summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--monte-carlo.tex69
1 files changed, 0 insertions, 69 deletions
diff --git a/monte-carlo.tex b/monte-carlo.tex
index db606a1..23065d1 100644
--- a/monte-carlo.tex
+++ b/monte-carlo.tex
@@ -675,75 +675,6 @@ perturbations on spin models can be tested numerically
bruce_coupled_1975, manuel_carmona_$n$-component_2000}.
-\appendix
-
-\section{$\mathrm O(n)$ model at high field}
-
-
-\[
- \H=-\sum_r\sum_{i=1}^D\sum_{j=1}^ns_r^js_{r+e_i}^j
- -\sum_r\sum_{j=1}^nH^js_r^j
-\]
-under the constraint
-\[
- 1=\sum_{j=1}^ns_r^js_r^j
-\]
-Let $s=m+t$ for $|m|=1$ (usually $m=H/|H|$). Suppose without loss of
-generality that $m=e_1$.
-\[
- 1=|s|^2=1+2m\cdot t+|t|^2
-\]
-whence $m\cdot t=-\frac12|t|^2$. Then
-\begin{align}
- s_1\cdot s_2
- &=1+m\cdot(t_1+t_2)+t_1\cdot t_2\\
- &=1-\frac12(|t_1|^2+|t_2|^2)+t_1\cdot t_2
-\end{align}
-and
-\[
- H\cdot s=|H|(1+m\cdot t)=|H|(1-\frac12|t|^2)
-\]
-For small perturbations, there are only $n-1$ degrees of freedom. We must have
-(for $t$ in the same hemisphere as $m$)
-\[
- t_\parallel=\sqrt{1-|t_\perp|^2}-1
-\]
-\[
- t_1\cdot t_2=t_{1\perp}\cdot t_{2\perp}+O(t^4)
-\]
-Since there are $2D$ nearest neighbor bonds involving each spin,
-\[
- \H
- \simeq\H_0
- -\sum_{\langle ij\rangle}t_{i\perp}\cdot t_{j\perp}
- +(D+|H|/2)\sum_i|t_{i\perp}|^2
-\]
-Taking a discrete Fourier transform on the lattice, we find
-\[
- \H
- \simeq\H_0
- -\sum_k|\tilde t_{k\perp}|^2(D+|H|/2-\sum_{i=1}^D\cos(2\pi k_i/L))
-\]
-It follows from equipartition (and the fact that $t_{k\perp}$ is an $n$-1
-component complex number) that
-\[
- \avg{|\tilde t_{k\perp}|^2}=\frac
- {n-1}2T\bigg(D+\frac{|H|}2-\sum_{i=1}^D\cos(2\pi k_i/L)\bigg)^{-1}
-\]
-whence
-\begin{align}
- \avg{\theta^2}
- &=\avg{\cos^{-1}s_i\cdot s_j}
- \simeq2(1-\avg{s_i\cdot s_j})\\
- &=2(\avg{|t|^2}-\avg{t_i\cdot t_j})
- \simeq2(\avg{|t_\perp|^2}-\avg{t_{i\perp}\cdot t_{j\perp}})\\
- &=2\sum_k(1-\cos(2\pi k_1/L))\avg{|\tilde t_{k\perp}|^2}\\
- &=\frac{(n-1)T}{L^D}\sum_k\frac{1-\cos(2\pi
- k_1/L)}{D+|H|/2-\sum_{i=1}^D\cos(2\pi k_i/L)}\\
-\end{align}
-
-\section{Calculating autocorrelation time}
-
\begin{acknowledgments}
This work was supported by NSF grant NSF DMR-1719490.
\end{acknowledgments}