summaryrefslogtreecommitdiff
path: root/aps_mm_2018.html
blob: b9746c12cc20fa3c450e7527be2ddf3841cdf34d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
<!DOCTYPE html>
<html>
  <head>
    <title>Title</title>
    <meta charset="utf-8">
    <style>
      @import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
      @import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
      @import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);

      body { font-family: 'Computer Modern Concrete'; }
      h1, h2, h3 {
        font-family: 'Computer Modern Concrete';
        font-weight: normal;
      }
      .remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
    </style>
    <link rel="stylesheet" type="text/css" href="main.css">
    <link rel="stylesheet" type="text/css" href="fonts/Concrete/cmun-concrete.css">
  </head>
  <body>
    <textarea id="source">

class: center, middle

# An efficient cluster algorithm for spin systems in a symmetry-breaking field

## Jaron Kent-Dobias &amp; James Sethna

### Cornell University

## 9 March 2018

---

# Spin systems

Described by Hamiltonians

$$\mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iH(s_i)$$

for \\(Z\\) invariant under rotations \\(r\\): \\(Z(r(s),r(t))=Z(s,t)\\).

<table style="border-collapse: collapse; table-layout: fixed; width: 80%; margin: auto;">
  <thead style="border-bottom: 2px solid #000;">
    <tr>
      <td class="first"></td><td>\(s\)<td>\(r\)</td><td>\(Z(s_i,s_j)\)</td><td>\(H(s)\)</td>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td class="first">Ising model</td><td>\(\{-1,1\}\)</td><td>\(s\mapsto-s\)</td><td>\(s_is_j\)</td><td>\(Hs\)</td>
    </tr>
    <tr>
      <td class="first">Order-\(n\) model</td><td>\(S^n\)</td><td>\(\mathop{\mathrm{SO}}(n)\) (rotation)</td><td>\(s_i\cdot s_j\)</td><td>\(H\cdot s\)</td>
    </tr>
    <tr>
      <td class="first">Potts model</td><td>\(\mathbb Z/q\mathbb Z\)</td><td>addition mod \(q\)</td><td>\(\delta(s_i,s_j)\)</td><td>\(\sum_iH_i\delta(i,s)\)</td>
    </tr>
    <tr>
      <td class="first">Clock model</td><td>ℤ/<i>q</i></td><td>addition mod \(q\)</td><td>\(\cos(2\pi\frac{s_i-s_j}q)\)</td><td>\(\sum_iH_i\cos(2\pi\frac{s-i}q)\)</td>
    </tr>
  </tbody>
</table>

Relatively simple with extremely rich behavior, phase transition galore!

---

class: split-40

# Local Monte Carlo: Not Great

.column[

  Standard approach to modelling arbitrary stat mech system: metropolis.
  
  1. Pick random spin.
  2. Pick random rotation \\(r\\).
  3. Compute change in energy \\(\Delta\mathcal H\\) resulting from taking \\(s\\) to \\(R(s)\\).
  4. Take \\(s\\) to \\(R(s)\\) with probability \\(\max\\{1,e^{-\beta\Delta\mathcal H}\\}\\).


Problem: Scales very poorly near phase transitions.

Correlation time *τ* at critical point, *t* <sup>– *z/ν*</sup> `\(\tau\sim t^{-z/\nu}\)`
  approaching it.

  `\(z\)` takes large integer values for Ising, order-`\(n\)`, Potts model critical
  ]

  .column[
<video width="320" height="320"><source src="figs/metropolis_ising_zerofield.webm" type="video/webm"></video>
]

---

class: split-40

# Wolff: wow, what a solution

.column[

 1. Pick random spin, add to cluster.
 2. Pick random rotation `\(R\)`.
 3. For every neighboring spin, add to cluster with probability
      `\(\min\{0,1-e^{-\beta(Z(R(s),R(t))-Z(R(s),t))}\}\)`.
 4. Repeat 3 for every spin added to cluster.
 5. Transform entire cluster with rotation `\(R\)`.

Relies on symmetry of *Z*

Fast near the critical point: early studies thought `\(z\)` was zero, actually
  0.10.4.

  ]

  .column[
<video width="320" height="320"><source src="figs/wolff_ising_zerofield.webm" type="video/webm"></video>
]

---

# We want to apply an external field, though

  The external field `\(H\)` is not invariant under global rotations!

  Let's make it that way: introduce an extra spin `\(s_0\)`, let `\(R_s\)` be the rotation that takes `\(s\)` to the
  identity
  `\[
    \tilde Z(s_i,s_j)=
    \begin{cases}
      Z(s_i,s_j) & \text{if $i,j\neq0$}\\
      H(R_{s_0}s_i) & \text{if $j=0$}\\
      H(R_{s_0}s_j) & \text{if $i=0$}
    \end{cases}
  \]`
  Exact correspondence between expectation values of operators in old and new
  models: if `\(A(s)\)` is an observable on old model, `\(\tilde
  A(s_0,s)=A(R_{s_0}s)\)` has the property
  `\[
    \langle\tilde
    A\rangle=\mathop{\mathrm{Tr}}\nolimits_s\mathop{\mathrm{Tr}}\nolimits_{s_0}\tilde
    A(s_0,s)=\mathop{\mathrm{Tr}}\nolimits_sA(s)=\langle A\rangle
  \]`

---

  ![scooped](figs/wolff-scoop_title.png)

---

  ![scoop details](figs/wolff-scoop_explanation.png)

---

# Why is the extended method useful?

<img src="figs/vector-1.svg" alt="order-n" style="float: left;"/>
<img src="figs/vector-2.svg" alt="order-n" style="float: right;"/>
<span style="font-size: 40pt; overflow: hidden; height: 6.5em; text-align: center; align-items: center; display: inline-flex; position: static; float: center">&nbsp;&nbsp;<i>R</i>&nbsp;<br>&rarr;</span>

---

# Why is the extended method useful?

<img src="figs/potts.svg" alt="order-n"/>

---

# Correlation time scaling

Correlation time scales consistently in the whole phase space!

<img src="figs/autocorr-scaling-isotherm.png" style="float: left; width: 48%" />
<img src="figs/autocorr-scaling-temp.png" style="float: right; width: 48%" />

---

# Metastable state direct measurement

    </textarea>
    <script src="https://remarkjs.com/downloads/remark-latest.min.js">
    </script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
    <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
    <script src="vissense/lib/vissense.js"></script>
    <script>
      $(document).ready(function(){
      var videos = $('video'), // All videos element
          allVidoesVisenseObj = [];
      var monitorVideo = function(video){ //Handler for each video element
          var visibility = VisSense(video, { fullyvisible: 0.75 }),
              visibility_monitor = visibility.monitor({
                  fullyvisible: function(e) {
                      video.play();
                  },
                  hidden: function(e) {
                      video.pause();
                  }
              }).start();
          return {
              visMonitor : visibility_monitor,
              monitorStop : function(){
                  this.visMonitor.stop();
              },
              monitorStart : function(){
                  this.visMonitor.start();
              }
          };
      };
      videos.each(function( index ) {
          var monitorVids = monitorVideo(this);
          allVidoesVisenseObj.push(monitorVids);
      });
    });
    </script>
    <script type="text/javascript">
      var slideshow = remark.create({ ratio: "16:9" });

      MathJax.Hub.Config({
        tex2jax: {
          skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
        }
      });

      MathJax.Hub.Configured();
    </script>
  </body>
</html>