diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-11-09 15:41:56 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2021-11-09 15:41:56 +0100 |
commit | bcc5c327016a3d188a9bdcb0069cc63b0bb8163f (patch) | |
tree | abf0d5f9cf2ac9fb2d83c81aa1228525786ccc72 | |
parent | d1d89e3a1ef97cd6443d4b0f4890a388d106e32d (diff) | |
download | code-bcc5c327016a3d188a9bdcb0069cc63b0bb8163f.tar.gz code-bcc5c327016a3d188a9bdcb0069cc63b0bb8163f.tar.bz2 code-bcc5c327016a3d188a9bdcb0069cc63b0bb8163f.zip |
Moved some repeated code into the pSpinModel class.
-rw-r--r-- | langevin.cpp | 23 | ||||
-rw-r--r-- | p-spin.hpp | 109 | ||||
-rw-r--r-- | tensor.hpp | 24 |
3 files changed, 77 insertions, 79 deletions
diff --git a/langevin.cpp b/langevin.cpp index 8ecd69c..0e5a616 100644 --- a/langevin.cpp +++ b/langevin.cpp @@ -81,17 +81,10 @@ int main(int argc, char* argv[]) { } } - Complex κ(Rκ, Iκ); - Real σp = sqrt(factorial(p) / ((Real)2 * pow(N, p - 1))); - Real σ2 = sqrt(factorial(2) / ((Real)2 * pow(N, 2 - 1))); - Real σ4 = sqrt(factorial(4) / ((Real)2 * pow(N, 4 - 1))); - Rng r; - pSpinModel<Real, 2, 4> pSpin; - - std::get<0>(pSpin.Js) = generateCouplings<Real, 2>(N, std::normal_distribution<Real>(0, σ2), r.engine()); - std::get<1>(pSpin.Js) = generateCouplings<Real, 4>(N, std::normal_distribution<Real>(0, σ4 / 10), r.engine()); +// pSpinModel<Real, 2, 4> pSpin({J2, J4}); + pSpinModel<Real, 2, 4>pSpin(N, r.engine(), 1, 0.1); std::normal_distribution<Real> Red(0, 1); @@ -100,18 +93,17 @@ int main(int argc, char* argv[]) { RealVector dHr; RealMatrix ddHr; std::tie(Hr, dHr, ddHr, std::ignore) = pSpin.hamGradHess(zMin); - Eigen::EigenSolver<Matrix<Real>> eigenS(ddHr - (dHr * zMin.transpose() + zMin.dot(dHr) * Matrix<Real>::Identity(zMin.size(), zMin.size()) + (ddHr * zMin) * zMin.transpose()) / (Real)zMin.size() + 2.0 * zMin * zMin.transpose()); - std::cout << eigenS.eigenvalues().transpose() << std::endl; + Eigen::EigenSolver<Matrix<Real>> eigenS(ddHr - (dHr * zMin.transpose() + zMin.dot(dHr) * Matrix<Real>::Identity(zMin.size(), zMin.size()) + (ddHr * zMin) * zMin.transpose()) / (Real)zMin.size() + zMin * zMin.transpose() / (Real)N); for (unsigned i = 0; i < N; i++) { - RealVector zNew = normalize(zMin + 0.01 * eigenS.eigenvectors().col(i).real()); - std::cout << pSpin.getHamiltonian(zNew) - Hr << " " << real(eigenS.eigenvectors().col(i).dot(zMin)) << std::endl; + RealVector zNew = normalize(zMin + 1e-3 * eigenS.eigenvectors().col(i).real()); + std::cout << eigenS.eigenvalues()(i) << " " << 2.0 * (pSpin.getHamiltonian(zNew) - Hr) / 1e-6 << " " << real(eigenS.eigenvectors().col(i).dot(zMin)) << " " << eigenS.eigenvectors().col(0).dot(eigenS.eigenvectors().col(i)) << std::endl; } std::cout << std::endl; getchar(); complex_normal_distribution<Real> d(0, 1, 0); - pSpinModel<Complex, 2, 4> complexPSpin = pSpin.cast<Complex>();; + pSpinModel complexPSpin = pSpin.cast<Complex>();; ComplexVector zSaddle = zMin.cast<Complex>(); ComplexVector zSaddleNext; @@ -134,8 +126,7 @@ int main(int argc, char* argv[]) { Real φ = atan2( H2.imag() - H1.imag(), H1.real() - H2.real()); std::cerr << (zSaddle - zSaddleNext).norm() / (Real)N << " " << φ << " " << H1 * exp(Complex(0, φ)) << " " << H2 * exp(Complex(0, φ)) << std::endl; - std::get<0>(complexPSpin.Js) = exp(Complex(0, φ)) * std::get<0>(complexPSpin.Js); - std::get<1>(complexPSpin.Js) = exp(Complex(0, φ)) * std::get<1>(complexPSpin.Js); + complexPSpin *= exp(Complex(0, φ)); Cord test(complexPSpin, zSaddle, zSaddleNext, 3); test.relaxNewton(10, 1, 1e4); @@ -12,73 +12,92 @@ Vector<typename Derived::Scalar> normalize(const Eigen::MatrixBase<Derived>& z) return z * sqrt((Real)z.size() / (typename Derived::Scalar)(z.transpose() * z)); } -template <class Scalar> -std::tuple<Matrix<Scalar>, Tensor<Scalar, 3>> hamGradTensorHelper(const Vector<Scalar>& z, const Tensor<Scalar, 2>& J) { - Tensor<Scalar, 3> J3(z.size(), z.size(), z.size());; - J3.setZero(); - Matrix<Scalar> Jz = Eigen::Map<const Matrix<Scalar>>(J.data(), z.size(), z.size()); - - return {Jz, J3}; -} +template <typename Scalar, int... ps> +class pSpinModel { +private: + std::tuple<Matrix<Scalar>, Tensor<Scalar, 3>> hamGradTensorHelper(const Vector<Scalar>& z, const Tensor<Scalar, 2>& J) const { + Tensor<Scalar, 3> J3(z.size(), z.size(), z.size());; + J3.setZero(); + Matrix<Scalar> Jz = Eigen::Map<const Matrix<Scalar>>(J.data(), z.size(), z.size()); -template <class Scalar, int p> -std::tuple<Matrix<Scalar>, Tensor<Scalar, 3>> hamGradTensorHelper(const Vector<Scalar>& z, const Tensor<Scalar, p>& J) { - Tensor<Scalar, 3> J3 = contractDown(J, z); - Tensor<Scalar, 1> zT = Eigen::TensorMap<Tensor<const Scalar, 1>>(z.data(), {z.size()}); - Tensor<Scalar, 2> J3zT = J3.contract(zT, ip00); - Matrix<Scalar> Jz = Eigen::Map<const Matrix<Scalar>>(J3zT.data(), z.size(), z.size()); + return {Jz, J3}; + } - return {Jz, J3}; -} + template <int p> + std::tuple<Matrix<Scalar>, Tensor<Scalar, 3>> hamGradTensorHelper(const Vector<Scalar>& z, const Tensor<Scalar, p>& J) const { + Tensor<Scalar, 3> J3 = contractDown(J, z); + Tensor<Scalar, 1> zT = Eigen::TensorMap<Tensor<const Scalar, 1>>(z.data(), {z.size()}); + Tensor<Scalar, 2> J3zT = J3.contract(zT, ip00); + Matrix<Scalar> Jz = Eigen::Map<const Matrix<Scalar>>(J3zT.data(), z.size(), z.size()); -template <class Scalar, int p, int... ps> -std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>, Tensor<Scalar, 3>> hamGradHessHelper(const Vector<Scalar>& z, const Tensor<Scalar, p>& J, const Tensor<Scalar, ps>& ...Js) { - auto [Jz, J3] = hamGradTensorHelper(z, J); - - Vector<Scalar> Jzz = Jz * z; - Scalar Jzzz = Jzz.transpose() * z; - - Real pBang = factorial(p); - - Tensor<Scalar, 3> dddH = ((p - 2) * (p - 1) * p / pBang) * J3; - Matrix<Scalar> ddH = ((p - 1) * p / pBang) * Jz; - Vector<Scalar> dH = (p / pBang) * Jzz; - Scalar H = Jzzz / pBang; - - if constexpr (sizeof...(Js) > 0) { - auto [Hs, dHs, ddHs, dddHs] = hamGradHessHelper(z, Js...); - H += Hs; - dH += dHs; - ddH += ddHs; - dddH += dddHs; + return {Jz, J3}; } - return {H, dH, ddH, dddH}; -} + template <int p, int... qs> + std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>, Tensor<Scalar, 3>> hamGradHessHelper(const Vector<Scalar>& z, const Tensor<Scalar, p>& J, const Tensor<Scalar, qs>& ...Js) const { + auto [Jz, J3] = hamGradTensorHelper(z, J); + + Vector<Scalar> Jzz = Jz * z; + Scalar Jzzz = Jzz.transpose() * z; + + Real pBang = factorial(p); + + Tensor<Scalar, 3> dddH = ((p - 2) * (p - 1) * p / pBang) * J3; + Matrix<Scalar> ddH = ((p - 1) * p / pBang) * Jz; + Vector<Scalar> dH = (p / pBang) * Jzz; + Scalar H = Jzzz / pBang; + + if constexpr (sizeof...(Js) > 0) { + auto [Hs, dHs, ddHs, dddHs] = hamGradHessHelper(z, Js...); + H += Hs; + dH += dHs; + ddH += ddHs; + dddH += dddHs; + } + + return {H, dH, ddH, dddH}; + } -template <typename Scalar, int... ps> -class pSpinModel { public: std::tuple<Tensor<Scalar, ps>...> Js; + pSpinModel() {} + + pSpinModel(const std::tuple<Tensor<Scalar, ps>...>& Js) : Js(Js) {} + + template <class Generator, typename... T> + pSpinModel<Real>(unsigned N, Generator& r, T... μs) { + Js = std::make_tuple(μs * generateRealPSpinCouplings<Real, ps>(N, r)...); + } + unsigned dimension() const { return std::get<0>(Js).dimension(0); } template <typename NewScalar> pSpinModel<NewScalar, ps...> cast() const { - pSpinModel<NewScalar, ps...> M; - M.Js = std::apply( + return std::apply( [] (const Tensor<Scalar, ps>& ...Ks) -> std::tuple<Tensor<NewScalar, ps>...> { return std::make_tuple(Ks.template cast<NewScalar>()...); }, Js - ); + ); + } + + template <typename T> + pSpinModel<Scalar, ps...>& operator*=(T x) { + std::tuple<Tensor<Scalar, ps>...> newJs = std::apply( + [x] (const Tensor<Scalar, ps>& ...Ks) -> std::tuple<Tensor<Scalar, ps>...> { + return std::make_tuple((x * Ks)...); + }, Js + ); + + Js = newJs; - return M; + return *this; } std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>, Tensor<Scalar, 3>> hamGradHess(const Vector<Scalar>& z) const { - return std::apply([&z](const Tensor<Scalar, ps>& ...Ks) -> std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>, Tensor<Scalar, 3>> { return hamGradHessHelper(z, Ks...); }, Js); + return std::apply([&z, this](const Tensor<Scalar, ps>& ...Ks) -> std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>, Tensor<Scalar, 3>> { return hamGradHessHelper(z, Ks...); }, Js); } Scalar getHamiltonian(const Vector<Scalar>& z) const { @@ -5,6 +5,8 @@ #include <eigen3/unsupported/Eigen/CXX11/Tensor> +#include "factorial.hpp" + template <class Scalar> using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>; @@ -89,25 +91,11 @@ Tensor<Scalar, p> generateCouplings(unsigned N, Distribution d, Generator& r) { return J; } -template <class Scalar, int p, class Distribution, class Generator> -Tensor<Scalar, p> plantState(const Tensor<Scalar, p>& J, const Vector<Scalar>& z, double β) { - Tensor<Scalar, p> JPlanted = J; - - std::function<void(Tensor<Scalar, p>&, std::array<unsigned, p>)> plant = - [&z, β] (Tensor<Scalar, p>& JJ, std::array<unsigned, p> ind) { - Scalar Ji = getJ<Scalar, p>(JJ, ind); - Scalar zzz = 1; - - for (unsigned i : ind) { - zzz *= z(i); - } - - setJ<Scalar, p>(JJ, ind, Ji - β * zzz / pow(zzz.size(), p)); - }; - - iterateOver<Scalar, p>(JPlanted, plant); +template <class Real, int p, class Generator> +Tensor<Real, p> generateRealPSpinCouplings(unsigned N, Generator& r) { + Real σp = sqrt(factorial(p) / ((Real)2 * pow(N, p - 1))); - return JPlanted; + return generateCouplings<Real, p>(N, std::normal_distribution<Real>(0, σp), r); } template <class Scalar> |