060 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -101 R +.4286 g 2962 1971 M 0 5 V -31 -5 R 62 0 V -62 5 R 62 0 V -55 -96 R -0 6 V --31 -6 R +.4286 g 3048 1885 M +0 5 V +-31 -5 R 62 0 V --62 6 R +-62 5 R 62 0 V -55 -100 R -0 2 V --31 -2 R +.4286 g 3134 1791 M +0 3 V +-31 -3 R 62 0 V --62 2 R +-62 3 R 62 0 V -55 -92 R +.4286 g 3220 1698 M 0 6 V -31 -6 R 62 0 V -62 6 R 62 0 V -55 -92 R +.4286 g 3306 1607 M +-31 0 R +62 0 V +-62 0 R +62 0 V +.4286 g 3392 1519 M +0 10 V +-31 -10 R +62 0 V +-62 10 R +62 0 V +.4286 g 3478 1429 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 -85 R -0 3 V --31 -3 R +.4286 g 3564 1347 M +0 2 V +-31 -2 R 62 0 V --62 3 R +-62 2 R 62 0 V -55 -69 R +.4286 g 3650 1281 M -31 0 R 62 0 V -62 0 R 62 0 V -55 -49 R -0 27 V --31 -27 R +.4286 g 3736 1232 M +0 18 V +-31 -18 R 62 0 V --62 27 R +-62 18 R 62 0 V -55 -58 R +.4286 g 3822 1202 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -10 R -0 1423 V -3877 1110 M -62 0 V -stroke 3939 1110 M --62 1423 R -62 0 V -55 -1437 R +.4286 g 3994 1179 M 0 1 V -31 -1 R 62 0 V +stroke 4025 1179 M -62 1 R 62 0 V -55 1 R +.4286 g 4080 1182 M 0 13 V -31 -13 R 62 0 V -62 13 R 62 0 V -1828 2585 M -0 11 V --31 -11 R +.4286 g 3908 1193 M +-31 0 R 62 0 V --62 11 R +-62 0 R 62 0 V -55 -11 R +1 g 1828 2681 M 0 10 V -31 -10 R 62 0 V -62 10 R 62 0 V -55 -18 R -0 6 V --31 -6 R +1 g 1914 2682 M +0 11 V +-31 -11 R 62 0 V --62 6 R +-62 11 R +62 0 V +1 g 2000 2675 M +0 5 V +-31 -5 R 62 0 V -55 -6 R +-62 5 R +62 0 V +1 g 2086 2675 M 0 8 V -31 -8 R 62 0 V -62 8 R 62 0 V -55 -11 R +1 g 2172 2671 M 0 6 V -31 -6 R 62 0 V -62 6 R 62 0 V -55 -27 R +1 g 2258 2650 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -56 R -0 1 V --31 -1 R +1 g 2344 2598 M +-31 0 R 62 0 V --62 1 R +-62 0 R 62 0 V -55 -88 R +1 g 2430 2510 M 0 10 V -31 -10 R 62 0 V -62 10 R 62 0 V -55 -97 R +1 g 2516 2424 M 0 2 V -31 -2 R 62 0 V -62 2 R 62 0 V -55 -82 R -0 2 V --31 -2 R -62 0 V --62 2 R -62 0 V -55 -86 R -0 12 V --31 -12 R -62 0 V --62 12 R -62 0 V -55 -81 R --31 0 R -62 0 V --62 0 R -62 0 V -55 -83 R -0 9 V --31 -9 R +1 g 2602 2340 M +0 5 V +-31 -5 R 62 0 V --62 9 R +-62 5 R 62 0 V -55 -90 R +1 g 2688 2261 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -87 R -0 6 V --31 -6 R -62 0 V --62 6 R -62 0 V -55 -99 R -0 9 V -stroke 3118 1765 M --31 -9 R -62 0 V --62 9 R -62 0 V -55 -89 R -0 10 V --31 -10 R +1 g 2774 2188 M +0 3 V +-31 -3 R 62 0 V --62 10 R +-62 3 R 62 0 V -55 -99 R -0 4 V --31 -4 R +1 g 2860 2109 M +0 5 V +-31 -5 R 62 0 V --62 4 R +-62 5 R 62 0 V -55 -97 R -0 4 V --31 -4 R +1 g 2946 2026 M +0 5 V +-31 -5 R 62 0 V --62 4 R +-62 5 R 62 0 V -55 -94 R +1 g 3032 1949 M 0 3 V -31 -3 R 62 0 V -62 3 R 62 0 V -55 -98 R -0 2 V --31 -2 R -62 0 V --62 2 R -62 0 V -55 -87 R --31 0 R +1 g 3118 1857 M +0 5 V +stroke 3118 1862 M +-31 -5 R 62 0 V --62 0 R +-62 5 R 62 0 V -55 -87 R --31 0 R +1 g 3204 1776 M +0 6 V +-31 -6 R 62 0 V --62 0 R +-62 6 R 62 0 V -55 -81 R --31 0 R +1 g 3290 1684 M +0 3 V +-31 -3 R 62 0 V --62 0 R +-62 3 R 62 0 V -55 -68 R -0 8 V --31 -8 R +1 g 3376 1593 M +0 7 V +-31 -7 R 62 0 V --62 8 R +-62 7 R 62 0 V -55 -55 R --31 0 R +1 g 3462 1503 M +0 5 V +-31 -5 R 62 0 V --62 0 R +-62 5 R 62 0 V -55 72 R --31 0 R +1 g 3548 1408 M +0 5 V +-31 -5 R 62 0 V --62 0 R +-62 5 R 62 0 V -55 -119 R --31 0 R +1 g 3634 1320 M +0 1 V +-31 -1 R 62 0 V --62 0 R +-62 1 R 62 0 V -55 -47 R --31 0 R +1 g 3720 1235 M +0 1 V +-31 -1 R 62 0 V --62 0 R +-62 1 R 62 0 V -55 21 R --31 0 R +1 g 3806 1154 M +0 2 V +-31 -2 R 62 0 V --62 0 R +-62 2 R 62 0 V -2071 2557 M +1 g 3892 1086 M 0 7 V -31 -7 R 62 0 V -62 7 R 62 0 V -55 -45 R -0 5 V --31 -5 R +1 g 3978 1038 M +0 1 V +-31 -1 R 62 0 V --62 5 R +-62 1 R 62 0 V -55 -10 R +1 g 4150 992 M 0 4 V -31 -4 R 62 0 V -62 4 R 62 0 V -55 -43 R --31 0 R +1 g 4236 944 M +0 4 V +-31 -4 R 62 0 V --62 0 R +-62 4 R 62 0 V -141 -156 R +1 g 4322 945 M +0 21 V +-31 -21 R +62 0 V +-62 21 R +62 0 V +1 g 4064 1015 M -31 0 R 62 0 V -stroke 2532 2319 M -62 0 R 62 0 V -1100 2591 Pnt -1186 2593 Pnt -1272 2591 Pnt -1358 2602 Pnt -1444 2595 Pnt -1530 2593 Pnt -1616 2593 Pnt -1702 2595 Pnt -1788 2590 Pnt -1874 2587 Pnt -1960 2589 Pnt -2046 2595 Pnt -2132 2594 Pnt -2218 2580 Pnt -2304 2549 Pnt -2390 2470 Pnt -2476 2365 Pnt -2562 2250 Pnt -2648 2140 Pnt -2734 2040 Pnt -2820 1945 Pnt -2906 1850 Pnt -2992 1766 Pnt -3078 1687 Pnt -3164 1617 Pnt -3250 1570 Pnt -3336 1539 Pnt -3422 2137 Pnt -3508 1527 Pnt -3594 1527 Pnt -1343 2613 Pnt -1429 2618 Pnt -1515 2614 Pnt -1601 2624 Pnt -1687 2614 Pnt -1773 2615 Pnt -1859 2623 Pnt -1945 2622 Pnt -2031 2613 Pnt -2117 2611 Pnt -2203 2600 Pnt -2289 2572 Pnt -2375 2506 Pnt -2461 2403 Pnt -2547 2296 Pnt -2633 2202 Pnt -2719 2113 Pnt -2805 2018 Pnt -2891 1924 Pnt -2977 1828 Pnt -3063 1735 Pnt -3149 1643 Pnt -3235 1557 Pnt -3321 1474 Pnt -3407 1410 Pnt -3493 1362 Pnt -3579 1331 Pnt -3665 1322 Pnt -3751 1315 Pnt -3837 1318 Pnt -1586 2615 Pnt -1672 2617 Pnt -1758 2608 Pnt -1844 2616 Pnt -1930 2605 Pnt -2016 2602 Pnt -2102 2605 Pnt -2188 2593 Pnt -2274 2576 Pnt -2360 2515 Pnt -2446 2424 Pnt -2532 2335 Pnt -2618 2237 Pnt -2704 2154 Pnt -2790 2063 Pnt -2876 1980 Pnt -2962 1890 Pnt -3048 1804 Pnt -3134 1709 Pnt -3220 1619 Pnt -3306 1523 Pnt -3392 1435 Pnt -3478 1347 Pnt -3564 1264 Pnt -3650 1197 Pnt -3736 1162 Pnt -3822 1118 Pnt -3908 2054 Pnt -3994 1096 Pnt -4080 1105 Pnt -1828 2591 Pnt -1914 2590 Pnt -2000 2580 Pnt -2086 2581 Pnt -2172 2577 Pnt -2258 2554 Pnt -2344 2501 Pnt -2430 2418 Pnt -2516 2327 Pnt -2602 2247 Pnt -2688 2168 Pnt -2774 2093 Pnt -2860 2015 Pnt -2946 1933 Pnt -3032 1852 Pnt -3118 1761 Pnt -3204 1681 Pnt -3290 1589 Pnt -3376 1496 Pnt -3462 1406 Pnt -3548 1310 Pnt -3634 1224 Pnt -3720 1137 Pnt -3806 1056 Pnt -3892 992 Pnt -3978 941 Pnt -4064 1013 Pnt -4150 894 Pnt -4236 847 Pnt -4322 868 Pnt -2071 2560 Pnt -2157 2522 Pnt -2243 2516 Pnt -2329 2475 Pnt -2501 2319 Pnt +0 g 1100 2645 Pnt +0 g 1186 2649 Pnt +0 g 1272 2646 Pnt +0 g 1358 2656 Pnt +0 g 1444 2651 Pnt +0 g 1530 2649 Pnt +0 g 1616 2649 Pnt +0 g 1702 2651 Pnt +0 g 1788 2646 Pnt +0 g 1874 2642 Pnt +0 g 1960 2644 Pnt +0 g 2046 2651 Pnt +0 g 2132 2649 Pnt +0 g 2218 2635 Pnt +0 g 2304 2605 Pnt +0 g 2390 2527 Pnt +0 g 2476 2420 Pnt +0 g 2562 2305 Pnt +0 g 2648 2196 Pnt +0 g 2734 2098 Pnt +0 g 2820 2002 Pnt +0 g 2906 1909 Pnt +0 g 2992 1823 Pnt +0 g 3078 1741 Pnt +0 g 3164 1672 Pnt +0 g 3250 1626 Pnt +0 g 3336 1595 Pnt +0 g 3508 1583 Pnt +0 g 3594 1583 Pnt +0 g 3422 1584 Pnt +.1429 g 1343 2684 Pnt +.1429 g 1429 2685 Pnt +.1429 g 1515 2685 Pnt +.1429 g 1601 2692 Pnt +.1429 g 1687 2682 Pnt +.1429 g 1773 2684 Pnt +.1429 g 1859 2693 Pnt +.1429 g 1945 2692 Pnt +.1429 g 2031 2682 Pnt +.1429 g 2117 2681 Pnt +.1429 g 2203 2669 Pnt +.1429 g 2289 2642 Pnt +.1429 g 2375 2576 Pnt +.1429 g 2461 2473 Pnt +.1429 g 2547 2365 Pnt +.1429 g 2633 2269 Pnt +.1429 g 2719 2181 Pnt +.1429 g 2805 2086 Pnt +.1429 g 2891 1992 Pnt +.1429 g 2977 1896 Pnt +.1429 g 3063 1807 Pnt +.1429 g 3149 1711 Pnt +.1429 g 3235 1626 Pnt +.1429 g 3321 1545 Pnt +.1429 g 3407 1479 Pnt +.1429 g 3493 1432 Pnt +.1429 g 3579 1403 Pnt +.1429 g 3665 1390 Pnt +.1429 g 3751 1384 Pnt +.1429 g 3837 1387 Pnt +.4286 g 1586 2698 Pnt +.4286 g 1672 2700 Pnt +.4286 g 1758 2694 Pnt +.4286 g 1844 2703 Pnt +.4286 g 1930 2693 Pnt +.4286 g 2016 2689 Pnt +.4286 g 2102 2689 Pnt +.4286 g 2188 2677 Pnt +.4286 g 2274 2660 Pnt +.4286 g 2360 2598 Pnt +.4286 g 2446 2508 Pnt +.4286 g 2532 2419 Pnt +.4286 g 2618 2320 Pnt +.4286 g 2704 2238 Pnt +.4286 g 2790 2148 Pnt +.4286 g 2876 2064 Pnt +.4286 g 2962 1973 Pnt +.4286 g 3048 1887 Pnt +.4286 g 3134 1792 Pnt +.4286 g 3220 1701 Pnt +.4286 g 3306 1607 Pnt +.4286 g 3392 1524 Pnt +.4286 g 3478 1430 Pnt +.4286 g 3564 1348 Pnt +.4286 g 3650 1281 Pnt +.4286 g 3736 1241 Pnt +.4286 g 3822 1203 Pnt +.4286 g 3994 1180 Pnt +.4286 g 4080 1189 Pnt +.4286 g 3908 1193 Pnt +1 g 1828 2686 Pnt +1 g 1914 2688 Pnt +1 g 2000 2678 Pnt +1 g 2086 2679 Pnt +1 g 2172 2674 Pnt +1 g 2258 2652 Pnt +1 g 2344 2598 Pnt +1 g 2430 2515 Pnt +1 g 2516 2425 Pnt +1 g 2602 2342 Pnt +1 g 2688 2265 Pnt +1 g 2774 2189 Pnt +1 g 2860 2112 Pnt +1 g 2946 2028 Pnt +1 g 3032 1950 Pnt +1 g 3118 1859 Pnt +1 g 3204 1779 Pnt +1 g 3290 1685 Pnt +1 g 3376 1597 Pnt +1 g 3462 1506 Pnt +1 g 3548 1410 Pnt +1 g 3634 1321 Pnt +1 g 3720 1235 Pnt +1 g 3806 1155 Pnt +1 g 3892 1089 Pnt +1 g 3978 1039 Pnt +1 g 4150 994 Pnt +1 g 4236 946 Pnt +1 g 4322 955 Pnt +1 g 4064 1015 Pnt 1.000 UL LTb -0.00 0.62 0.45 C 2041 2837 M -15 -12 V -37 -30 V -37 -30 V -38 -31 V -37 -30 V +LCb setrgbcolor +2185 2837 M +20 -17 V 37 -30 V 38 -30 V 37 -30 V @@ -1786,13 +1817,13 @@ LTb 38 -30 V 37 -30 V 38 -30 V -37 -30 V +37 -31 V 37 -30 V 38 -30 V 37 -30 V 37 -30 V 38 -30 V -37 -31 V +37 -30 V 37 -30 V 38 -30 V 37 -30 V @@ -1809,12 +1840,12 @@ LTb 37 -30 V 38 -30 V 37 -30 V -37 -30 V +37 -31 V 38 -30 V 37 -30 V 37 -30 V 38 -30 V -37 -31 V +37 -30 V 37 -30 V 38 -30 V 37 -30 V @@ -1832,7 +1863,7 @@ LTb 38 -30 V 37 -30 V 37 -30 V -38 -30 V +38 -31 V 37 -30 V stroke 2.000 UL @@ -1851,6 +1882,7 @@ Z stroke 1.000 UL LTb LCb setrgbcolor +grestore % colour palette end stroke grestore end @@ -1872,6 +1904,11 @@ showpage \put(1849,440){\makebox(0,0){\strut{}$10^{-1}$}}% \put(1419,440){\makebox(0,0){\strut{}$10^{-2}$}}% \put(989,440){\makebox(0,0){\strut{}$10^{-3}$}}% + \put(740,2548){\makebox(0,0)[r]{\strut{}$0.6$}}% + \put(740,2364){\makebox(0,0)[r]{\strut{}$0.5$}}% + \put(740,2140){\makebox(0,0)[r]{\strut{}$0.4$}}% + \put(740,1851){\makebox(0,0)[r]{\strut{}$0.3$}}% + \put(740,1443){\makebox(0,0)[r]{\strut{}$0.2$}}% \put(740,746){\makebox(0,0)[r]{\strut{}$0.1$}}% \end{picture}% \endgroup diff --git a/figs/fig_correlation_collapse-hL.gplot b/figs/fig_correlation_collapse-hL.gplot index 23b2b52..d028dbc 100644 --- a/figs/fig_correlation_collapse-hL.gplot +++ b/figs/fig_correlation_collapse-hL.gplot @@ -6,6 +6,8 @@ cc2 = "#e19c24" cc3 = "#8fb032" cc4 = "#eb6235" +set palette model RGB defined ( 16 cc1, 32 cc2, 64 cc3, 128 cc4 ) + data = "figs/fig_correlation_data_collapse-hL.dat" set logscale xy @@ -15,8 +17,8 @@ set xlabel '$hL^{-\beta\delta/\nu}$' set format x '$10^{%T}$' set yrange [0.09:0.8] set nokey -#set ytics -set mytics 10 +set ytics 0.1,0.1,0.6 +unset colorbox -plot data using 2:3:4 with yerrorbars pt 0, 10**(-0.18) * x**(-0.28 * 8 / 15) +plot data using 2:3:4:1 with yerrorbars pt 0 lw 2 palette, 10**(-0.13) * x**(-0.28 * 8 / 15) lc black diff --git a/figs/fig_correlation_data_collapse-hL.dat b/figs/fig_correlation_data_collapse-hL.dat index fd6cc85..86be2b5 100644 --- a/figs/fig_correlation_data_collapse-hL.dat +++ b/figs/fig_correlation_data_collapse-hL.dat @@ -1,129 +1,124 @@ -16 0.0018101933598271736 0.626255517869335 0.0015895449562703824 -16 0.002868963133021767 0.6274426596089346 0.0010815825372510028 -16 0.0045470001390226075 0.6265166979544707 0.0011399251629057028 -16 0.007206509566373511 0.6332307286578386 0.0036112037029091327 -16 0.011421547953193441 0.6289626499189429 0.0016353159378816513 -16 0.01810193359835151 0.6278965607859847 0.00143230405842471 -16 0.02868963133045699 0.627517213687778 0.001956578932144088 -16 0.045470001389827215 0.6289445952862893 0.0024173076505423514 -16 0.07206509566397443 0.6260425063421069 0.0008034739775926134 -16 0.11421547953185465 0.6237421796612088 0.0017825220666681703 -16 0.18101933598375441 0.6249662571123294 0.0013484400148596823 -16 0.2868963133044901 0.6287962142376368 0.0015874742546196424 -16 0.4547000138984317 0.6281007044870663 0.0028411030243642487 -16 0.7206509566396645 0.6194074806843178 0.002284206653081905 -16 1.1421547953187856 0.6006184183821923 0.00019717506651543908 -16 1.8101933598375441 0.5560556703286 0.0008809927003800477 -16 2.868963133044901 0.49975831305436635 0.0020974832802797415 -16 4.547000138984715 0.4458926608677604 0.000759995273434837 -16 7.2065095663966465 0.4001151038499891 0.000241518371632569 -16 11.421547953187858 0.3628701196069377 0.0010786441447148951 -16 18.101933598375602 0.329982708286965 0.0005326500882052419 -16 28.68963133044861 0.3007015251562208 0.0009132142233643782 -16 45.470001389847155 0.27599567606359066 0.00032182506521583575 -16 72.06509566396613 0.2543855219698998 0.0007522038428913224 -16 114.21547953187881 0.23751514034651802 0.0002855512890815055 -16 181.01933598375615 0.22708888224187773 0.0002959735411563314 -16 286.89631330448634 0.2200196611705308 0.00037113377826057664 -16 454.70001389847135 0.39891341844240713 0.18170524445924247 -16 720.6509566396612 0.21741361507934745 0.00010145294308730456 -16 1142.1547953187885 0.2174821412966878 0.00009201016846303867 -16 1810.1933598375617 88.83811721965345 0. -32 0.0066398185197750655 0.6400085306799054 0.000648530309486853 -32 0.010523403171144407 0.6436179005803981 0.0013326807892577123 -32 0.01667847004774373 0.6409347510373526 0.0016076592854009357 -32 0.026433593639030604 0.6473403068803992 0.004284489335248645 -32 0.04189442261093769 0.6406477123901253 0.0015080584489870269 -32 0.06639818519804326 0.6414285653211358 0.0007798485976736309 -32 0.10523403171232187 0.6468326873289383 0.0020236715182289965 -32 0.16678470047597427 0.6460058349943718 0.0014101466656996503 -32 0.26433593639118386 0.640000809632196 0.0022412151400448524 -32 0.41894422610908433 0.6390515038045649 0.001112874879537014 -32 0.6639818519813104 0.631723360445057 0.0031156699977813855 -32 1.0523403171229262 0.6146304699498576 0.0029411128080925717 -32 1.667847004760328 0.5757182738289438 0.0017891042515727899 -32 2.643359363911546 0.519746074483992 0.00044408860844279895 -32 4.18944226109172 0.46667585126308353 0.0008605999879874023 -32 6.639818519813105 0.42446433865471184 0.0014640965425802752 -32 10.523403171229258 0.38868706435096145 0.0016064949722340582 -32 16.678470047604744 0.35368632421805146 0.0007035757382228955 -32 26.433593639115465 0.3222911790877719 0.0003205225548984619 -32 41.8944226109172 0.292848933548775 0.0005916697628071 -32 66.39818519813163 0.26788829254081953 0.0005961186646367341 -32 105.23403171229113 0.24369169553416772 0.00036838701241900546 -32 166.78470047604742 0.22389083902190107 0.000595404944929348 -32 264.33593639115344 0.20646837308888066 0.00030692640878987555 -32 418.9442261091729 0.19341427336960249 0.00047635706738658406 -32 663.9818519813168 0.18465992621572822 0.0005738824688994034 -32 1052.3403171229122 0.1788427351021588 0.0001922835239056425 -32 1667.8470047604735 0.17724655446618287 0.00014040830435756158 -32 2643.359363911534 0.17612308355378462 0.00008859092338167617 -32 4189.442261091731 0.17655192401009612 0.0006750022202556688 -32 6639.81851981317 72.15897359943968 0. -64 0.02435496171511596 0.6416497236221672 0.004415812316866903 -64 0.03860001302484912 0.6430202624100072 0.006498355499086566 -64 0.06117689787299603 0.6368426867960848 0.0013999904703745367 -64 0.09695884897368137 0.6420887985784502 0.001761638413653611 -64 0.15366941968782025 0.634909996766338 0.0018058781403651064 -64 0.24354961715223292 0.6333409986919425 0.0005999253923192143 -64 0.386000130251711 0.6354368819409005 0.0007119088221387361 -64 0.6117689787245939 0.6276153443362007 0.0015685140020137 -64 0.9695884897400335 0.6170829420440146 0.004894625296141545 -64 1.5366941968771293 0.5806135860300775 0.00014003920518055978 -64 2.435496171525549 0.5305996387485918 0.0014959230318421645 -64 3.8600013025160367 0.48557922109035934 0.0036751832028803612 -64 6.117689787248085 0.44044962601219084 0.0018857447024898469 -64 9.695884897399262 0.40563766234685533 0.0017443009479081834 -64 15.36694196877451 0.37085340478832524 0.0008264475310672823 -64 24.35496171525549 0.34124393616706267 0.001160472008568937 -64 38.60001302516036 0.3119031918247171 0.0008771324303633754 -64 61.176897872486215 0.28632943948682943 0.0006111537928509062 -64 96.95884897399264 0.2605250393511181 0.0004162530813228257 -64 153.6694196877451 0.23782958962548653 0.0006836138581365798 -64 243.54961715255703 0.21664193300132426 0.00009241494241417804 -64 386.00013025159825 0.19947059323368097 0.0010628037920008965 -64 611.7689787248622 0.1817052030857358 0.00017352167889887098 -64 969.588489739922 0.1674466007578578 0.0001458419778916332 -64 1536.6941968774543 0.15661382019143888 0.00003036340001161581 -64 2435.496171525572 0.15118568965616075 0.001975073557340154 -64 3860.001302515986 0.1448337200806049 0.0002595070942839617 -64 6117.68978724862 0.367371300110232 0.22380440827218762 -64 9695.884897399217 0.1416487352379458 0.00006423603628032125 -64 15366.941968774547 0.1428925376223586 0.0009067903513409746 -64 24354.961715255726 58.611299224751214 0. -128 0.08933439345942525 0.626198379636833 0.00353353449806102 -128 0.14158547204615846 0.6257735020792675 0.003254757392186427 -128 0.22439785080102645 0.6195811546150868 0.0017965091031772369 -128 0.35564662613334763 0.6203690214044437 0.0024523406673297187 -128 0.5636619166825867 0.617590197409327 0.0018540955147938849 -128 0.8933439345981894 0.6040006615193086 0.0009031088176922526 -128 1.415854720473395 0.5725642835937848 0.00014026941966266887 -128 2.2439785079905805 0.5272959382383 0.0025756573485712577 -128 3.5564662613452867 0.48174955931471536 0.0005001598678584231 -128 5.636619166821931 0.4438388073898844 0.0010941944918729596 -128 8.933439345993705 0.41092720925776854 0.0014705174828234917 -128 14.158547204730013 0.38121192764431805 0.0005704498509406503 -128 22.439785079913676 0.3529764733474239 0.0009370960123763205 -128 35.56466261344893 0.32488640337259517 0.0008958005595521174 -128 56.36619166823111 0.3006193023569792 0.0005170521397121607 -128 89.33439345993705 0.27456708026595844 0.0007031405468330241 -128 141.5854720473001 0.2536271681032865 0.0007687104661479951 -128 224.39785079915646 0.23100431012855005 0.000411473815548584 -128 355.6466261344894 0.21147268527569854 0.00073694933024878 -128 563.6619166823111 0.1931657687811568 0.0004415729247632602 -128 893.3439345993783 0.17567152403394282 0.00042295512764053896 -128 1415.8547204729814 0.16083831181683386 0.000038393852729745597 -128 2243.9785079915646 0.14755136241680297 0.000010427848840532938 -128 3556.4662613448777 0.13613167291690653 0.00003824559764080415 -128 5636.619166823122 0.12770211002072657 0.000480391007107131 -128 8933.43934599379 0.12140474759127326 0.000021786704140921986 -128 14158.547204729826 0.12450333905336947 0.005905638597011847 -128 22439.785079915637 0.11616358912822208 0.0002594816312796177 -128 35564.66261344877 0.11074819112465964 0.00021474792182268887 -128 56366.191668231244 0.11173511904556105 0.0011720468734908519 -128 89334.39345993791 43.80504345251086 1.432610304309456 -256 0.32767999999811953 0.6075086695911571 0.002178147172579081 -256 0.519337801301477 0.5847006386014801 0.0013928429465341339 -256 0.8230949458839193 0.5812979760560055 0.0009786732427118916 -256 1.3045175764655195 0.558369942231818 0. -256 3.276799999995636 0.4777871723067447 0.
\ No newline at end of file +16 0.0018101933598271736 0.6611970393005071 0.0015103234475092925 +16 0.002868963133021767 0.6634696666235977 0.0009205680580954026 +16 0.0045470001390226075 0.6617006384380602 0.0010776928960596589 +16 0.007206509566373511 0.6679171034068714 0.0032796823066760846 +16 0.011421547953193441 0.6649072177789311 0.0013414656551956577 +16 0.01810193359835151 0.6632557049167371 0.0012533489178803002 +16 0.02868963133045699 0.6632970156307922 0.002068139229058607 +16 0.045470001389827215 0.664805783731184 0.0025551377962103063 +16 0.07206509566397443 0.6617382233618693 0.0008492864894370077 +16 0.11421547953185465 0.6593067365609754 0.0018841579821669704 +16 0.18101933598375441 0.6606006085098545 0.0014253254223215584 +16 0.2868963133044901 0.6646489422858807 0.0016779889260596606 +16 0.4547000138984317 0.6639137759321414 0.003003097151846489 +16 0.7206509566396645 0.6547248815419987 0.0024144476406778924 +16 1.1421547953187856 0.6348645037234202 0.00020841760245570337 +16 1.8101933598375441 0.5877608750937817 0.0009312251779045681 +16 2.868963133044901 0.5282535528189872 0.0022170776670315633 +16 4.547000138984715 0.4713165866911402 0.000803328714761994 +16 7.2065095663966465 0.4229288830705287 0.00025528927594264646 +16 11.421547953187858 0.383560262805199 0.0011401463203095338 +16 18.101933598375602 0.3487976757326254 0.0005630207525395502 +16 28.68963133044861 0.31784693691444715 0.0009652839089933857 +16 45.470001389847155 0.29173240871615014 0.0003401748998380021 +16 72.06509566396613 0.2688900859798074 0.0007950930321157093 +16 114.21547953187881 0.2510577882527378 0.00030183286406470686 +16 181.01933598375615 0.24003704534058365 0.00031284937253108164 +16 286.89631330448634 0.23254448389460727 0.00022739666365125484 +16 720.6509566396612 0.2299747249327945 0.0001758699980359644 +16 1142.1547953187885 0.22988254685051818 0.00009725640798054212 +16 1810.1933598375617 93.90349259068033 0. +16 454.70001389847135 0.2299993523362849 0.00040639387868482424 +32 0.0066398185197750655 0.6871944707664751 0.0013613079247325713 +32 0.010523403171144407 0.6878093363746596 0.0022884684176928557 +32 0.01667847004774373 0.6877997094162 0.0015892914472573152 +32 0.026433593639030604 0.6927515784607152 0.0037088563375206164 +32 0.04189442261093769 0.6860196362938178 0.001392493537139951 +32 0.06639818519804326 0.6870158941273489 0.0007885787175338165 +32 0.10523403171232187 0.6932581089801916 0.002168917430128376 +32 0.16678470047597427 0.692371910590567 0.0015113577745809298 +32 0.26433593639118386 0.6859358837655295 0.0024020749109345957 +32 0.41894422610908433 0.6849184429716435 0.001192749763011029 +32 0.6639818519813104 0.6770643333892613 0.0033392924216426004 +32 1.0523403171229262 0.6587446269584678 0.0031522066580392098 +32 1.667847004760328 0.6170395677870647 0.001917514458546557 +32 2.643359363911546 0.5570500498893541 0.0004759623855436879 +32 4.18944226109172 0.5001707929903071 0.0009223682289839299 +32 6.639818519813105 0.45492961396313825 0.0015691798209286833 +32 10.523403171229258 0.41658448080249694 0.0017217986789384544 +32 16.678470047604744 0.379071616358915 0.0007540738051116909 +32 26.433593639115465 0.3454231329558058 0.0003435275684844937 +32 41.8944226109172 0.3138677155096314 0.0006341359503617745 +32 66.39818519813163 0.28711556286940954 0.0006389041652802224 +32 105.23403171229113 0.2611822923139951 0.00039482742385371747 +32 166.78470047604742 0.23996025976865867 0.0006381392194381642 +32 264.33593639115344 0.2212873231297048 0.0003289555798925523 +32 418.9442261091729 0.20729628547327997 0.000510546863516544 +32 663.9818519813168 0.1979136085119274 0.0006150720007811832 +32 1052.3403171229122 0.19218977101693047 0.0005245462087703137 +32 1667.8470047604735 0.1898075423282324 0.0001826049983986278 +32 2643.359363911534 0.18864722933564856 0.00012904076099896935 +32 4189.442261091731 0.18922366691374523 0.000723449466823095 +32 6639.81851981317 77.33807298773642 0. +64 0.02435496171511596 0.6969112710277898 0.0037377448764309034 +64 0.03860001302484912 0.698114267363807 0.005512083648382814 +64 0.06117689787299603 0.694195941917972 0.0024227335419995844 +64 0.09695884897368137 0.7005014334392295 0.0030989833860445375 +64 0.15366941968782025 0.6929837951424528 0.003367595022912818 +64 0.24354961715223292 0.6907348047620746 0.002512340593722767 +64 0.386000130251711 0.6905514125400314 0.0007736561359580295 +64 0.6117689787245939 0.6820514749464457 0.0017045588483485662 +64 0.9695884897400335 0.6706055461893775 0.005319159948318982 +64 1.5366941968771293 0.6309730255951579 0.00015218548639016167 +64 2.435496171525549 0.576621125471827 0.001625671710358602 +64 3.8600013025160367 0.5276958680771421 0.003993949712740269 +64 6.117689787248085 0.47865196377401187 0.002049304510019545 +64 9.695884897399262 0.4408205892259014 0.0018955926508290686 +64 15.36694196877451 0.40301932386996125 0.0008981293440594087 +64 24.35496171525549 0.37084168205836376 0.0012611253886975118 +64 38.60001302516036 0.3389560722890726 0.0009532103911280976 +64 61.176897872486215 0.31116418405788276 0.0006641621330561031 +64 96.95884897399264 0.2831216428238332 0.0004523567351074126 +64 153.6694196877451 0.2584577063862819 0.0007429070121429671 +64 243.54961715255703 0.23543234127757354 0.0001004305397398313 +64 386.00013025159825 0.2167716477157955 0.0011549859327922732 +64 611.7689787248622 0.19746537889564653 0.0001885720578634482 +64 969.588489739922 0.18197005865504634 0.00015849156179458844 +64 1536.6941968774543 0.1701976983554241 0.00003299696533743986 +64 2435.496171525572 0.16360308228951884 0.0014211326087906699 +64 3860.001302515986 0.15759520138262154 0.00025739215530658563 +64 9695.884897399217 0.153934618815799 0.00006980754005631028 +64 15366.941968774547 0.15528630222903345 0.0009854406878044978 +64 24354.961715255726 63.69494220548366 0. +64 6117.68978724862 0.15601914646491058 0. +128 0.08933439345942525 0.6883456594031327 0.0034453133209338656 +128 0.14158547204615846 0.6895430233211677 0.0035864338213874346 +128 0.22439785080102645 0.6827196439711013 0.0019795825715099137 +128 0.35564662613334763 0.6835877984169231 0.0027022467272028497 +128 0.5636619166825867 0.680525798040583 0.002043037333075269 +128 0.8933439345981894 0.6655514189209831 0.0009951402264083773 +128 1.415854720473395 0.6309115132602179 0.00015456359112731867 +128 2.2439785079905805 0.58103009192574 0.0028381300091358513 +128 3.5564662613452867 0.5308423039801874 0.0005511287171493567 +128 5.636619166821931 0.48906825248748714 0.001205698508358806 +128 8.933439345993705 0.4528027941340336 0.001620370737309195 +128 14.158547204730013 0.42005937330445825 0.0006285816091025447 +128 22.439785079913676 0.3889465817656104 0.0010325908901050312 +128 35.56466261344893 0.35799398995501464 0.0009870872193756114 +128 56.36619166823111 0.331253947198413 0.0005697423979237903 +128 89.33439345993705 0.30254687039636347 0.0007747941657355819 +128 141.5854720473001 0.27947307405830846 0.0008470459952763852 +128 224.39785079915646 0.2545448311201964 0.0004534051024022562 +128 355.6466261344894 0.23302283377345653 0.0008120482371429769 +128 563.6619166823111 0.2128503488321951 0.00048657146482923087 +128 893.3439345993783 0.19357335104684248 0.000466056418933351 +128 1415.8547204729814 0.17710598074759085 0.00012498777857561315 +128 2243.9785079915646 0.16265477239499285 0.00006749809760872808 +128 3556.4662613448777 0.15020782043585693 0.0002050820832853445 +128 5636.619166823122 0.14071560834007635 0.0005293453083524551 +128 8933.43934599379 0.13377651246253258 0.00002400688075097912 +128 22439.785079915637 0.12800125313897653 0.0002859241369830151 +128 35564.66261344877 0.12203399837434308 0.00023663183368029248 +128 56366.191668231244 0.12312149929938582 0.0012914844459467542 +128 89334.39345993791 48.26900148151893 1.578600623376136 +128 14158.547204729826 0.13068341286406226 0.
\ No newline at end of file diff --git a/monte-carlo.bib b/monte-carlo.bib index d527915..a336036 100644 --- a/monte-carlo.bib +++ b/monte-carlo.bib @@ -65,6 +65,15 @@ publisher={IOP Publishing} } +@article{geyer1992practical, + title={Practical markov chain monte carlo}, + author={Geyer, Charles J}, + journal={Statistical science}, + pages={473--483}, + year={1992}, + publisher={JSTOR} +} + @article{hastings1970monte, title={Monte Carlo sampling methods using Markov chains and their applications}, author={Hastings, W Keith}, diff --git a/monte-carlo.tex b/monte-carlo.tex index 2490b31..283b609 100644 --- a/monte-carlo.tex +++ b/monte-carlo.tex @@ -82,7 +82,7 @@ \begin{document} -\title{Efficiently sampling Ising states in an external field} +\title{An efficient Wolff algorithm in an external magnetic field} \author{Jaron Kent-Dobias} \author{James P.~Sethna} \affiliation{Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA} @@ -93,44 +93,56 @@ We introduce an extension of the Wolff algorithm that preforms efficiently in an external magnetic field. Near the Ising critical point, the correlation time of our algorithm has a conventional scaling form that - reduces to that of the Wolff algorithm at zero field. As an application, we + reduces to that of the Wolff algorithm at zero field and becomes more efficient + at any nonzero field. As an application, we directly measure scaling functions of observables in the metastable state of the 2D Ising model. \end{abstract} \maketitle -The Ising model is a simple model of a magnet comprised of locally interacting -spins. Like most large thermal systems, computation of its properties cannot -be carried out explicitly and is preformed using Monte Carlo methods. Near its -continuous phase transition, divergent correlation length leads to divergent -correlation time in any locally-updating algorithm, hampering computation. -At zero external field, this was largely alleviated by cluster algorithms, -like the Wolff algorithm, whose dynamics are nonlocal and each step flips -groups of spins whose size diverges with the correlation length. However, the -Wolff algorithm only works at zero field. We describe an extension of this -algorithm that works in arbitrary external field while preserving the Wolff -algorithm's small dynamic exponent. +The Ising model is a simple model of a magnet comprised of discrete locally +interacting one-component spins. Like most systems in statistical mechanics, +calculation of its ensemble properties cannot be done explicitly and is often +performed using Monte Carlo methods. Near its continuous phase transition, +divergent correlation length leads to divergent correlation time in any +locally-updating algorithm, hampering computation. With no external field, +this critical slowing-down is largely alleviated by cluster algorithms---the +most efficient of which is the Wolff algorithm---whose dynamics are nonlocal +since each step flips a cluster of spins whose average size diverges with the +correlation length. While less efficient cluster algorithms, like +Swendsen--Wang, have been modified to perform in nonzero field, Wolff +only works at zero field. We describe an extension of the Wolff +algorithm that works in arbitrary external field while preserving Wolff's efficiency throughout the entire temperature--field parameter +space. The Wolff algorithm works by first choosing a random spin and adding it to an -empty cluster. Every neighbor of that spin pointed in the same direction as -the spin is added to the cluster with probability $1-e^{-2\beta J}$, where -$\beta=1/T$ and $J$ is the coupling between sites. This process is iterated -again for neighbors of every spin added to the cluster. When all sites -surrounding the cluster have been exhausted, the cluster is flipped. Our -algorithm is a simple extension of this. An extra spin is introduced (often -referred to as a ``ghost spin'') that couples to all others with coupling $H$. -The traditional Wolff algorithm is then preformed on this larger lattice exactly as described above, -with the extra spin treated no differently from any others. Observables in the -original system can be exactly estimated on the new one using a simple -mapping. As an application, we use our algorithm to measure critical scaling functions -of the 2D Ising model in its metastable phase. +empty cluster. Every neighbor of that spin that is pointed in the same +direction as the spin is also added to the cluster with probability +$1-e^{-2\beta J}$, where $\beta=1/T$ is inverse temperature and $J$ is the +coupling between sites. This process is repeated for the neighbors of every +spin added to the cluster. When all sites surrounding the cluster have been +exhausted, the cluster is flipped. Our algorithm is a simple extension of +this. An extra spin---often referred to as the ``ghost spin''---is introduced +and made a nearest neighbor of all others with coupling $|H|$, the magnitude +of the external field. The traditional Wolff algorithm is then preformed on +this new extended lattice exactly as described above, with the extra spin +treated no differently from any others, i.e., allowed to be added to clusters +and subsequently flipped. Observables in the original system can be exactly +estimated using the new one by a simple correspondence. + +This paper is divided into three sections. First, the Ising model (and our +notation for it) is introduced, along with extant Monte Carlo algorithms. +Second, we introduce our algorithm in detail and compare its efficiency with +the existing ones. Finally, we use this new algorithm to directly measure +critical scaling functions for observables of the 2D Ising model in its +metastable state. \section{Introduction} -Consider an undirected graph $G=(V,E)$ describing a system of interacting spins. The set -of vertices $V=\{1,\ldots,N\}$ enumerates the sites of the network, and the -set of edges $E$ describes connections between interacting sites. On each site +Consider an undirected graph $G=(V,E)$ describing a network of interacting spins. The set +of vertices $V=\{1,\ldots,n\}$ enumerates the sites of the network, and the +set of edges $E$ describes connections between neighboring sites. On each site is a spin that can take any value from the set $S=\{-1,1\}$. The state of the system is described by a function $s:V\to S$, leading to a configuration space of all possible states $S^n=S\times\cdots\times S$. The Hamiltonian @@ -140,17 +152,17 @@ by \H(s)=-\sum_{\{i,j\}\in E}J_{ij}s_is_j-HM(s), \label{eq:ham} \] -where $H$ is the external magnetic field, $J:E\to\R$ gives the coupling between spins on connected sites and +where $H$ is the external magnetic field, $J:E\to\R$ gives the coupling +between spins on neighboring sites and $M:S^n\to\R$ is the magnetization of the system defined for a state $s\in S^n$ by \[ M(s)=\sum_{i\in V}s_i. \] For the purpose of this study, we will only be considering ferromagnetic -systems where the function $J$ is nonnegative. All formal results can be -generalized to the antiferromagnetic or mixed cases, but algorithmic -efficiency for instance cannot. -An observable of this system is a function $A:S^n\to\R$ depending on the +systems where the function $J$ is nonnegative. + +An observable of the system is a function $A:S^n\to\R$ depending on the system's state. Both the Hamiltonian and magnetization defined above are observables. Assuming the ergodic hypothesis holds, the expected value $\avg A$ of @@ -161,18 +173,17 @@ or \avg A=\frac1Z\sum_{s\in S^n}e^{-\beta\H(s)}A(s), \label{eq:avg.obs} \] -where $\beta$ is the inverse temperature and the partition function $Z$ defined by +where the partition function $Z$ is defined by \[ Z=\sum_{s\in S^n}e^{-\beta\H(s)} \] -gives the correct normalization for the weighted sum. - -The sum over configurations in \eqref{eq:avg.obs} are intractable for all but -for very small systems. Therefore expected values of observables are usually +and gives the correct normalization for the weighted sum. +Unfortunately, the sum over configurations in \eqref{eq:avg.obs} are intractable for all but +for very small systems. Therefore expectation values are usually approximated by some means. Monte Carlo methods are a common way of -accomplishing this. These methods sample states $s$ in the configuration space -$S^n$ according to the Boltzmann distribution $e^{-\beta\H(s)}$, so that -averages of observables made using their samples asymptotically approach the +accomplishing this. These methods sample states $s$ from the configuration space +$S^n$ according to the Boltzmann distribution $e^{-\beta\H(s)}$ so that +averages of observables made using their incomplete samples asymptotically approach the true expected value. The Metropolis--Hastings algorithm @@ -183,29 +194,29 @@ to the perturbation is then computed. If the change is negative the perturbed state $s'$ is accepted as the new state. Otherwise the perturbed state is accepted with probability $e^{-\beta\Delta\H}$. This process is repeated indefinitely and a sample of states is made by sampling the state $s$ -between iterations. This algorithm is shown schematically in Algorithm -\ref{alg:met-hast}. Metropolis--Hastings is very general, but unless the +between iterations sufficiently separated that the successively sampled states +are uncorrelated, e.g., at separations larger than the correlation time $\tau$. Metropolis--Hastings is very general, but unless the perturbations are very carefully chosen the algorithm suffers in regimes where large correlations are present in the system, for instance near continuous phase transitions. Here the algorithm suffers from what is known as critical slowing-down, where likely states consist of large correlated clusters that take many perturbations to move between in configuration space. -\begin{figure} - \begin{algorithm}[H] - \begin{algorithmic} - \REQUIRE $s\in S^n$ - \STATE $s'\gets$ \texttt{Perturb}($s$) - \STATE $\Delta\H\gets\H(s')-\H(s)$ - \IF {$\exp(-\beta\Delta\H)>$ \texttt{UniformRandom}$(0,1)$} - \STATE $s\gets s'$ - \ENDIF - \end{algorithmic} - \caption{Metropolis--Hastings} - \label{alg:met-hast} - \end{algorithm} -\end{figure} - +%\begin{figure} +% \begin{algorithm}[H] +% \begin{algorithmic} +% \REQUIRE $s\in S^n$ +% \STATE $s'\gets$ \texttt{Perturb}($s$) +% \STATE $\Delta\H\gets\H(s')-\H(s)$ +% \IF {$\exp(-\beta\Delta\H)>$ \texttt{UniformRandom}$(0,1)$} +% \STATE $s\gets s'$ +% \ENDIF +% \end{algorithmic} +% \caption{Metropolis--Hastings} +% \label{alg:met-hast} +% \end{algorithm} +%\end{figure} +% The Wolff algorithm \cite{wolff1989collective} solves many of these problems, but only at zero external field, $H=0$. This algorithm solves the problem of critical slowing-down by flipping carefully-constructed clusters of spins at once in a way that samples @@ -228,69 +239,69 @@ H}$ every time a spin is added to it. $z=0.29(1)$ \cite{wolff1989comparison,liu2014dynamic} $z=0.35(1)$ for Swendsen--Wang \cite{swendsen1987nonuniversal} -\begin{figure} - \begin{algorithm}[H] - \begin{algorithmic} - \REQUIRE $s\in\G^n$ - \STATE \textbf{let} $q$ be an empty stack - \STATE \textbf{let} $i_0\in V$ - \STATE $q.\mathtt{push}(i_0)$ - \STATE $\sigma\gets s_{i_0}$ - \WHILE {$q$ is not empty} - \STATE $i\gets q.\mathtt{pop}$ - \IF {$s_i=\sigma$} - \FORALL {$j$ such that $\{i,j\}\in E$} - \IF {$1-\exp(-2\beta - J_{ij}s_is_j)>\mathop{\mathtt{UniformRandom}}(0,1)$} - \STATE $q.\mathtt{push}(j)$ - \ENDIF - \ENDFOR - \STATE $s_i\gets-s_i$ - \ENDIF - \ENDWHILE - \end{algorithmic} - \caption{Wolff (Zero-Field)} - \label{alg:wolff} - \end{algorithm} -\end{figure} - - - -\begin{figure} - \begin{algorithm}[H] - \begin{algorithmic} - \REQUIRE $s\in\G^n$ - \STATE $s'\gets s$ - \STATE \textbf{let} $q$ be an empty stack - \STATE \textbf{let} $i_0\in V$ - \STATE $q.\mathtt{push}(i_0)$ - \STATE $\sigma\gets s_{i_0}'$ - \STATE \texttt{completed} $\gets$ \textbf{true} - \WHILE {$q$ is not empty} - \STATE $i\gets q.\mathtt{pop}$ - \IF {$s_i'=\sigma$} - \FORALL {$j$ such that $\{i,j\}\in E$} - \IF {$1-\exp(-2\beta - J_{ij}s_i's_j')>\mathop{\mathtt{UniformRandom}}(0,1)$} - \STATE $q.\mathtt{push}(j)$ - \ENDIF - \ENDFOR - \STATE $s_i'\gets-s_i'$ - \STATE $q.\mathtt{push}(i)$ - \IF {$1-\exp(-2\beta\sigma H)>\mathop{\mathtt{UniformRandom}}(0,1)$} - \STATE \texttt{completed} $\gets$ \textbf{false} - \STATE \textbf{break} - \ENDIF - \ENDIF - \ENDWHILE - \IF {completed} - $s\gets s'$ - \ENDIF - \end{algorithmic} - \caption{Hybrid Wolff/Metropolis--Hastings} - \label{alg:h.wolff} - \end{algorithm} -\end{figure} +%\begin{figure} +% \begin{algorithm}[H] +% \begin{algorithmic} +% \REQUIRE $s\in\G^n$ +% \STATE \textbf{let} $q$ be an empty stack +% \STATE \textbf{let} $i_0\in V$ +% \STATE $q.\mathtt{push}(i_0)$ +% \STATE $\sigma\gets s_{i_0}$ +% \WHILE {$q$ is not empty} +% \STATE $i\gets q.\mathtt{pop}$ +% \IF {$s_i=\sigma$} +% \FORALL {$j$ such that $\{i,j\}\in E$} +% \IF {$1-\exp(-2\beta +% J_{ij}s_is_j)>\mathop{\mathtt{UniformRandom}}(0,1)$} +% \STATE $q.\mathtt{push}(j)$ +% \ENDIF +% \ENDFOR +% \STATE $s_i\gets-s_i$ +% \ENDIF +% \ENDWHILE +% \end{algorithmic} +% \caption{Wolff (Zero-Field)} +% \label{alg:wolff} +% \end{algorithm} +%\end{figure} +% +% +% +%\begin{figure} +% \begin{algorithm}[H] +% \begin{algorithmic} +% \REQUIRE $s\in\G^n$ +% \STATE $s'\gets s$ +% \STATE \textbf{let} $q$ be an empty stack +% \STATE \textbf{let} $i_0\in V$ +% \STATE $q.\mathtt{push}(i_0)$ +% \STATE $\sigma\gets s_{i_0}'$ +% \STATE \texttt{completed} $\gets$ \textbf{true} +% \WHILE {$q$ is not empty} +% \STATE $i\gets q.\mathtt{pop}$ +% \IF {$s_i'=\sigma$} +% \FORALL {$j$ such that $\{i,j\}\in E$} +% \IF {$1-\exp(-2\beta +% J_{ij}s_i's_j')>\mathop{\mathtt{UniformRandom}}(0,1)$} +% \STATE $q.\mathtt{push}(j)$ +% \ENDIF +% \ENDFOR +% \STATE $s_i'\gets-s_i'$ +% \STATE $q.\mathtt{push}(i)$ +% \IF {$1-\exp(-2\beta\sigma H)>\mathop{\mathtt{UniformRandom}}(0,1)$} +% \STATE \texttt{completed} $\gets$ \textbf{false} +% \STATE \textbf{break} +% \ENDIF +% \ENDIF +% \ENDWHILE +% \IF {completed} +% $s\gets s'$ +% \ENDIF +% \end{algorithmic} +% \caption{Hybrid Wolff/Metropolis--Hastings} +% \label{alg:h.wolff} +% \end{algorithm} +%\end{figure} \section{Cluster-flip in a Field} @@ -300,66 +311,52 @@ Consider the new graph $\tilde G=(\tilde V,\tilde E)$ defined from $G$ by \tilde E&=E\cup\{\{0,i\}\mid i\in V\}, \end{align} or by adding a zeroth vertex and edges from every other vertex to the new -one. The network of spins +one. Thee spin at site zero is often known as a ``ghost spin.'' The network of spins described by this graph now have states that occupy a configuration space $S^{n+1}$. Extend the coupling between spins $\tilde J:\tilde E\to\R$ by \[ - \tilde J_{ij}=\begin{cases} - J_{ij} & i,j>0\\ - H & \text{otherwise}, + \tilde J(e)=\begin{cases} + J(e) & e\in E\\ + |H| & \text{otherwise}, \end{cases} \] so that each spin is coupled to every other spin the same way they were -before, and coupled to the new spin with strength $H$. Now define a +before, and coupled to the new spin with strength $|H|$, the magnitude of the +external field. Now define a Hamiltonian function $\tilde\H:S^{n+1}\to\R$ on this new, larger configuration space defined by \[ \tilde\H(s)=-\sum_{\{i,j\}\in\tilde E}\tilde J_{ij}s_is_j. + \label{eq:new.h.simple} \] This new Hamiltonian resembles the old one, but is comprised only of spin--spin interactions with no external field. However, by changing the terms -considered in the sum we may write +considered in the sum we may equivalently write \[ \tilde\H(s)=-\sum_{\{i,j\}\in E}J_{ij}s_is_j-H\tilde M(s) \] -where the new magnetization $\tilde M:S^{n+1}\to\R$ is defined for $(s_0,s)\in +where the new magnetization $\tilde M:S^{n+1}\to\R$ is defined for $s\in S^{n+1}$ by \[ - \tilde M(s)=s_0\sum_{i\in V}s_i=M(s_0\times(s_1,\ldots,s_n)). + \begin{aligned} + \tilde M(s) + &=\sgn(H)s_0\sum_{i\in V}s_i\\ + &=M(s_0\sgn(H)(s_1,\ldots,s_n)). + \end{aligned} \] In fact, any observable $A$ of the original system can be written as an observable $\tilde A$ of the new system by defining \[ - \tilde A(s)=A(s_0\times(s_1,\ldots,s_n)) -\] -and the expected value of the observable $A$ in the old system and that of its -counterpart $\tilde A$ in the new system is unchanged. This can be seen by -using the facts that -$\tilde\H(s)=\tilde\H(-s)$, $\sum_{s\in S^n}f(s)=\sum_{s\in S^n}F(-s)$ for any -$f:S^n\to\R$, and $\tilde\H(1,s)=\H(s)$ for $s\in S^n$, from which follows -that -\[ - \begin{aligned} - \tilde Z\avg{\tilde A} - &=\sum_{s\in S^{n+1}}\tilde A(s)e^{-\beta\tilde\H(s)} - =\sum_{s_0\in S}\sum_{s\in S^n}\tilde A(s_0,s)e^{-\beta\tilde\H(s_0,s)}\\ - &=\bigg(\sum_{s\in S^n}A(s)e^{-\beta\tilde\H(1,s)} - +\sum_{s\in S^n}A(-s)e^{-\beta\tilde\H(-1,s)}\bigg)\\ - &=\bigg(\sum_{s\in S^n}A(s)e^{-\beta\tilde\H(1,s)} - +\sum_{s\in S^n}A(-s)e^{-\beta\tilde\H(1,-s)}\bigg)\\ - &=\bigg(\sum_{s\in S^n}A(s)e^{-\beta\tilde\H(1,s)} - +\sum_{s\in S^n}A(s)e^{-\beta\tilde\H(1,s)}\bigg)\\ - &=\bigg(\sum_{s\in S^n}A(s)e^{-\beta\H(s)} - +\sum_{s\in S^n}A(s)e^{-\beta\H(s)}\bigg)\\ - &=2Z\avg A. -\end{aligned} + \tilde A(s)=A(s_0\sgn(H)(s_1,\ldots,s_n)) \] -An identical calculation shows $\tilde Z=2Z$, therefore immediately proving -$\avg{\tilde A}=\avg A$. Notice this correspondence also holds for the -Hamiltonian. - -Our new spin system with an additional field is, when $H$ is greater than -zero, simply a ferromagnetic spin system in the absence of an external field. +such that $\avg{\tilde A}=\avg A$. This can be seen readily by using the +symmetry $\tilde\H(-s)=\tilde\H(s)$ of the Hamiltonian +\eqref{eq:new.h.simple}, the invariance of configuration space sums under +negation of their summand, and the fact that $\tilde\H(1,s)=\H(s)$ for any $s\in +S^n$. Notice in particular that this is true for the Hamiltonian $\tilde\H$ as +well. + +Our new spin system with an additional field is simply a ferromagnetic spin system in the absence of an external field. Therefore, the Wolff algorithm can be applied to it with absolutely no modifications. Since there is an exact correspondence between the expectation values of our ordinary spin system in a field and their appropriately defined @@ -368,35 +365,36 @@ system allows us to estimate the expectation values for the old. This ``new'' algorithm, if you can call it that, is shown in Algorithm \ref{alg:wolff-field}. -\begin{figure} - \begin{algorithm}[H] - \begin{algorithmic} - \REQUIRE $s\in S^n$ - \STATE \textbf{let} $q$ be an empty stack - \STATE \textbf{let} $i_0\in V$ - \STATE $q.\mathtt{push}(i_0)$ - \STATE $\sigma\gets s_{i_0}$ - \WHILE {$q$ is not empty} - \STATE $i\gets q.\mathtt{pop}$ - \IF {$s_i=\sigma$} - \FORALL {$j$ such that $\{i,j\}\in\tilde E$} - \IF {$1-\exp(-2\beta \tilde - J_{ij}s_is_j)>\mathop{\mathtt{UniformRandom}}(0,1)$} - \STATE $q.\mathtt{push}(j)$ - \ENDIF - \ENDFOR - \STATE $s_i\gets-s_i$ - \ENDIF - \ENDWHILE - \end{algorithmic} - \caption{Wolff (Nonzero Field)} - \label{alg:wolff-field} - \end{algorithm} -\end{figure} - +%\begin{figure} +% \begin{algorithm}[H] +% \begin{algorithmic} +% \REQUIRE $s\in S^n$ +% \STATE \textbf{let} $q$ be an empty stack +% \STATE \textbf{let} $i_0\in V$ +% \STATE $q.\mathtt{push}(i_0)$ +% \STATE $\sigma\gets s_{i_0}$ +% \WHILE {$q$ is not empty} +% \STATE $i\gets q.\mathtt{pop}$ +% \IF {$s_i=\sigma$} +% \FORALL {$j$ such that $\{i,j\}\in\tilde E$} +% \IF {$1-\exp(-2\beta \tilde +% J_{ij}s_is_j)>\mathop{\mathtt{UniformRandom}}(0,1)$} +% \STATE $q.\mathtt{push}(j)$ +% \ENDIF +% \ENDFOR +% \STATE $s_i\gets-s_i$ +% \ENDIF +% \ENDWHILE +% \end{algorithmic} +% \caption{Wolff (Nonzero Field)} +% \label{alg:wolff-field} +% \end{algorithm} +%\end{figure} +% -At sufficiently small $H$ both our algorithm and the hybrid Wolff--Metropolis reduce -to the ordinary Wolff algorithm, and have its runtime properties. At very large $H$, the hybrid +At sufficiently small $|H|$ both our algorithm and the hybrid Wolff--Metropolis reduce +to the ordinary Wolff algorithm, and have its runtime properties. At very +large $|H|$, the hybrid Wolff--Metropolis behaves exactly like Metropolis, where almost only one spin is ever flipped at a time with probability $\sim e^{-2\beta H}$, since the energy is dominated by contributions from the field. @@ -405,7 +403,8 @@ We measured the autocorrelation time $\tau$ of the internal energy $\H$ of a square-lattice Ising model ($J=1$ and $E$ is the set of nearest neighbor pairs) resulting from using each of these three algorithms at various -fields and temperatures. This was done using a batch mean estimator. Time was +fields and temperatures. This was done using an initial convex sequence +estimator, as described in \cite{geyer1992practical}. Time was measured as ``the number of spins that the algorithm has attempted to flip.'' For example, every Metropolis--Hastings step takes unit time, every Wolff step takes time equal to the number of spins in the flipping cluster, and every hybrid @@ -488,18 +487,10 @@ $\avg{|M|}$ of the absolute value of the magnetization and taking expectation values $\avg M_\e$ of the magnetization on a reduced configuration space, since \begin{align} - \avg{|M|} - &=\frac1Z\sum_{s\in S^n}e^{-\beta\H(s)}|M(s)|\\ - &=\frac1{Z_\e+Z_\m+Z_0}\bigg(\sum_{s\in S^n_\e}e^{-\beta\H(s)}|M(s)|+ - \sum_{s\in S^n_\m}e^{-\beta\H(s)}|M(s)|+\sum_{s\in - S^n_0}e^{-\beta\H(s)}|M(s)|\bigg)\\ - &=\frac1{2Z_\e+Z_0}\bigg(\sum_{s\in S^n_\e}e^{-\beta\H(s)}M(s)+ - \sum_{s\in S^n_\e}e^{-\beta\H(-s)}|M(-s)|\bigg)\\ - &=\frac2{2Z_\e+Z_0}\sum_{s\in S^n_\e}e^{-\beta\H(s)}M(s)\\ - &=\frac1{1+\frac{Z_0}{2Z_\e}}\eavg M + \avg{|M|}=\frac1{1+Z_0/2Z_\e}\eavg M \end{align} At infinite temperature, $Z_0/Z_\e\simeq n^{-1/2}\sim L^{-1}$ for large $L$, -$N$. At any finite temperature, especially in the ferromagnetic phase, +$n$. At any finite temperature, especially in the ferromagnetic phase, $Z_0\ll Z_\e$ in a much more extreme way. If the ensemble average over only positive magnetizations can be said to diff --git a/refs/geyer1992practical.pdf b/refs/geyer1992practical.pdf Binary files differnew file mode 100644 index 0000000..ff36105 --- /dev/null +++ b/refs/geyer1992practical.pdf |