summaryrefslogtreecommitdiff
path: root/aps_mm_2018.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-02-21 11:40:28 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-02-21 11:40:28 -0500
commit05725b9fa4843d19561b026567979709cc6b62a2 (patch)
tree9befb0daadbb24647fad52635d36657fcb98b17c /aps_mm_2018.tex
downloadaps_mm_2018-05725b9fa4843d19561b026567979709cc6b62a2.tar.gz
aps_mm_2018-05725b9fa4843d19561b026567979709cc6b62a2.tar.bz2
aps_mm_2018-05725b9fa4843d19561b026567979709cc6b62a2.zip
initial commit
Diffstat (limited to 'aps_mm_2018.tex')
-rw-r--r--aps_mm_2018.tex166
1 files changed, 166 insertions, 0 deletions
diff --git a/aps_mm_2018.tex b/aps_mm_2018.tex
new file mode 100644
index 0000000..34e9114
--- /dev/null
+++ b/aps_mm_2018.tex
@@ -0,0 +1,166 @@
+%
+% research_midsummer.tex - Research Presentation for the Topaz lab.
+%
+% Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012.
+% Copyright (c) 2012 pants productions. All rights reserved.
+%
+
+\documentclass[fleqn,aspectratio=169]{beamer}
+
+\usepackage[utf8]{inputenc}
+\usepackage{amsmath,amssymb,latexsym,graphicx,multimedia}
+\usepackage{concmath}
+\usepackage[T1]{fontenc}
+
+\usecolortheme{beaver}
+\usefonttheme{serif}
+\setbeamertemplate{navigation symbols}{}
+
+\title{Direct Measurement of Metastable Properties Near Critical Points}
+\author{ Jaron~Kent-Dobias \and James~Sethna}
+\institute{Cornell University}
+\date{9 March 2018}
+
+\begin{document}
+
+\def\H{\mathcal H}
+\def\Z{\mathbb Z}
+
+\begin{frame}
+ \titlepage
+\end{frame}
+
+\begin{frame}
+ \frametitle{Outline}
+ \begin{itemize}
+ \item Simulating equilibrium spin systems
+ \item Local updates: it's got problems
+ \item Solution: cluster flips!
+ \item Cluster flips\dots in an external field???
+ \item \dots{}yes!
+ \item Analysis of runtime, efficiency
+ \item Formal redefinition of magnetization
+ \item Use: direct measurement of the metastable state
+ \end{itemize}
+ \vfill
+\end{frame}
+
+\begin{frame}
+ \frametitle{Spin systems: we love them}
+
+ Described by Hamiltonians
+ \[
+ \H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iH(s_i)
+ \]
+ for $Z$ invariant under rotations $R$: $Z(R(s),R(t))=Z(s,t)$
+
+ \begin{table}
+ \renewcommand{\tabcolsep}{7pt}
+ \begin{tabular}{l||cccc}
+ & $s$ & $R$ & $Z(s_i,s_j)$ & $H(s)$ \\
+ \hline\hline
+ Ising model & $\{-1,1\}$ & $s\mapsto-s$ & $s_is_j$ & $Hs$ \\
+ Order-$n$ model & $S^n$ & $\mathop{\mathrm{SO}}(n)$ (rotation) & $s_i\cdot s_j$ & $H\cdot s$ \\
+ Potts model & $\Z/q\Z$ & addition mod $q$ & $\delta(s_i,s_j)$ &
+ $\sum_iH_i\delta(i,s)$ \\
+ Clock model & $\Z/q\Z$ & addition mod $q$ & $\cos(2\pi\frac{s_i-s_j}q)$ &
+ $\sum_iH_i\cos(2\pi\frac{s-i}q)$
+ \end{tabular}
+ \end{table}
+
+ Relatively simple with extremely rich behavior, phase transitions galore!
+\end{frame}
+
+\begin{frame}
+ \frametitle{Local Monte Carlo: Not Great}
+
+ Standard approach to modelling arbitrary stat mech system: metropolis.
+
+ \begin{enumerate}
+ \item Pick random spin.
+ \item Pick random rotation $R$.
+ \item Compute change in energy $\Delta\H$ resulting from taking $s$ to
+ $R(s)$.
+ \item Take $s$ to $R(s)$ with probability $\max\{1,e^{-\beta\Delta\H}\}$.
+ \end{enumerate}
+
+ Problem: Scales very poorly near phase transitions.
+
+ Correlation time $\tau\sim L^z$ at critical point, $\tau\sim t^{-z/\nu}$
+ approaching it.
+
+ $z$ takes large integer values for Ising, order-$n$, Potts model critical
+ points.
+\end{frame}
+
+\begin{frame}
+ \frametitle{Wolff: wow, what a solution}
+
+ \begin{enumerate}
+ \item Pick random spin, add to cluster.
+ \item Pick random rotation $R$.
+ \item For every neighboring spin, add to cluster with probability
+ $\min\{0,1-e^{-\beta(Z(R(s),t)-Z(R(s),R(t)))}\}$.
+ \item Repeat 3 for every spin added to cluster.
+ \item Transform entire cluster with rotation $R$.
+ \end{enumerate}
+ Relies on symmetry of $Z$
+
+ Fast near the critical point: early studies thought $z$ was zero, actually
+ $0.1$--$0.4$.
+\end{frame}
+
+\begin{frame}
+ \frametitle{We want to apply an external field, though}
+
+ The external field $H$ is not invariant under global rotations!
+
+ Let's make it that way: $R_s$ is the rotation that takes $s$ to the
+ identity
+ (1, first basis vector, etc)
+ \[
+ \tilde Z(s_i,s_j)=
+ \begin{cases}
+ Z(s_i,s_j) & \text{if $i,j\neq N$}\\
+ H(R_{s_0}s_i) & \text{if $j=0$}\\
+ H(R_{s_0}s_j) & \text{if $i=0$}
+ \end{cases}
+ \]
+ Exact correspondence between expectation values of operators in old and new
+ models: if $A(s)$ is an observable on old model, $\tilde
+ A(s_0,s)=A(R_{s_0}s)$ has the property
+ \[
+ \langle\tilde
+ A\rangle=\mathop{\mathrm{Tr}}\nolimits_s\mathop{\mathrm{Tr}}\nolimits_{s_0}\tilde
+ A(s_0,s)=\mathop{\mathrm{Tr}}\nolimits_sA(s)=\langle A\rangle
+ \]
+\end{frame}
+
+\begin{frame}
+ \centering
+ \includegraphics[height=0.8\textheight]{figs/wolff-scoop_title}
+\end{frame}
+
+\begin{frame}
+ \centering
+ \includegraphics[height=0.8\textheight]{figs/wolff-scoop_explanation}
+\end{frame}
+
+\begin{frame}
+ \frametitle{But does it actually work well? (yes)}
+ \movie[height=.4\textwidth,width=0.4\textwidth]{}{figs/test.avi}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Measuring direction-dependant quantities}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Metastable state!}
+\end{frame}
+
+\begin{frame}
+\end{frame}
+
+\end{document}
+