1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
<!DOCTYPE html>
<html>
<head>
<title>Title</title>
<meta charset="utf-8">
<style>
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
</style>
<link rel="stylesheet" type="text/css" href="main.css">
</head>
<body>
<textarea id="source">
class: center, middle
# An efficient cluster algorithm for spin systems in a symmetry-breaking field
## Jaron Kent-Dobias & James Sethna
### Cornell University
## 9 March 2018
---
# Spin systems
Described by Hamiltonians
$$\mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iH(s_i)$$
for \\(Z\\) invariant under rotations \\(R\\): \\(Z(R(s),R(t))=Z(s,t)\\).
<table style="border-collapse: collapse; table-layout: fixed; width: 80%; margin: auto;">
<thead style="border-bottom: 2px solid #000;">
<tr>
<td class="first"></td><td>\(s\)<td>\(R\)</td><td>\(Z(s_i,s_j)\)</td><td>\(H(s)\)</td>
</tr>
</thead>
<tbody>
<tr>
<td class="first">Ising model</td><td>\(\{-1,1\}\)</td><td>\(s\mapsto-s\)</td><td>\(s_is_j\)</td><td>\(Hs\)</td>
</tr>
<tr>
<td class="first">Order-\(n\) model</td><td>\(S^n\)</td><td>\(\mathop{\mathrm{SO}}(n)\) (rotation)</td><td>\(s_i\cdot s_j\)</td><td>\(H\cdot s\)</td>
</tr>
<tr>
<td class="first">Potts model</td><td>\(\mathbb Z/q\mathbb Z\)</td><td>addition mod \(q\)</td><td>\(\delta(s_i,s_j)\)</td><td>\(\sum_iH_i\delta(i,s)\)</td>
</tr>
<tr>
<td class="first">Clock model</td><td>\(\mathbb Z/q\mathbb Z\)</td><td>addition mod \(q\)</td><td>\(\cos(2\pi\frac{s_i-s_j}q)\)</td><td>\(\sum_iH_i\cos(2\pi\frac{s-i}q)\)</td>
</tr>
</tbody>
</table>
Relatively simple with extremely rich behavior, phase transition galore!
---
# Local Monte Carlo: Not Great
Standard approach to modelling arbitrary stat mech system: metropolis.
1. Pick random spin.
2. Pick random rotation \\(R\\).
3. Compute change in energy \\(\Delta\mathcal H\\) resulting from taking \\(s\\) to \\(R(s)\\).
4. Take \\(s\\) to \\(R(s)\\) with probability \\(\max\\{1,e^{-\beta\Delta\mathcal H}\\}\\).
Problem: Scales very poorly near phase transitions.
Correlation time `\(\tau\sim L^z\)` at critical point, `\(\tau\sim t^{-z/\nu}\)`
approaching it.
`\(z\)` takes large integer values for Ising, order-`\(n\)`, Potts model critical
---
class: split-40
# Wolff: wow, what a solution
.column[
1. Pick random spin, add to cluster.
2. Pick random rotation `\(R\)`.
3. For every neighboring spin, add to cluster with probability
`\(\min\{0,1-e^{-\beta(Z(R(s),t)-Z(R(s),R(t)))}\}\)`.
4. Repeat 3 for every spin added to cluster.
5. Transform entire cluster with rotation `\(R\)`.
Relies on symmetry of `\(Z\)`
Fast near the critical point: early studies thought `\(z\)` was zero, actually
0.1–0.4.
]
.column[
<video width="320" height="320"><source src="figs/test.webm" type="video/webm"></video>
]
---
# We want to apply an external field, though
The external field `\(H\)` is not invariant under global rotations!
Let's make it that way: introduce an extra spin `\(s_0\)`, let `\(R_s\)` be the rotation that takes `\(s\)` to the
identity
`\[
\tilde Z(s_i,s_j)=
\begin{cases}
Z(s_i,s_j) & \text{if $i,j\neq0$}\\
H(R_{s_0}s_i) & \text{if $j=0$}\\
H(R_{s_0}s_j) & \text{if $i=0$}
\end{cases}
\]`
Exact correspondence between expectation values of operators in old and new
models: if `\(A(s)\)` is an observable on old model, `\(\tilde
A(s_0,s)=A(R_{s_0}s)\)` has the property
`\[
\langle\tilde
A\rangle=\mathop{\mathrm{Tr}}\nolimits_s\mathop{\mathrm{Tr}}\nolimits_{s_0}\tilde
A(s_0,s)=\mathop{\mathrm{Tr}}\nolimits_sA(s)=\langle A\rangle
\]`
---
![scooped](figs/wolff-scoop_title.png)
---
![scoop details](figs/wolff-scoop_explanation.png)
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="vissense/lib/vissense.js"></script>
<script>
$(document).ready(function(){
var videos = $('video'), // All videos element
allVidoesVisenseObj = [];
var monitorVideo = function(video){ //Handler for each video element
var visibility = VisSense(video, { fullyvisible: 0.75 }),
visibility_monitor = visibility.monitor({
fullyvisible: function(e) {
video.play();
},
hidden: function(e) {
video.pause();
}
}).start();
return {
visMonitor : visibility_monitor,
monitorStop : function(){
this.visMonitor.stop();
},
monitorStart : function(){
this.visMonitor.start();
}
};
};
videos.each(function( index ) {
var monitorVids = monitorVideo(this);
allVidoesVisenseObj.push(monitorVids);
});
});
</script>
<script type="text/javascript">
var slideshow = remark.create({ ratio: "16:9" });
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Configured();
</script>
</body>
</html>
|